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Abstract. In this paper we propose a streaming approach for the dis-
covery and monitoring of frequent patterns (the episodes) within the
recent past of an event stream. This approach is based on the heuristic
computation of the estimated support of the episodes of interest, and
allows the fast discovery of frequent episodes with limited information
storage. In particular, we do not even need to store the window of inter-
est, which is necessary for exact frequent episode discovery. The proposed
algorithm, FEM-ASC (Frequent Episode Mining, with Approximate Sup-
port Counting) is still at an early development stage, but already shows
promising results on an activity monitoring task. In particular, FEM-ASC
yields results very similar to those produced by an exact method, while
requiring much fewer resources.

1 Introduction

Frequent pattern mining is a traditional unsupervised data mining task, with
applications in different fields, such as sale monitoring, or human activity mon-
itoring. We propose here to mine the frequent episodes in a stream of events.
The data used in the experiment comes from a sensor network in a smart home.
Instead of considering the whole event history, we propose to focus on the recent
past exclusively. The originality of the developed approach lies in its capacity to
mine frequent episodes without keeping track of the history. In particular, we do
not store the contents of the window of interest. In order to do so, we devise a
heuristic strategy for support counting that uses decay strategies.

Contributions. We propose FEM-ASC, which stands for Frequent Episode Mining
using Approximate Support Counting. This heuristic algorithm estimates the
expected support of the episodes, and handles the monitoring of the frequent
episodes. FEM-ASC complies with the constraints linked to stream mining [3].
Namely, each data point is processed once only and is not stored. Its integration
time in the model is small and independent from the history size. Memory us-
age is also limited and independent from the history size. Finally, the model is
capable of adapting to concept drifts. FEM-ASC allows the monitoring of chang-
ing episode frequency, the discovery of emerging episodes, and the forgetting of
formerly frequent episodes if they become rare.



Outline. The remainder of the paper is organised as follows. Section 2 introduces
episode mining and relevant related work. Section 3 presents the formalisms and
notations used throughout this work, while section 4 details how FEM-ASC works.
Initial testing and validation results are presented in section 5. Finally, section 6
draws some conclusions and plans for future work.

2 Related work: episode mining

2.1 Events and episodes

Frequent episode mining is a data mining task introduced by Mannila et al. [8],
for the discovery of interesting patterns in a sequence of events (definition 1).

Definition 1. An event is a pair (e, t), where:

– e is the event label. It usually corresponds to a sensor reading, an identifier,
an alarm code, etc., and takes values in a finite alphabet A;

– t is the timestamp. The timestamps induce a total order on the events, and
allow the computation of distances on the events based on time intervals.

Definition 2 (Episode). Episodes are partially ordered collections of event
labels. The episodes are called serial when the order is total, and parallel when
there are no order constraints.

Episode mining. Episode minig is the task of finding relevant episodes (see defi-
nition 2). If Mannila et al. [8], as well as subsequent studies propose methods for
the discovery of all kinds of episodes, they also acknowledge that mining general
episodes is expensive in terms of complexity, and focus either on serial or parallel
episodes. Episode mining differs from traditional itemset mining: the temporal
order and the distance between the events is the key feature driving the mining.

2.2 Measuring episode support

Definition 3 (Episode occurrence). An episode E occurs in an event se-
quence S if there are events in S having the same labels as those of E and
respecting the order constraints. These events then form an occurrence of E.

If it is fairly straightforward to count the support of an itemset in a trans-
actional database, it is however harder to settle on a single definition when it
comes to episodes. Several main trends have thus emerged:

Window-based support [7,1,11]. Using a sliding window of fixed size, count the
number of windows in which the episode occurs.



Table 1: Characteristics of some prominent episode mining algorithms

Algorithm Searched episodes Support measure Stream

Mannila and Toivonen [6] General MO No

Mannila et al. [7] General WF No

Casas-Garriga [1] Serial + Parallel A-priori No

Zhu et al. [13] Serial Non-overlapping MO No

Zhou et al. [12] Closed serial MO No

Tatti and Cule [11] Closed general PG No

Patnaik et al. [9] General Distinct Yes

Lin et al. [5] Serial Distinct MO Incremental

Gan and Dai [4] Serial Custom WF Yes

Soulas and Lenca [10] Parallel MO Yes

FEM-ASC Parallel Non-overlapping MO Yes

MO: minimal occurrences WF: window frequency

Minimal occurrence count [6,13,12,5]. See definition 4.

Definition 4 (Minimal occurrence - MO). Let E = {e1, ...en} be an episode,
and o an occurrence of E starting at timestamp t1 and finishing at timestamp
tn. We refer to the interval [t1, tn] as the span of E. o is a minimal occurrence
if there is no other, shorter occurrence whose span is included in [t1, tn]. That is
to say, there cannot be an occurrence o′ of E starting in t′1 and finishing in t′n
such that t1 ≤ t′1, t′n ≤ tn and t′n − t′1 < tn − t1.

Maximal count of distinct occurrences. With both previous methods, some events
participate in several occurrences of an episode. This lead researchers to look
for the maximal number of distinct [9] (occurrences do not share events), or
non-overlapping occurrences (the first occurrence finishes before the second one
starts).

Hybrid measures. In order to benefit from the properties of different support
families, the measures may be combined. For example, minimal occurrences are
sometimes counted only if they are distinct from previous minimal occurrences
[5], non-overlapping [13], or if they last for less than a maximal duration bound.

2.3 Problem statement

Table 1 summarizes the characteristics of some prominent episode mining al-
gorithms, and positions our current contribution. While most combinations of
episode types and support measures have been explored, most approaches do
not adapt well to data streams.

With FEM-ASC, we search for parallel episodes, that is to say unordered sets
of labels, which we subsequently simply refer to as episodes. Since the events
occurring in the vicinity of each other are more likely related than distant events,



a threshold Tep constraints the maximal occurrence duration (longer occurrences
are discarded). We define a hybrid support as the count of the non-overlapping
minimal occurrences within the lastest window of interest [t− TW , t] (duration
TW ). Occurrences satisfying these constraints are refered to as Tep-NOMO.

The support verifies the downward closure property [13]. That means that
for E an episode and E′ any of its sub-episodes (E′ ⊂ E), the support of E′ is
greater or equal to this of E.

3 Definitions and Formalisms

3.1 Support and approximate support

Computing the exact support of an episode in a given time window requires
to store information on each Tep-NOMO, as in the formalism used in [10]. We
propose here to estimate the support, knowing exclusively (i) the date t0 when
the first occurrence started, (ii) the date tlast at which finished the last Tep-

NOMO and (iii) the support Ŝlast estimated at that date. We use a decay-factor
inspired strategy: assuming that the occurrences of the episode are evenly spread
throughout the window of interest, the support is expected to decrease linearly
with time if no new occurrence is observed, until it reaches 0 when TW time has
passed.

Definition 5 (Expected support). At each time t, we define the expected
support Ŝ(t) of the episode as:

Ŝ(t) =


Ŝlast t0 > t− TW
0 t− tlast ≥ TW
Ŝlast ·

(
1− t−tlast

TW

)
otherwise

(1)

The first case considers the initial monitoring of the support: all occurrences are
too recent to be outdated. The second case is the situation when all occurrences
are outdated. Finally, the third emuates the expected support decrease: the term
t−tlast

TW
corresponds to the proportion of the occurrences that we expect occurred

between tlast − TW and t− TW and are thus now outdated.

If a new non-overlapping occurrence is detected (see the conditions in sec-
tion 3.2) at time t, the approximate support is updated: Ŝlast ← Ŝ(t) + 1, as is
tlast ← t. Figure 1 presents the evolution of the real and expected supports for
episode {A} on a toy stream with a window of size TW = 6. The expected sup-
port does not follow exactly the real support, and unfortunately, the divergence
between the real and expected supports may be important, for example if the
temporal distribution of the occurrences follows burst patterns. But if we con-
sider a fairly homogeneous occurrence distribution over the window of interest,
the discovered trends are very similar to the real support evolution.
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Fig. 1: Real VS Expected support for episode {A}, with a window length TW = 6

3.2 New occurrence detection

When a new event (e, t) is recorded, we can detect whether it forms a new
occurrence of an episode E′ = E ∪ {e}, where E is an episode using exclusively:

– The span of the last seen minimal occurrence of E: ∆tElast
– The span of the last seen minimal occurrence of E′: ∆tE

′

last

– The end time of the last seen NOMO of E′: tE
′

last
– The new event (e, t)

Indeed, minimal occurrences have convenient properties, as mentioned for
instance in [6,5,10]. The most important in our context are:

– If ∆tElast started less than Tep prior to the arrival event (e, t), then there is
a new occurrence of E′ spanning [∆tElast.start, t]

– Moreover, this occurrence is minimal if ∆tElast starts strictly after ∆tE
′

last.

Then, we can update ∆tE
′

last as [∆tElast.start, t].

– Finally, if this new ∆tE
′

last starts after tE
′

last, this occurrence does not overlap

previous Tep-NOMOs: it counts for the support, Ŝlast and tE
′

last are updated.

We refer to the process of building the next minimal occurrence of E′ from the
last occurrence of E and a new event (e, t) as augmenting E with (e, t). This gives
a particular importance to the minimal occurrences that started less than Tep
before the event currently under consideration. The episodes whose last minimal
occurrence started less than Tep ago are said to be recently observed. Figure 2
illustrates some of the possible configurations (minimal and non-minimal new
occurrences).

4 Frequent episode mining with FEM-ASC

4.1 General framework

The event stream is processed one event at the time, chronologically. The arriv-
ing event (e, t) is susceptible of augmenting any recently observed episode. The
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Fig. 2: Discovering whether a new event (e, t) helps form a new minimal occur-
rence of an episode E′ = E ∪ {e}

Table 2: Parameters allowing the tuning of FEM-ASC

Name Description Range

Window length
TW

Size of the period of interest. Older events are
outdated, and should not appear in the support. 0 < Tep < TW

Maximal episode
duration Tep

Occurrences longer than Tep are not counted

Frequency
threshold Smin

Support threshold for an episode to be
considered as frequent 0 < Ssub < Smin

Subfrequency
threshold Ssub

Support threshold for an episode to be
considered as subfrequent, and thus maintained

in the lattice

recently observed episodes are thus traversed in order to check if they can be
augmented. Any new minimal occurrence discovered leads to the update of the
corresponding episode, thus making it a candidate for future augmentations.

The key to efficient update is the use of a lattice structure for the storage
of the episodes. The lattice is described in section 4.2, and the lists for the
retrieval of the recently observed episodes in section 4.3. The update procedures
are detailed in section 4.4. We use two support thresholds, which allows us to
make a compromise between the size of the search space and the reactivity to
concept drifts: a frequency threshold Smin, and a subfrequency threshold Ssub,
with Ssub ≤ Smin. Table 2 summarizes the parameters used to tune FEM-ASC.

4.2 Episode Lattice

The relevant episodes are stored in a frequent episode lattice (FEL). Each node
in the lattice corresponds to an episode E, and contains the information required
for the approximate support computation and update. That is to say:

– The date t0 at which started the first recorded occurrence for E
– The span of its last minimal occurrence ∆tElast
– The end of the last non-overlapping minimal occurrence tElast
– The support approximated at time tElast: Ŝlast
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Fig. 3: Example lattice when (B, 56) is the last seen event

However, not every episode is stored in the lattice, it would otherwise grow
impractical. We choose to maintain a node in the lattice if: (i) it is at least
subfrequent: it may then be a candidate for augmentation, or (ii) it was created
less than TW ago: we do not know yet if it is going to be frequent. This strategy
choice means that an episode needs to be monitored for a while, until it gets
at least subfrequent before we start considering longer episodes containing it.
Formerly frequent episodes also remain in the lattice until they fall under the
subfrequency threshold. This reduces the repetitive addition / deletion of nodes,
and allows faster adaptation to drifts in the data distribution.

The parents of a node (located at depth d) correspond to its sub-episodes of
length d−1, and its children to its super-episodes of length d+1. The edges link-
ing two episodes are indexed on the only event label that is present in the child
but not in the parent. In spite of its possibly big edge count, the lattice structure
was preferred to the standard prefix tree: it allows faster episode retrieval.

4.3 Recently modified nodes

As pointed out in section 3.2, the recently observed episodes may be augmented
with a new incoming event to form an occurrence of a longer episode. It is
thus necessary to easily retrieve the recently observed episodes that are at least



Algorithm 1 Update of the lattice when a new event is recorded

Input: new event (e, t), FEL, RMN header list
1: for all node n in RMN, where n represents episode E do
2: if e ∈ E then
3: pass // e cannot augment E
4: else
5: if n’s last occurrence is not recent enough then
6: Remove n from RMN
7: else
8: if n has a child c on label e then
9: if n’s last occurrence starts strictly after c’s then

10: Add the new minimal occurrence to c
11: if the new occurrence starts after the previous Tep-NOMO then
12: Update frequency (equation 1)

13: if c is at least subfrequent then
14: Add it to RMN
15: else // The child does not exist yet, create it?
16: if all of the parents of the child node are at least subfrequent then
17: Create the new node, record its first occurrence
18: else
19: pass // The child cannot be (sub)frequent (yet)

subfrequent. We use doubly linked lists to iterate over the recently observed
episodes for each depth level in the lattice. The order of the nodes in each linked
list does not influence the occurrence discovery, but all the nodes at a given
depth d should be considered for augmentation before the traversal of depth
d+1. Otherwise, this may lead to inconsistencies in the lattice. Figure 3 presents
the lattice on a toy dataset after the first 7 events have been introduced, with
the parameters Ssub = 2, Smin = 3, Tep = 3, and TW = 6.

4.4 Lattice update when a new event arrives

When a new event (e, t) arrives, the lattice update follows algorithm 1: the
episode E represented by each of the recently modified node is considered as
a candidate for augmentation. Some candidates are pruned: those who already
contain e, and those added in the RMN-lists too long ago and thus do not belong
there any more. Then, two cases arise: either the node for episode E∪{e} already
exists, and we need to figure out whether we have a new minimal occurrence; or
the node does not exist, and we must decide whether it should be created.

Removal of outdated information. Regular sweeps over the lattice enable the
removal of outdated nodes and branches. An alternative strategy has also been
considered: we check whether a node is outdated when it is updated. This alter-
native strategy misses outdated nodes: those not traversed via the updates with
the new events. The alternative strategy has not been evaluated yet.



Influence of TW Influence of Tep Influence of Smin

TW
1 min, 1 hour, 1 day,

1 week, 2 weeks, 4 weeks
4 weeks 4 weeks

Tep min(30 min, TW )
1 min, 30 min, 1 hour,

12 hours
30 min

Smin

median label support
over the dataset divided
by TW , with a minimal
of 3 (3, 3, 3, 9, 17, 33)

median label support
over the dataset divided

by TW (33)
17, 33, 66, 99, 131, 164

Ssub Smin/2 Smin/2 Smin/2

Table 3: Detailed setting used in the experiments

5 Initial experimental results on activity monitoring

This section presents the initial results of FEM-ASC on a dataset coming from
the activity recognition community: the CASAS Aruba dataset1 [2]. This dataset
contains the sensor readings from a smart home system containing motion detec-
tors, temperature sensors and sensors on the doors, as well as activity annota-
tions, which we use here. The annotation dataset contains 12 954 events, taking
22 different labels (11 activities with start and end markers).

Two aspects are considered: (i) the scalability of FEM-ASC, and (ii) its ability
to yield good results in spite of its heuristic nature. The scalability is evaluated
via the evolutions of the size of the episode lattice and of the length of the
RMN linked list during the execution of FEM-ASC: it is expected to remain fairly
constant. The quality of the results yielded by FEM-ASC are compared with those
produced by an exact frequent episode miner. We use the one described in [10],
which looks exactly for the same patterns, using the same support measure
definition and the same control parameters. We compare regularly (each time
100 events are processed) the lists of frequent episodes produced by FEM-ASC

and the exact method, and compute the precision and recall as follows:

– An episode is considered as a true positive if is discovered by both algorithms.
We note TP the number of true positives;

– An episode is said to be a false positive if FEM-ASC considers it frequent, but
it is actually not. We note FP the number of false positives;

– An episode is said to be a false negative if it is discovered by the exact
method but missed by FEM-ASC. We note FN the number of false negatives;

– The precision p and recall r are defined as

p =
TP

TP + FP
r =

TP

TP + FN

We evaluate the influence of three parameters on the scalability and quality
of FEM-ASC: the size of the window of interest TW (see figure 4), the maximal

1 http://ailab.wsu.edu/casas/datasets/aruba.zip
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Fig. 4: Influence of the window length TW
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Fig. 5: Influence of the episode duration Tep
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Fig. 6: Influence of the minimal support Smin

duration of the occurrences Tep (figure 5), and the minimal support threshold
Smin (figure 6). Table 3 details the experimental settings, and we observe the size
of the lattice (subfigures (a)), the length of the RMN list (subfigures (b)), the
precision (subfigures (c)) and recall (subfigures (d)). For each evaluation metric,
we plot the boxplot representing the distribution of the measures throughout
the processing of the dataset.

For every setting, the size of the lattice and RMN list remains mostly stable
throughout the execution. The variations are linked to the varying event den-
sities, but not to the size of the history. Both precision and recall are usually
very close to 100%, with occasional lower values. The performance in terms of
precision and recall do not seem significantly influenced by the parameters in-
vestigated. However, the resources required for the processing and mining of the
dataset are: longer windows, longer episodes durations and lower support thresh-
olds result in a higher number of interesting episodes and thus increase the size
of the lattice. The efficiency of the RMN list for the reduction of the search
space for the monitoring of new occurrences is directly related to the maximal
duration of the considered occurrences, and is thus the main scalability limit.

6 Conclusion

In this paper, we introduce FEM-ASC, an algorithm for the discovery and the
monitoring of frequent episodes in a stream of events. If its heuristic construc-
tion offers no guaranty on the quality of the approximated support, it shows in
practice good results on real-life datasets with progressive distribution changes.

This work is however simply at an early development stage, and requires
further experimentation. The two strategies for the removal of outdated nodes



need to be thoroughly compared. The performances of FEM-ASC should also be
assessed in different contexts, and in the presence of different kinds of concept
drifts. The influence of Smin

Ssub
should also be assessed on both the scalability, the

recall, and the reaction speed to concept drifts.
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