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ABSTRACT
In the last decade, digital footprints have been used to cluster
population activity into functional areas of cities. However,
a key aspect has been overlooked: we experience our cities
not only by performing activities at specific destinations, but
also by moving from one place to another. In this paper, we
propose to analyze and cluster the city based on how people
move through it. Particularly, we introduce Mobilicities, auto-
matically generated travel patterns inferred from mobile phone
network data using NMF, a matrix factorization model. We
evaluate our method in a large city and we find that mobilic-
ities reveal latent but at the same time interpretable mobility
structures of the city. Our results provide evidence on how
clustering and visualization of aggregated phone logs could be
used in planning systems to interactively analyze city structure
and population activity.

Author Keywords
Mobile Phone Networks; Urban Informatics; Urban Mobility;
Non-Negative Matrix Factorization.

INTRODUCTION
The increasing availability of digital footprints, such as
Web/App access logs, user-generated content, and mobile
phone network data, has allowed to characterize the city at
spatio-temporal granularities never seen before. This means
that the different functional areas of the city can be estimated,
based not only on how planners thought that the city would
be lived, but on how people actually used the different spaces
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available to them [12]. However, this is not enough to un-
derstand the city. As Charles Montgomery says in his book,
Happy City: “When we talk about cities, we usually end up
talking about how various places look and perhaps how it
feels to be there in those places. But to stop there misses half
the story, because they way we experience most parts of cities
is at velocity: we glide past on the way to somewhere else.
City life is as much about moving through landscapes as it is
about being in them” [32].

Since people may spend a considerable amount of time while
moving through the city, and the quality of that time has a
strong influence on mood, health, and productivity [39], it is
important to understand city structure with respect to mobility.
Given that the growth of cities is faster than the capability of
traditional methods to understand the city, it is important to
have cost-effective ways to analyze the city at scale [46].

In this paper, inspired by Montogomery’s ideas, we estimated
a characterization of the city defined by the collective experi-
ence of its several areas. Particularly, we analyzed intra-city
transportation inferred from mobile phone network records,
which we represented in a Waypoints Matrix. This matrix, sim-
ilar to document-term matrices used in Information Retrieval,
was decomposed using Non-Negative Matrix Factorization
(NMF) [11]. We interpreted and labeled the obtained com-
ponents, which we denoted Mobilicities. We evaluated our
pipeline by performing a case study in Santiago, Chile, using
mobile phone network data from the biggest telecommunica-
tions company in the country. Our pipeline delivered inter-
pretable results, in contrast with a well-established method.
We concluded that mobilicities can be used within an intel-
ligent user interface aimed at mobility and transportation-
analysis tasks.

BACKGROUND AND RELATED WORK
There has been a flurry of research of mobile phone network
data known as eXtended and Call Detail Records (X/CDR), as
evidenced in recent surveys on the area [4, 8]. Some examples



include: understanding socio-economic factors on the popula-
tion [41], understanding family and social relations [13], char-
acterizing response to emergencies and critical events [33],
crime detection [5], credit scoring [40], test of urban theo-
ries [14]; and the provision of a cost-effective way of un-
derstanding population dynamics and behavior in developing
countries [21].

The mobile phone network events of a given device depict
a spatio-temporal trajectory that can be processed to infer
trips, by using geometric approaches based on transportation
rules [19], or by clustering events in the trajectory [7]. When
individual trips are known, it is possible to aggregate them into
Origin-Destination (OD) matrices. This analysis is common
in the literature from X/CDR [2, 23, 16, 7], and shows that
inferring individual mobility is a relevant problem.

Other important aspects are the characterization of land use
(e.g., residential areas, business areas, etc.) and functional
areas (i.e., delimited areas that serve specific or multiple land
uses). Since it is crucial to understand the dynamics of these
aspects, functional areas have been measured, monitored and
categorized using digital footprints [45, 43] and X/CDR [34,
26, 42, 1, 18]. A similar work to ours has applied NMF to
understand trip purpose, and build functional areas based on
the spatial distribution of such purposes [36].

The key difference between the aforementioned work and our
proposal is the focus. Other work focuses on the destinations
of trips, as well as activities performed within places. As
such, their definition of functional area is limited by those
places that, in transportation terms, attract people [20]; yet, as
mentioned by urbanists, the city is experienced in sequence by
moving from one place to another [32]. Each citizen has an
unique version of the city, built upon the sequence of nodes,
landmarks, and paths traversed [28]. In this paper we show
that, by using mobility inferred from X/CDR, and using NMF
to decompose/cluster the different cities experienced by mobile
phone users, we are able to identify the different Mobilicities
that comprise a big urban city.Even though we have centered
the discussion around mobile phone network data, it is possible
to infer transportation and urban patterns from other sources,
particularly social media. Twitter has been shown to be a
good predictor of commuter flows [31] at several scales [27].
Now, these approaches have the same limitation as previous
approaches: a focus on the origins and destinations of trips,
mainly due to their way of modelling mobility: using gravity
and radiation models (see [29] for a comparison). Twitter
data, while massive and longitudinal, does not allow to infer
within-trip behavior.

METHODS
Our methods can be summarized in a pipeline of three steps:

1. Trip detection from X/CDR data, which, for each device
in the dataset, identifies its corresponding daily trips, with
origin, intermediate, and destination towers.

2. The construction of a Waypoint Matrix W that aggregates
the intermediate towers of trips, of a given period of time,
into a device-antenna matrix.

3. The decomposition of W using NMF into the product of two
matrices, U and T , according to a number of k components,
which we denote as mobilicities.

Trip Detection. To detect trips from X/CDR traces, we resort
to an algorithm based on transportation rules and trajectory
simplification [19]. The algorithm builds a space-time trajec-
tory from daily X/CDR events, where space is the cumula-
tive distance between consecutive connected towers, starting
from zero at the first connection of the day. This trajectory is
simplified using a line-simplification algorithm. Then, each
segment from the simplified trajectory is categorized accord-
ing to transportation rules, such as the relationship between
the approximated trip distance and time, which is visually
inspected through the slope of the segment. In other words,
the trip detection allows us to separate X/CDR events into
the following: stationary events (the user was performing an
activity), trip start events (denoting the origin), trip end events
(denoting the destination), and within-trip events (denoting
mobility).

Building the Waypoints Matrix. Ideally, characterization of
within-trips events does not need to be done using aggrega-
tion. For instance, GPS data allows to do rich clustering over
specific trajectories [47]. However, due to the billing purpose
of X/CDR data, it is possible that trips have few within-trip
events because of the billing cycle. Since we will focus on
within-trip events, we need to aggregate such events from
an extended period of time. Furthermore, some trips do not
have within-trip events, such as those with duration near to
the billing cycle time, and those within zones with low tower
density. Hence, by aggregating all within-trip events for a user
in a period of time, the likelihood of identifying the towers
that characterize a specific user’s mobility increases. We use
this schema to define a Waypoints Matrix W, defined as:

wi, j =
# of within-trip events of user ui at tower t j

# of within-trip events of user ui

This schema is equivalent to the L1-normalized document-
term matrices found in Information Retrieval, but without
weighting with Tf-Idf [44]. We do not apply Tf-Idf because
its purpose is to identify discriminative features; conversely,
we want to extract collective features. Additionally, note that
this matrix is different to those used in related work with NMF
decompositions [36]: there is a semantic difference between
within-trips and trip start/end events. To avoid this polysemic
behavior, we focus only on within-trips events.

Applying Non-Negative Matrix Factorization. To represent
how users interact with towers, we propose to decompose this
matrix into two: W = U × T , where U is a |u| × k matrix that
encodes k user latent features for |u| users, and T is a k × |t|
matrix that encode k latent tower features for |t| different cell
phone towers. Note that, by definition, all wi, j ≥ 0. NMF
allows us to decompose the matrix W into two non-negative
matrices, which gives a lower rank approximation for W, such
that W ≈ U × T [24]. This can be formalized as the following
optimization problem: minU,T ‖W − U × T‖F subject to U
and T be non-negative, where number of rows in U and the



Figure 1: Choropleth map of the urban area of Santiago, Chile.
Each municipality is colored according to their average income
(in CLP$).

number of columns in T correspond to the desired lower-rank
approximation k.

Even though there is a variety of methods to decompose ma-
trices, we choose NMF, which has been applied in similar
contexts with interpretable results [36]. Then, we define a
mobilicity mc as the weighted set of towers within the c com-
ponent of the decomposition, i.e., the c-th column of matrix
T. The parameter k must be chosen manually, and its value
should be ideally decided jointly between data scientists and
domain experts according to the context. Previous strategies
for choosing k have focused in measuring the stability of the
components [6] and in the variation of the residual sum of
squares curve between the original matrix and its decompo-
sition [17, 22]. However, we prefer to manually choose the
number of components as these methods do not allow us to
incorporate external information such as the socio-economic
distribution of the city.

CASE STUDY: SANTIAGO, CHILE
We performed a case study on Santiago, the capital of Chile,
with almost 8 million inhabitants. Its urban area covers a sur-
face of 867.75 square kilometers, and is composed of 35 inde-
pendent administrative units called municipalities (c.f. Fig. 1).
Because this city has experienced accelerated growth, and
it is expected to keep growing at least until 2045 [38], un-
derstanding its structure at scale is an important and timely
task.

Datasets
Mobile Phone Network Data. We studied an anonymized
X/CDR dataset from Telefónica Chile, the biggest telco. in
Chile, with a market share of 33% in 2016. The dataset con-
tained records between July 27th and August 10th from 2016.
In total, we analyzed 124,414 users, who had enough connec-
tions to the cell towers under analysis to estimate their daily

Figure 2: Number of events in the dataset per day. The effect
of weekends in the number of events is easily identifiable.

Metric

# of Trips 4,213,400
# of Users 124,415
# of Users with Within-Trip events 95,027

Mean trips per user 33.87
Std. Dev. 19.62
Min 1
Percentile 25% 18
Percentile 50% 34
Percentile 75% 48
Max 140

Table 1: Statistics with respect to the number of inferred trips.

trips between 6AM and midnight, and had either a pre-paid
or contract subscription. They generated an average of 5.33
million billing records per day (c.f. Fig. 2). The average inter-
event times for users range within 14.71 and 30.96 minutes,
which shows a billing cycle between fifteen and thirty minutes.

Telefónica has 1,464 cell phone towers in the municipalities
under consideration. We discarded towers that were installed
in in-door contexts (e.g., malls, hospitals, etc.). This is possible
because tower meta-data includes their geographical position
and their name. For out-door towers, the name usually contains
the nearest crossing, while in-door towers contain the name of
the place they lie in. In total, there were |t| = 1,082 out-door
towers (see Fig. 3, Towers). The only in-door towers that we
kept were those installed within underground metro stations.

OpenStreetMap. OSM (http://openstreetmap.org) is a crowd-
sourced maps platform. We downloaded a dump of its data for
Chile, and then identified the highways within Santiago. We
used this information to contextualize the different mobilici-
ties identified by the NMF. We did so by finding the out-door
towers that lie within 250 meters of each highway, as shown
in Fig. 3 (Labeled Towers).

Trip Detection and Waypoints Matrix
Using the trip inference algorithm we detected 4,213,400 trips
for 124,415 users (c.f. Table 1 for descriptive statistics). Fig. 4
shows the departure time distribution of all trips. One can see
that business days exhibit expected peak-times related to work
hours, and that weekends exhibit different patterns, such as a
higher density at lunch time.



Figure 3: Maps of Santiago: cell phone tower network, highway and primary streets, the metro network, and the set of labeled
towers according to their distance to highways or metro lines.

Figure 4: Trip departure time distribution per day.

After detecting trips, we built the W matrix, of dimensions
|u| × |t|. Note that |u| = 95,027, because not all users had
within-trip events.

Factorization of the Waypoints Matrix
To perform the NMF decomposition, we chose k = 8, because
the city is usually divided into six big areas (north, south, east,
west, south-east, center) and, since we expect that the results
exhibit relationship with modes of transportation, we wanted
to see the effect of private and public transportation. Thus, k =
8 is an arguably reasonable choice (note that we discuss the
choice of k at the next section).

Tower-Component Matrix. Figure 5 shows the results of
the factorization, with one map for each component-tower
column from the matrix. One can see that there is a strong
geographical clustering of towers, which may be explained as
W is essentially a co-occurrence matrix.

Fig. 6 show how the sets of labeled towers (those near high-
ways, near surface metro and within underground metro sta-
tions) relate to each component. This allows to see that some
components tend to be more associated than others to some
modes of transportation: C1, C2, C3 and C7 are more associ-
ated to metro than highways, while C4 exhibits the opposite
behavior. Having both figures into account, the following is
an interpretation of each mobilicity:

C0 : the east side of the city, including part of the center, next
to the yellow metro line and one important highway of the
city. This area is characterized for its business districts and
high income residential areas (c.f. Fig. 3). As such, it is
likely that its residents do not use public transportation, nor
visit other mobilicities. Note how metro towers have lower
association with this component in Fig. 6.

C1 : people that live in the southern part of the city, mostly
between two metro lines. Since this area is characterized by
low income, this means that they need to take a bus to reach
the metro.

C2 : the southeast area of the city, which is characterized by
their dependency of two metro lines. This component con-
tains mixed-income municipalities.

C3 : In contrast with the previous components, this one is com-
pletely focused on public transportation: it fully contains
two metro lines in full, and partially other two. It also
contains bus corridors that tend to connect to metro lines.

C4 : the northern part of the city, which is mostly residential
and of low income. The component also has a main street
of the city as a kind of tentacle, showing that people who
lives/work in this area, but who work/lives in another, uses
this street as a way to get into the component.

C5 : the south-west part of the city, which is connected to
downtown primarily through a highway and a metro line
that is parallel to the highway.

C6 : the western area of the city. This area contains one of the
most populated municipalities in the city.

C7 : similar to C6, but extending its reach to center areas of
the city through a metro line a bus corridors. This makes
this component dependent on public transport, and thus, the
routes followed by its inhabitants tend to cluster, in contrast
to what happens in C6.

In summary, latent cities seem to be comprised by three kinds
of clusters of towers: those where people lives and moves,
enclosed by specific limits (C0, C1, C6), those where people
lives and work, but in different areas of the city, connected
through the transportation network (C2, C4, C5, C7), and
transportation infrastructure (C3).

User-Component Matrix. The user-component matrix may
suggest that users pass through different mobilicities in their
daily lives. Fig. 7 explores this potential behavior, by display-
ing how a sample of 25,000 users cluster around the corre-
sponding components. One can see that, indeed, users tend
to have a primary component, but they still belong to others.
This would be the equivalent to, for instance, living in the
suburbs, and having to travel long distances to go to work.
Note that many users from C0, the wealthiest part of the city,
have negligible association to other components – something



Figure 5: The eight mobilicities of the tower-component matrix obtained by performing NMF.

Figure 6: Point-plot of the average association of the labeled sets of towers into the different mobilicities.

Figure 7: Heatmap of a random sample of 25K users and their
corresponding component associations.

expected due to the economical segregation of the city (c.f.
Fig. 3).

Understanding k. We showed the eight mobilicities (c.f.
Fig. 5) to domain experts, who gave informal feedback – it
made sense to split the city in this way, as we have interpreted
earlier. Even though a formal evaluation with domain experts
is left for future work, here we discuss the patterns that emerge
when varying the parameter k which is the rank of the factor-

ized matrix. We do so by estimating mobilicities with k′ = 4
(c.f. Fig. 8) and k′′ = 12 (c.f. Fig. 9).

With four mobilicities, the clustering is mostly geographic:
three components split the city. However, the fourth compo-
nent is related to public transportation: it reconstructs several
metro lines and bus corridors. In this aspect, it seems that using
k′ = 4 allows to obtain a similar result to k = 8. Then, if one
would like to differentiate cell towers with respect to general
transportation patterns, this could be a reasonable choice.

With twelve mobilicities, the geographical clustering is still
present, but the routes that connect distinct parts of the city
become more evident – meaning that a mobilicity is comprised
by one or two sectors of close towers (for instance, home and
work locations), plus “bridges” that connect one mobilicity
to another, based on the common routes followed by people.
This behavior is expected, due to the co-occurrence property
of the Waypoints Matrix.

In summary, several values of k allow to infer soft-partitions
of the city, as well as the way its inhabitants move between
those partitions. A mobilicity may be a soft-partition, a soft-
partition with bridges to other mobilicities, or a network of
those bridges – namely, a transportation network.



Figure 8: Mobilicities obtained with k =4.

Comparing Interpretability with PCA/Truncated SVD. To
discuss further whether NMF is a good choice of model in
terms of interpretability, we estimated a Truncated SVD de-
composition (equivalent to PCA) with k = 8 . Fig. 10 shows
that, in contrast to NMF, there is no geographical clustering
nor correspondence to any infrastructure available in the city.
Thus, even though PCA is a widely used dimensionality re-
duction technique, it does not allow the interpretation nor
clustering of the city in the same way as NMF does.

CONCLUSIONS
We proposed the concept of mobilicities, which denotes the
different cities experienced by the inhabitants of a big city,
and depict its dynamics with respect to mobility and usage
of modes of transportation. The suitability of NMF to this
kind of spatial data could be related to the fact that NMF is
equivalent to spectral clustering [15], which has performed
well when grouping trip destination data [12]. However, as we
have noted in our motivation, our input is not destination nor
origin data; instead, it is spatial location while moving. This
focus was inspired by the book Happy City [32], reflecting
that our purpose was to help domain experts and policy de-
signers to make better, happier cities. Such purpose implies
collaboration between the emerging field of data science and
the corresponding disciplines – transportation and urban plan-
ning. However, evidence-based policy in those areas requires
transparency and interpretability, and many state of the art
machine learning techniques do not offer both qualities [9].
In this paper, we have shown that NMF does offer both qual-
ities when applied to mobility data, and thus, is a promising
technique to apply in the field of Urban Computing [46].

Limitations and Future Work. Critics may rightly say that
we need a well-defined criteria to choose k. Future work
should tackle this limitation using intelligent user interfaces
aimed at domain experts. This opens two lines of research
within the IUI: on the one hand, we could try other factor-

ization methods for positive-only data such as SLIM, which
has shown promising results in the past [25], and would allow
to understand how the choice of k influences the output and
its interpretability. On the other hand, visualization and ex-
ploratory interfaces are tools valued by domain experts [10],
and mobility has been a recurring topic in visual analytics [3].
Finally, our work did not consider the temporal aspects of
transportation. Hence, future work should consider how to
incorporate that dimension into the definition of Mobilicities.
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Liò. Collective human mobility pattern from taxi trips in urban area.
PloS one, 7(4):e34487, 2012.
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