
WS-Policy and Beyond: Application of OWL Defaults to
Web Service Policies

Vladimir Kolovski1 and Bijan Parsia2

1 Department of Computer Science,
University of Maryland, College Park, MD USA,

kolovski@cs.umd.edu
2 School of Computer Science,

The University of Manchester, UK,
bparsia@cs.man.ac.uk

Abstract. Recently, there has been an increased amount of attention dedicated to
WS-Policy - it has become a W3C submission and a working group was formed
to standardize the specification. In our previous work, we provided a mapping of
WS-Policy to OWL-DL. In this paper, we continue that work by analyzing the op-
eration of policy intersection (determining whether two web service policies are
compatible). We show how this operation motivates the use of a non-monotonic
extension of OWL in the form of OWL default rules. We discuss our prototype
implementation of an OWL defaults reasoner based on Baader and Hollunder’s
terminological defaults.

1 Introduction

Recently, there have been many different web service policy language proposals with
varying degrees of expressivity and complexity [21, 6, 1]. One of these languages, WS-
Policy became a W3C member submission and is the basis for the WS-Policy working
group3.

In previous work [13] we described a translation of WS-Policy to a standardized
logic (OWL-DL). This mapping essentially provided a formal semantics for the frame-
work, and allowed us to use an OWL DL reasoner for policy processing tasks such as
determining policy equivalence, incompatibility, containment, incoherence and expla-
nation. In this paper, we provide additional results on the translation by exploring the
operation of policyintersection. This operation determines whether two policies are
compatible and generally involves domain-specific processing. In the official specifica-
tion of WS-Policy [21], only an approximation algorithm is defined for this operation.
Instead, we describe an algorithm based on OWL-DL extended with default rules. Be-
cause default logic is computationally more expensive than the logic behind OWL-DL,
we do provide clear motivations for our usage of defaults.

To provide reasoning support for OWL defaults we have extended an open-source
OWL-DL reasoner (Pellet). Our implementation is based on Baader and Hollunder’s

3 WS-Policy Working Group web site: http://www.w3.org/2002/ws/policy/

2

terminological default logic [3] (adapted to OWL-DL). To retain decidability, the ter-
minological default logic of Baader and Hollunder restricts the default rules to named
individuals only, similar to DL-safe rules. We provide a brief description of our system
in Section 6.

2 Preliminaries

In this section we provide brief overview of the WS-Policy framework and Reiter’s
default logic, which served as the basis of our implementation.

2.1 WS-Policy Framework Overview

The WS-Policy Framework provides a general purpose model and syntax to describe
the policies of a Web service. Its scope is limited to allowing endpoints to specify re-
quirements and capabilities needed for establishing a connection. Its initial goal is not
to be used as a language for expressing more complex, application-specific policies that
take effect after the connection is established. For this purpose, WS-Policy introduces
a simple and extensible grammar that consists ofassertionsandalternatives.

An assertion is the basic unit of a policy. For example, an assertion could declare that
the message should be encrypted. The actual definitions and meaning of the assertions
are domain-dependent and not defined in the WS-Policy Framework. An assertion is
defined by a unique Qualified Name, and can be a simple string or a complex object
with many sub elements and attributes. Note that an assertion can contain a nested
policy expression.

A set of assertions is called a policy alternative, and a set of alternatives comprises
a policy. For an alternative to be supported by a web service requester, all assertions in
that alternative have to be satisfied by that requester. For a policy to be supported by a
requester, one or more alternatives need to be supported. Following is a schema outline
for the normal form of a policy expression:

<wsp:Policy>
<wsp:ExactlyOne>

[<wsp:All> [<Assertion> </Assertion>] * </wsp:All>] *
</wsp:ExactlyOne>

</wsp:Policy>

2.2 Default Logic

Reiter’s default logic is a nonmonotonic formalism for expressing commonsense rules
of reasoning. These rules, called default rules (or simplydefaults), are of the form:

α : β

γ

whereα, β, γ are first-order formulae. We sayα is theprerequisiteof the rule,β is
the justificationandγ theconsequent. Intuitively, a default rule can be read as: if I can
prove the prerequisite from what I believe, and the justification is consistent with what
I believe, then add the consequent to my set of beliefs.

3

Definition 1 A default theory is a pair〈W, D〉 whereW is a set of closed first-order
formulae (containing the initial world description) andD is a set of default rules. A
default theory is closed if there are no free variables in its default rules.

Possible sets of conclusions from a default theory are defined in terms ofextensions
of the theory. Extensions are deductively closed sets of formulae that also include the
original set of facts from the world description. Extensions are also closed under the
application of defaults inD - we keep applying default rules as long as possible to
generate an extension.

Default rules can conflict. A simple example is when two defaultsd1 andd2 are
applicable yet the consequent ofd1 is inconsistent with the consequent ofd2. We then
typically end up with two extensions: one where the consequent ofd1 holds, and one
where the consequent ofd2 holds.

3 Updated OWL-DL Mapping

In [13] we presented a mapping of WS-Policy to OWL-DL based on the idea that ser-
vice policy assertions and alternatives were mapped to classes, and web service re-
questers are mapped to OWL individuals. With this mapping, checking whether a web
service requester satisfies a particular policy can then be reduced to simply checking
whether the OWL individual representing the requester is a member of the OWL class
representing the policy. The mapping was relatively simple since there are only two rel-
evant constructs in a WS-Policy in a normal form (<wsp:exactlyOne>, <wsp:All>).
Due to the name of one of the operators (<wsp:exactlyOne>) and the ambiguity in
the WS-Policy specifications, we translated it to a logical XOR. Thus the policyP =
ExactlyOne(A, B) was mapped to the description logic expression:P = (At B) u
¬(Au B) (<wsp:All> was mapped to logical conjunction).

However, due to the open world assumption present in OWL-DL, our previous map-
ping produces non-intuitive results. For example, if a requestr comes in such thatr : A,
and the policyP contains only two alternatives,A andB, we will not be able to infer
that the requestr satisfiesP (i.e., r is of type(A t B) u ¬(A u B)) unless we ex-
plicitly state thatr : ¬B. To solve this issue, we simplified the mapping to represent
<wsp:exactlyOne> as logical disjunction (inclusive OR), and in addition we have made
the classes representing the alternatives pair-wise disjoint, so even though a requester
supports more than one alternative, he cannot use more than one at a time. This updated
translation is more concise than the old one (compareAtB with (AtB) u ¬(AuB)).
In this scenario, if a requester comes in that is a member of two alternatives, we will get
an inconsistency.

Example 1.Consider the example policy in Figure 1. For each policy assertion, we
have a separate OWL class (RequireDerivedKeys , WssUsernameToken10 ,
WssUsernameToken11). Then, each alternative is simply the conjunction of its as-
sertions.

Alt 1 ≡ RequireDerivedKeys uWssUsernameToken10
Alt 2 ≡ RequireDerivedKeys uWssUsernameToken11

4

(01)<wsp:Policy
xmlns:sp=”http://schemas.xmlsoap.org/ws/2005/07/securitypolicy”
xmlns:wsp=”http://www.w3.org/2006/07/ws-policy”>

(02) <wsp:ExactlyOne>
(03) <wsp:All>
(04) <sp:RequireDerivedKeys />
(05) <sp:WssUsernameToken10 />
(06) </wsp:All>
(07) <wsp:All>
(08) <sp:RequireDerivedKeys />
(09) <sp:WssUsernameToken11 />
(10) </wsp:All>
(17) </wsp:ExactlyOne>
(18)</wsp:Policy>

Fig. 1.Example policy

The policy classP is equivalent to the disjunction of the alternative classes:

P≡ Alt 1 t Alt 2

In addition, we add a disjoint axiom for the alternatives:

Alt 1 v ¬Alt 2.

4 Policy Processing Services

In our previous work [13] on WS-Policy, we described the services that DL reason-
ers provide regarding policies: containment, equivalence, incompatibility, incoherence
(nothing can satisfy the policy) and policy conformance, among others. Thus, the map-
ping allows us to use an off-the-shelf OWL reasoner as a policy engine and analysis
tool, and an off-the-shelf OWL editor as a policy development and integration environ-
ment. OWL editors can also be used to develop domain specific assertion languages
(essentially, domain ontologies) with a uniform syntax and well specified semantics.

There is one additional reasoning service that is useful for policies and warrants
more discussion. It has been argued (see [4] for example) that explanation is a crucial
requirement for a policy language. To address this requirement, we can use recent ad-
vances in the field of debugging OWL ontologies [11], esp. in providing explanations
for both ontology inconsistencies and arbitrary entailments for OWL-DL.

For example, thewhyquery mentioned in [4] can be handled by the explanation for
arbitrary entailments. If a user asks why the requesterr satisfies the policyP, then the
debugging framework is simply asked to provide justification for the type assertionr :P.
On the other hand, if a web service request causes an inconsistency (for example be-
cause of violating a domain disjointness constraint), then the debugging framework can
provide explanation of why the inconsistency occurred. More specifically, if an OWL-
DL ontology is inconsistent, [11] provides the minimal set of axioms in the ontology
that causes the inconsistency (the set of axioms is called ajustification).

5

These techniques are already implemented in Pellet, and there is also a UI for de-
bugging implemented in SWOOP.

5 Policy Intersection

Policy intersection is used when a web service requester and provider both express
policies and want to compute the compatible policy alternatives between them. This
commutative and associative function takes two policies as input and returns a policy
containing the compatible alternatives. As defined in [21], two alternatives are com-
patible if each assertion in the first alternative is compatible with an assertion in the
second, and vice-versa. If two policy alternatives are compatible, their intersection is an
alternative containing all of the assertions in both alternatives.

Determining whether two policy alternatives are compatible involves domain-specific
processing. In an attempt to automate the operation, one might be tempted to mark the
incompatible policy assertions as mutually disjoint classes. Then, to determine whether
two policiesA andB are compatible we only check whetherAu B is satisfiable. How-
ever, this will prevent us from having entities support assertions of different types, since
it will render the policy ontology inconsistent. Since it is usually the case that entities
do support different assertion types (example: an entity can support some specific en-
coding and some type of reliability, and encoding and reliability are different assertion
types), the simple approach of marking incompatible assertions as disjoint classes is
incorrect.

To overcome this problem, we introduce an additional property in the policy ontol-
ogy -compatibleWith . Then, for two policy assertion classesAandB, if we want to
say thatA is not compatible withB, we can simply useAv ¬∃compatibleWith .B.

As stated in [21], assertion authors are encouraged to factor assertions such that two
assertions of the same assertion type are typically compatible. We can model this using
inheritance hierarchies (with exceptions). For instance, the policy modeler can state that
for two classes representing assertionsC,D, which she knows are compatible, every
pair of classesCi, Di that are subclasses ofC,D (i.e., Ci v C andDi v D) is also
compatible by default. This can be expressed with the following default rule:

C(x) ∧ D(y) : compatibleWith (x, y)
compatibleWith (x, y)

In the cases when two assertions are incompatible (even though they are a inherit
from the same type) the policy developer can add a disjoint axiom by hand, overriding
the default rule above.

The basic algorithm would be as follows: for two policiesA andB and a default the-
ory KB = 〈W,D〉 (whereW is an OWL-DL ontology andD is a set of defaults), to
determine whether they are compatible start with the alternatives ofAand try to find one
compatible alternative inB, and vice-versa. If for at least one alternative in one policy,
we succeed in finding compatible alternatives in the other policy, we conclude that the
policies can intersect. The intersection of the policies is the policy containing the mutu-
ally compatible set of alternatives. To determine whether two alternatives are compati-
ble, we try to match their assertions. For each assertionAssert a ∈ A, we try to find

6

an assertionAssert b ∈ B s.t.KB |= compatibleWith (Assert a , Assert b).
If the assertion has a nested policy, then we try to match it with a nested policy from the
other alternative, by asking recursively whether they are compatible.

6 OWL Defaults

Both of the default logic scenarios described above could be plausibly met with Reiter’s
default logic, which is one of the most studied non-monotonic logics. Reiter’s default
logic, while very expressive, is, like many non-monotonic formalisms, known to be
computationally difficult even in the propositional case. In [3], Baader and Hollunder
showed that even a restricted form of defaults coupled with a description logic that con-
tains a smaller set of constructors than OWL-DL was undecidable. They also showed
that if one restricted the defaults to apply only to named individuals (or, equivalently,
restricted the logic to closed defaults), then a robust decidability ensued.

We have implemented a prototype of the terminological defaults of Baader and Hol-
lunder that is based on recent advances in description logic reasoning: tableaux tracing
for the description logicSHOIN and incremental reasoning support. The implemen-
tation is provided as an extension to Pellet and it providesrealizationof individuals in
terminological default theories. We have also provided a UI for defaults by extending
the open source OWL Ontology editor SWOOP. More specifically, we added support
for default rules editing and updating the current ontology with the set of inferred facts
from the defaults. We refer the reader to [12] for more details.

7 Related Work

There have been a number of proposals for ontology-based web policy systems [16, 10,
18, 8] - because of lack of space, we will only briefly cover Rei and KaOS.

Rei [10] is a policy specification language based on a combination of OWL-Lite,
logic-like variables and rules. It allows users to develop declarative policies over domain
specific ontologies in RDF and OWL. Rei allows policies to be specified as constraints
over allowable and obligated actions on resources in the environment. A distinguishing
feature of Rei is that it includes specifications for speech acts for remote policy manage-
ment and policy analysis specifications like what-if analysis and use-case management.
Our goal is to encode WS-Policy in a not very expressive logic formalism (so as to be
able to perform policy analysis), and our opinion is that we do not need a language as
expressive as Rei for WS-Policy.

KaOS Policy and Domain Services [18] use ontology concepts encoded in OWL
to build policies. These policies constrain allowable actions performed by actors which
might be clients or agents. The KAoS Policy Service distinguishes between authoriza-
tions and obligations. The applicability of the policy is defined by a class of situa-
tions which definition can contain components specifying required history, state and
currently undertaken action. Even though we use the same representation language as
KaOS (OWL-DL), our reasoning support is provided by tableaux-based description
logic reasoners which are sound and complete for OWL-DL. In addition, by using Pel-
let we were able to leverage its ontology debugging support.

7

In addition, there are a number of proposals [20, 14] of policy/authorization lan-
guages based on logic programs extended with default rules - the difference with our
approach is that we use description logics as the underlying logic formalism.

8 Conclusions and Future Work

While most policy language proposals are based on logic programs, in this paper we
explored the alternative of using OWL-DL as a language for expressing web service
policies. We argued that the policy services that DL reasoners provide out of the box,
the advances in explanation mechanisms for DL, and the ability to closely integrate
OWL-DL with default logic make an OWL-based policy framework worth exploring.
Also, OWL-DL is a W3C standard, a language with clear syntax and semantics that is
ubiquitous in the Semantic Web. As a consequence, the number of reasoners and OWL-
DL editors has been growing steadily. A policy language based on OWL-DL should be
able to capitalize on the popularity of OWL-DL.

Despite the advantages mentioned above, policies, being associated with rules first
and foremost, seem to demand greater expressivity than OWL-DL (as argued in [9],
for example) in the form of monotonic rules. However, because of the recent advances
in hybrid (description logic + logic programs) knowledge bases, and successful imple-
mentations ([15]) we believe that OWL-DL combined with rules is reaching a maturity
level where it will be a suitable alternative for a policy framework.

During the past couple of years, there has been great advances [7, 5, 19, 17] in the
area of automated trust negotiation (ATN) between policy entities. ATN deals with the
problem of exchanging of sensitive credentials between strangers in order to establish
trust. We plan to investigate how we can integrate our OWL-based system with such
mechanisms.

Finally, it is unfortunate that we cannot provide clear semantics for policy inter-
section because its dependence on domain-specific reasoning. The WS-Policy frame-
work requires each domain to specify its own policy assertions, but there is no generic,
domain-independent language for expressing these assertions. As a result, every do-
main has its own language (with unclear semantics) that makes it hard to reason and
analyze the assertions. We plan to investigate how we could couple OWL with concrete
domains (e.g. XPath) so as to be able to express and give semantics to some of these
domains. A promising step toward a domain-independent policy assertions language is
[2]; we plan to investigate the idea further.

References

1. A. H. Anderson. An introduction to the web services policy language. InFifth IEEE Inter-
national Workshop on Policies for Distributed Systems and Networks (POLICY’04), 2004.

2. Anne Anderson. WS-PolicyConstraints: A domain-independent web
services policy assertion language, November 2005. Available at
http://research.sun.com/projects/xacml/IntroToWSPolicyConstraints.pdf.

3. Franz Baader and Bernhard Hollunder. Embedding Defaults Into Terminological Knowledge
Representation Formalisms.J. Autom. Reasoning, 14(1):149–180, 1995.

8

4. P.A. Bonatti, G. Antoniou, M. Baldoni, C. Baroglio, C. Duma, N. Fuchs, A. Martelli, W. Ne-
jdl, D. Olmedilla, J. Peer, V. Patti, and N. Shamheri. The rewerse view on policies.

5. Piero A. Bonatti and Pierangela Samarati. A uniform framework for regulating service access
and information release on the web.J. Comput. Secur., 10(3):241–271, 2002.

6. Jacques Durand et al. Wsdl annotation proposal. http://lists.oasis-
open.org/archives/wsrm/200403/msg00082.html.

7. R. Gavriloaie, W. Nejdl, D. Olmedilla, K. Seamons, and M.Winslett. No registration needed:
How to use declarative policies and negotiation to access sensitive resources on the semantic
web. InEuropean Semantic Web Symposium, May 2004.

8. Stephan Grimm, Steffen Lamparter, Andreas Abecker, Sudhir Agarwal, and Andreas Eber-
hart. Ontology based specification of web service policies. InSemantic Web Services and
Dynamic Networks Workshop, 2004.

9. R. Montanari J. Bradshaw, L. Kagal and A. Toninelli. Rule-based and ontology-based poli-
cies: Toward a hybrid approach to control agents in pervasive environments. InProceedings
of the ISWC2005 Semantic Web and Policy Workshop, 2005.

10. L. et al Kagal. A policy language for a pervasive computing environment. InIEEE 4th
International Workshop on Policies for Distributed Systems and Networks, June 2003.

11. Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and James Hendler. Debugging unsatisfiable
classes in owl ontologies.Journal of Web Semantics - Special Issue of the Semantic Web
Track of WWW2005, 3(4), 2005.

12. Vladimir Kolovski, Bijan Parsia, and Yarden Katz. Implementing owl de-
faults. Technical report, University of Maryland - College Park, 2006.
http://www.mindswap.org/ kolovski/defaults.pdf.

13. Vladimir Kolovski, Bijan Parsia, Yarden Katz, and Jim Hendler. Representing web service
policies in owl-dl. InInternational Semantic Web Conference (ISWC), 2005.

14. Ninghui Li, Benjamin N. Grosof, and Joan Feigenbaum. Delegation Logic: A logic-based
approach to distributed authorization.ACM Transaction on Information and System Security
(TISSEC), February 2003.

15. Boris Motik, Ulrike Sattler, and Rudi Studer. Query answering for owl-dl with rules. In
Proc. of ISWC 2004, pages 549–563.

16. W. Nejdl, D. Olmedilla, M. Winslett, and C. Zhang. Ontology-based policy specification and
management. In2nd European Semantic Web Conference (ESWC), May 2005.

17. K. Seamons, M. Winslett, and T. Yu. Limiting the disclosure of access control policies during
automated trust negotiation, 2001.

18. A. Uszokand and J. Bradshaw. Kaos policies for web services. InW3C Workshop on Con-
straints and Capabilities for Web Servies, October 2004.

19. W. Winsborough, K. Seamons, and V. Jones. Automated trust negotiation. Technical Report
TR-2000-05, 24 2000.

20. T. Y. C. Woo and S. S Lam. Authorization in distributed systems : A formal approach. In
Proceedings of the IEEE Symposium on Security and Privacy, pages 33–51, 1992.

21. WS-Policy. Web services policy framework (ws-policy). http://www-
106.ibm.com/developerworks/library/specification/ws-polfram/.

