
Towards a Pattern Catalogue for E-Assessment
System Integration

Michael Striewe
paluno – The Ruhr Institute for Software Technology

University of Duisburg-Essen
Essen, Germany

michael.striewe@paluno.uni-due.de

Abstract— This paper presents preliminary results of an
extensive literature study on software components commonly
used in e-assessment systems. The purpose of the study is to
prepare the creation of a pattern catalogue for design patterns,
which can be used for integrating e-assessment features into
larger systems.

Keywords— E-learning and E-assessment systems, Design
patterns, System integration

I. INTRODUCTION
Following a general tendency in system design and system

architectures in recent decades, educational systems
transformed in three generations from monolithic blocks via
modular systems to service oriented frameworks [5]. This is a
comprehensible development due to the many similarities
between educational systems and other software products.
Consequently, there is also a tendency in very recent years to
move forward to cloud based solutions in e-learning and e-
assessment, which is considered a fourth generation by some
authors [11].

These trends were not only driven by purely technical
innovations, but also by actual requirements in the context of
these systems. For example, service oriented architectures were
in particular introduced due to the need for sharing materials or
assessments across courses and teachers or even institutions [1,
4]. A similar need for sharing expert systems and knowledge
modules also led to modularization in the area of Intelligent
Tutoring Systems (ITS) [8], which usually also include some
kind of assessment features. Learning management systems
(LMS) also included a rising amount of e-assessment features.
Especially those systems that are developed (as open source
projects) by a distributed community (such as MOODLE or
ILIAS) benefit from modularization. With rising numbers of
students and in particular rising numbers of electronic
assessments, scalability became a crucial issue for e-
assessment systems in particular and thus put arguments in
favor of cloud solutions to the front [25].

While the notion of different generations of systems
according to their architecture refers to the internal structure of
these systems in the first place, modularization also is a
prerequisite for constructing integrated systems. Integrated e-
assessment can be understood in two ways: In the sense of
technical integration of e-assessment features into other tools

and in the sense of assessment activities integrated into larger
educational contexts. Both cases are not possible from the
software engineering perspective without understanding
educational systems as a composition of components and
services. Although situations might exist in which a system
offering only e-assessment features is appropriate to use, ITS
or learning management systems (LMS) can be expected to
integrate e-assessment capabilities either as own components
or as external services. This is the most favorable view in
particular when using a broad notion of assessment that
includes any kind of non-formal (self-)assessment that might
occur during learning and training. Consequently, there will be
no strict definition on how to tell an LMS with e-assessment
features from an e-assessment system with LMS features and
alike.

The remainder of this paper hence reports in chapter II on
different kinds of components found in the literature, that
typically appear in the context of educational systems. The
assumption is that these components may be integrated with
other components in a system offering e-assessment features.
The goal of this chapter is hence to compile an overview
including a rough description of component interfaces. The
intention is to use this overview as a baseline for subsequent
considerations on architectural patterns. Chapter III provides a
first and preliminary sketch for these considerations. It takes
some of these bits and provides abstract descriptions of some
reoccurring patters found in the components and systems
mentioned above. The goal is not yet to provide a full pattern
catalogue, but to present and discuss abstractions on various
granularity levels by example. Chapter IV reviews these results
in order to name future work towards a more complete pattern
catalogue.

II. A LITERATURE STUDY ON COMPONENTS
The following sections provide an overview on typical

components related to e-assessment features that can be found
in literature. The study includes publications from major
conferences and journals in the computer-aided assessment and
intelligent tutoring systems community as well as
documentation for commercial tools. The literature study
particularly includes (amongst other sources) a systematic
review of papers from the International Conference on
Technology Enhanced Assessment (TEA) (formally known as
International Conference on Computer Assisted Assessment

SEELS 2018: Software Engineering für E-Learning-Systeme @ SE18, Ulm, Germany 62

(CAA)), the IEEE Global Engineering Education Conference
(EDUCON), the International Conference on Intelligent
Tutoring Systems (ITS) and the IEEE Transactions on
Learning Technology (TLT). Although the study provides
some remarks on the quantity of publications, its focus is on
the qualities and characteristics of the components.

A. User Interface Components
The literature review identified three main user interface

components, where one of them faces the students and two face
the educators or administrators.

A student frontend (also called student LMS, student VLE,
student CMS, student agent, or learning interface) is most
commonly mentioned in literature [1, 2, 3, 8, 10, 11, 12, 14, 18,
25, 26]. It offers features to display assessments to the students
and to retrieve their answers. The student frontend is thus
typically highly interactive and the amount of different item
types supported by an e-assessment system is typically
determined by the amount of different types of interactions the
student frontend is able to offer. This in turn explains the large
amount of papers on student interfaces, as publishing new
features in this area appears highly attractive for the
community. Systems often employ one student frontend
component, which is extensible by plug-ins (see section III.C).

A teacher frontend (also called teacher LMS, teacher VLE,
teacher CMS, or admin agent) is mentioned less often
explicitly in literature [2, 11, 17, 25]. It offers features for
administration, authentication, and assessment scheduling. It
thus aggregates the features related to the organizational
aspects of assessments. As these are in the focus of research
more rarely, publication counts for these interfaces are low,
which does not imply that these interfaces are offered more
rarely by e-assessment systems.

More often, an authoring tool is discussed explicitly in
literature [3, 12, 17, 19, 20, 21, 22]. It offers features required
to create contents, which in particular refers to assessment
items, item pools, and grading schemas. It thus aggregates the
features related to the educational aspects of assessment and is
related more closely to the student interface and its features.
Thus it is more in the interest of research and thus mentioned
more often in literature, but also remarkably often by
commercial tools.

B. Educational Components
The core of e-assessment systems are their educational

qualities and thus the algorithmic power they offer for
generating contents, providing advice, and evaluate answers.
The literature study identified four components that relate to
this area. They are discussed here in the order of appearance
during an assessment.

An assessment generator (also called instructional
manager, curriculum agent, task selector, tutoring component,
or steering component) is mentioned very often in the literature
[6, 8, 10, 15, 18, 20, 23, 25, 26]. It is concerned with preparing
an assessment for delivery to the student. This often includes
selecting appropriate items from an item pool in case of
adaptive system behavior in order to individualize training or

assessment. However, it can also appear in non-adaptive
context in which nevertheless a particular exam needs to be
retrieved from a database to be delivered to a student. As the
former case attracts a lot of research, it is highly present in the
literature.

An additional problem generator (also called item
constructor) is mentioned sometimes in the literature as well [1,
20, 21, 26]. It is concerned with filling item templates with
actual content, for example by creating random numbers.
Consequently, it is not used in context in with fixed items are
used and in which any adaptations are performed by the
assessment generator mentioned above. This explains the lower
number of occurrences in the literature.

A pedagogical module (also called hint generator) is
mentioned sometimes in the literature [6, 10, 18, 26]. It is
concerned with providing hints to students while they work on
an assessment item. Consequently, these components primarily
occur in assessments that focus on learning, training, or
tutoring instead of formal evaluation of student performance.
Notably, a literature review from 2009 [24] explicitly makes a
distinction between plain feedback on correctness (which
would refer to an evaluator component discussed in the next
paragraph) and more intelligent analysis as required by a
pedagogical module. Although one would expect the latter to
be a crucial part of intelligent tutoring systems, the literature
review reports a low occurrence rate of components for
intelligent analysis of student solutions in intelligent tutoring
systems (3 out of 34).

An evaluator component (also called checker, diagnose
module, assessor, or expert module) is mentioned very often in
the literature [1, 2, 3, 8, 10, 14, 18, 21, 26]. It is concerned with
analyzing submissions from students and identifying mistakes
that may occur in these submissions. As part of that, it is also
concerned with the generation of feedback that is presented to
the student. It is hence somewhat similar to the pedagogical
module mentioned above and may be used by these modules.
However, it also may be much more simpler in that it basically
just applies a grading schema to a solution but is not able to
provide any hint on how to improve a wrong solution. As this
seems to be sufficient in several situations, an evaluator
component is mentioned much more often than a pedagogical
module. Large e-assessment systems often employ a large
amount of different evaluator components, where each one is
specialized to process a specific type of input or create a
specific type of feedback.

C. Knowledge Representation and Storing Components
Virtually any e-assessment system contains a component

for general data storage for users, assessment items, and
solutions. These very basic features are common to almost
every information processing systems and are thus out of scope
for this literature study. However, there are also components
for storing more specific data, which are often mentioned in the
context of intelligent tutoring systems or adaptive assessment
systems.

A domain knowledge model (also called knowledge base) is
mentioned often in the literature [3, 6, 7, 8, 10, 18, 22, 26]. It is
responsible for storing information on the domain of the

SEELS 2018: Software Engineering für E-Learning-Systeme @ SE18, Ulm, Germany 63

assessment, which are not specific to a certain assessment item,
but reflect facts or competencies of the particular domain.
Domain knowledge models are mentioned most often in
conjunction with expert modules that are able to evaluate a
submission by using domain knowledge, but without knowing
the correct answer to the particular assessment item explicitly.
The same goes for connections to pedagogical modules that use
domain knowledge to generate hints.

A student model is mentioned often in the literature as well
[3, 6, 7, 8, 14, 15, 18, 22, 23, 26]. It is responsible for storing
information on a particular student, which again is not specific
to a particular assessment item. Instead, a student model
reflects competencies or similar properties that relate to the
person and his or her capabilities or performance. These may
be designed as records referring to an underlying competency
model, which in turn is stored in a domain knowledge model as
mentioned above. Student models are mentioned most often in
conjunction with adaptive system behavior, where adaptation is
based on the information stored in the student model.

Additional domain-specific data storage is mentioned only
rarely in the literature [16]. It is relevant only in domains in
which submissions to assessment items are large or complex
objects, such as program code in the domain of programming
assessment. Consequently, specific components for this
purpose are explored only in conjunction with these domains
and almost never as part of general assessment systems.

D. Management Components
The core features and requirements of e-assessment

systems motivate the components discussed so far. However,
additional requirements may introduce some more components.
Some more components may exist primarily for the sake of
better software architectures. In general, these components are
far less present in the literature.

A reservation service realizes an additional feature of e-
assessment systems reported sometimes in the literature and by
commercial tools [16, 17, 20]. It is responsible for registering
students for assessments and thus covers an additional part of
the organizational process around assessments, which is not
necessarily covered by the teacher frontend discussed in
section II.A above.

A service broker (also called spooler or middleware) is
mentioned in discussions of system architectures only [2, 9]. It
connects some frontend or steering components to evaluator
components that may run in parallel on separate systems for
performance or security reasons.

An infrastructure agent is reported for cloud-based
solutions only [25]. It is responsible for starting and shutting
down instances of other components to adjust the size of the
running system to the current needs. It is only necessary in
systems which are aware of being a cloud system. Different to
that, components can also be deployed as services in a cloud
based or container based environment in which the underlying
cloud or container infrastructure is responsible for starting and
shutting down additional instances.

III. ARCHITECTURAL PATTERNS FOR E-ASSESSMENT SYSTEMS
The previous chapter reported on typical building blocks

for e-assessment systems that have been found in recent
literature. Based on these findings, this chapter now reports on
patterns that can be considered useful when designing and
engineering e-assessment systems using some of these
components. A particular focus of these considerations is on
questions regarding integration and thus also on well-defined
interfaces that describe suitable connections. The idea of this
chapter is to some extent inspired by the similar idea of
architectural patterns for intelligent tutoring systems (ITS)
explored by Andreas Harrer et al. 10 to 15 years ago [7, 13].
Unlike in that work, this chapter does not focus on the
decomposition of a complete system into parts. Instead, it
discusses system parts that can be integrated with each other or
with other systems in order to create meaningful e-assessment
features. To ensure a broader exploration of the design space, it
is not limited to patterns found directly in the literature.
Considering the limited space of this paper, the following
sections primarily look at static aspects of system architectures,
interfaces, and general data handling. Behavioral aspects
(including adaptive behavior) are not discussed in this paper.

A. Component Types
As a general observation, one can identify two types of

components: Passive services are waiting for requests that are
directly or indirectly cause by user interactions. They perform
some actions upon these requests and then wait for the next
request to process. They can be considered a standard way of
designing business information systems. Some literature
mentions them as a general principle of system design [2, 4, 5].
In contrast to that, active agents have their own agenda on what
to do and thus they perform their actions potentially even
without any user input. They are used both for educational
components (such as agents that generate hints or exercise
suggestions without explicit request from the user) and
management components (such as agents adjusting the cloud
infrastructure to the current load). They are particularly
common in the domain of intelligent tutoring systems [3, 23]

B. Data Storage
Regardless of the number and design of components, many

systems employ the pattern of a central data storage, which
accumulates data for all components. This is particularly useful
when using several agents that are supposed to work on the
same data. Moreover, data storage is centralized in cases in
which most components are realized as stateless services. An
alternative pattern is that of a distributed data storage, which is
used when components typically process specific data that is of
no meaning to other components, such as domain knowledge in
different expert modules. A third and rarely used pattern is that
of a duplicate storage, where data is prepared and stored in one
place but copied to another place on demand. This is used for
example when item pools are stored in one place for authoring
and copied to another place when running an actual
assessment.

SEELS 2018: Software Engineering für E-Learning-Systeme @ SE18, Ulm, Germany 64

C. Plug-In Types
User interface components offer various ways of how to

integrate into larger context. One pattern is that of a native
plugin, which implements the full feature set of the component.
It is written in the same language as the host system and uses
the data storage provided by the host system. This is the
standard way of implementing plug-ins in the LMS MOODLE or
ILIAS. An alternative pattern is that of a foreign plugin, which
only implements a subset of the desired features directly.
Besides connecting to the plug-in API of the host system, it
also connects to an own backend component which implements
the missing part of the feature set and often also offers its own
data storage mechanism. The third alternative is that of an
external tool. In this pattern, the host system redirects the user
to the external tool via some standard API and receives a
callback when the user has finished their duties there. This
mechanism is also realized in LMS via the IMS-LTI standard.

D. Job Delegation
The connection between the student frontend and an

evaluator component can be realized in many different ways.
One pattern is that of a synchronous push. In this pattern, user
interaction directly triggers the grading process and the user
has to wait until the input is processed. Systems in which
grading tasks are short running and in which the next step
depends on the previous result usually employ this pattern. An
alternative is the asynchronous push pattern, which also
triggers the grading process directly, but without blocking user
interaction by waiting. A third alternative is asynchronous pull,
in which user input is stored in a queue and pulled from there
by the evaluation module. This pattern often occurs in
conjunction with a service broker component or with evaluator
components realized as agents.

IV. CONCLUSIONS
The results achieved so far are instrumental in two ways:

First, they suggest a structure for a classification of existing
components and a pattern catalogue derived from existing
systems and components. Second, they provide a preliminary
overview on some design alternatives for designing integrated
e-assessment systems. However, these results are far from
being complete, yet, and hence more detailed research and
work on pattern descriptions is still required to provide a more
complete picture. In particular, a large body of standards
existing in the domain of e-learning systems has not been
reviewed so far. Behavioral aspects also need to be included
during the next steps.

REFERENCES
[1] Armenski, G.; Gusev, M.: E-testing based on service oriented

architecture. Proceedings of the 10th CAA Conference, 2006.
[2] Amelung, M.; Krieger, K.; Rösner, D.: E-assessment as a service. IEEE

Transactions on Learning Technologies, 4:162–174, 2011.
[3] Costa, E.; Silva, P.; Silva, M.; Silva, E.; Santos, A.: A multiagent-based

ITS using multiple viewpoints for propositional logic. Intelligent
Tutoring Systems (ITS 2012), pages 640–641, 2012.

[4] Davies, W.; Howard, Y.; Davis, H.; Millard, D.; Sclater, N.:
Aggregating assessment tools in a service oriented architecture. 9th
International CAA Conference, 2005.

[5] Dagger, D.; O’Connor, A.; Lawless, S.; Walsh, E.; Wade, V.: Service-
oriented e-learning platforms: From monolithic systems to flexible
services. IEEE Internet Computing, 11(3):28–35, May 2007.

[6] Devedzic, V.; Radovic, D.; Jerinic, L.: On the notion of components for
intelligent tutoring systems. Intelligent Tutoring Systems (ITS 1998),
volume 1452 of LNCS, pages 504–513, 1998.

[7] Devedzic, V.; Harrer, A.: Architectural patterns in pedagogical agents.
Intelligent Tutoring Systems (ITS 2002), volume 2363 of LNCS, pages
81–90, 2002.

[8] El-Sheikh, E.; Sticklen, J.: Generating intelligent tutoring systems from
reusable components and knowledge-based systems. Intelligent Tutoring
Systems (ITS 2002), volume 2363 of LNCS, pages 199–207, 2002.

[9] Garmann, R.; Heine, F.; Werner, P.: Grappa - die Spinne im Netz der
Autobewerter und Lernmanagementsysteme DeLFI 2015 - Die 13. e-
Learning Fachtagung Informatik der Gesellschaft für Informatik e.V.
(GI), 2015, 169-181

[10] Gonzalez-Sanchez, J.; Chavez-Echeagaray, M.; Van Lehn, K.; Burleson,
W.; Girard, S.; Hidalgo-Pontet, Y.; Zhang, L.: A system architecture for
affective meta intelligent tutoring systems. Intelligent Tutoring Systems
(ITS 2014), pages 529–534, 2014.

[11] Gusev, M.; Ristov, S.; Armenski, G.; Velkoski, G.; Bozinoski, K.: E-
Assessment Cloud Solution: Architecture, Organization and Cost Model.
iJET, 8 (Special Issue 2):55–64, 2013.

[12] H5P.org. H5p documentation. https://h5p.org/documentation. Last
accessed: 2017-12-01.

[13] Harrer, A.; Martens, A.: Towards a pattern language for intelligent
teaching and training systems. Intelligent Tutoring Systems (ITS 2006),
volume 4053 of LNCS, pages 298–307, 2006.

[14] Kenfack, C.; Nkambou, R.; Robert, S.; Nyamen Tato, A.; Brisson, J.;
Kissok, P.: A brief overview of logic-muse, an intelligent tutoring
system for logical reasoning skills. Intelligent Tutoring Systems (ITS
2016), 2016.

[15] Kurup, M.; Greer, J.; McCalla, G.: The fawlty article tutor. Intelligent
Tutoring Systems (ITS 1992), 1992.

[16] Küppers, B.; Politze, M.; Schroeder, U.: Reliable e-assessment with GIT
- practical considerations and implementation. EUNIS 23rd Annual
Congress, 2017.

[17] LPLUS GmbH. Lplus: Portfolio. https://lplus.de/en/lplus-portfolio/. Last
accessed: 2017-12-01.

[18] Martens, A.: Time in the adaptive tutoring process model. Intelligent
Tutoring Systems (ITS 2006), volume 4053 of LNCS, pages 134–143,
2006.

[19] Martin, B.: Authoring educational games with greenmind. Intelligent
Tutoring Systems (ITS 2008), volume 5091 of LNCS, pages 684–686,
2008.

[20] MapleSoft. Features in Maple T.A.
https://www.maplesoft.com/products/mapleta/mainfeatures.aspx. Last
accessed: 2017-12-01.

[21] Maths for More. Wiris quizzes - technical description.
http://www.wiris.com/en/quizzes/docs. Last accessed: 2017-12-01.

[22] Murray, T.: Having it all, maybe: Design tradeoffs in ITS authoring
tools. Intelligent Tutoring Systems (ITS 1996), 1996.

[23] Neji, M.; Ben Ammar, M.: Agent-based collaborative affective e-
learning framework. Electronic Journal of e-Learning, 5(2):123–134,
2007.

[24] Papadimitriou, A.; Grigoriadou, M.; Gyftodimos, G.: Interactive
problem solving support in the adaptive educational hypermedia system
MATHEMA. TLT, 2(2):93–106, 2009

[25] Ristov, S.; Gusev, M.; Armenski, G.; Velkoski, G.: Scalable and Elastic
e-Assessment Cloud Solution. IEEE Global Engineering Education
Conference (EDUCON), 2014.

[26] Rickel, J.: Intelligent computer-aided instruction: A survey organized
around system components. IEEE Transactions on Systems, Man, and
Cybernetics, 19(1):40–57, 1989.

SEELS 2018: Software Engineering für E-Learning-Systeme @ SE18, Ulm, Germany 65

