
Semantics in Model-Driven Business Design

Mark H. Linehan

IBM T. J. Watson Research Center
Yorktown Heights, NY 10598

mlinehan@us.ibm.com

Abstract. This position paper describes ongoing work in applying the new
OMG standard called Semantics in Business Vocabulary and Rules (SBVR) to a
model-based approach to business design and implementation. The work ex-
plores methods of specifying semantics and rules in SBVR’s “Structured Eng-
lish” as extensions of business models that are automatically translated to ex-
ecutable solutions.

Introduction

The Object Modeling Group’s (OMG’s) Model-Driven Architecture [13] concept de-
fines a multi-layered approach to defining business solutions, as shown in figure 1.

Platform Independent Model (PIM)

Platform Specific Model (PSM)

Business
model

Technology
independent

model

Technology
specific model

M
apping

M
apping

Business Model
(CIM or Computation Independent Model) e.g. business processes, organization

structure, business metrics – expressed
without implementation details

e.g. BPDM (Business Process Definition
Metamodel from OMG)

e.g. BPEL (Business Process
Execution Language) flows

e.g. models tied to J2EE, .Net

Fig. 1. OMG Modeling Layers

Figure 2 summarizes OMG efforts to define standards for rules at the top two layers.
The Semantics of Business Vocabulary and Rules [15] activity is defining a “Struc-
tured English” approach to vocabulary and rules at the Business Model or Computa-

mailto:mlinehan@us.ibm.com

tion Independent Model layer. The Production Rules Representation [14] aims to
specify a standard Unified Modeling Language (UML) model for rule structures.

Platform Independent Model (PIM)

Platform Specific Model (PSM)
M

apping
M

apping

Semantics of Business
Vocabulary & Rules

(SBVR)
Business

Vocabulary
Business

Rules

Production Rules
Representation (PRR)

• Forward chaining

• Sequential Rules

Vendor-Specific Rule or
Other Language

Business Model

business guidelines

e.g. “the duration of each rental
must be at most 90 days”

rules located within a solution

e.g. “in the rental pickup flow, if the rental
duration is greater than 90 days then …”

e.g. “in the rental reservation UI, if the rental
duration is greater than 90 days then …”

?

?

rule language or hard code

e.g. “if rental.duration > 90 then ….”

Fig. 2. Rules in the MDA Layers

This paper summarizes an ongoing effort to implement a subset of SBVR in the con-
text of an existing Model Driven Business Transformation project [10] at IBM Re-
search.

MDBT – Model-Driven Business Transformation

MDBT is a methodology and matching toolkit for defining a business solution at the
business modeling layer, and then semi-automatically transforming the solution into a
PIM-layer and then a PSM-layer implementation. A business analyst applies the
methodology by defining a business model using the IBM WebSphere Business Mod-
eler [7] tool and the MDBT semantics. The analyst then converts the business model
to a PIM-layer model using the IBM Rational Software Architect [6] product, and fur-
ther transforms the PIM-layer model to an executable implementation using the IBM
WebSphere Integration Developer [8] tool and IBM WebSphere Process Server [9]
runtime. The generated implementation includes Data Definition Language (DDL)
statements to generate relational database tables, state machine definitions for execut-
ing the solution, skeleton user interface Java Server Pages (JSPs), and service defini-
tions in the form of Web Services Definition Language (WSDL) files. The imple-
mentation incorporates business performance monitoring functions and dashboards, as
described in [2].

The transformation process from business layer to implementation can be fully auto-
mated in a “rapid prototyping” mode. Manual intervention at the PIM and PSM lay-

ers are needed to produce production-quality user interfaces and adapters for invoking
legacy systems as services.

user role

business
artifact

verbs: reject,
validate

Fig. 3. Business-Layer Model of a Driver’s License Bureau

Figure 3 shows a simple solution example at the business layer. This shows the proc-
essing flow of a Driver’s License Bureau which handles License Applications. The
flow starts at the dot on the left, and proceeds through the illustrated stages. The
rounded squares show processing tasks, while the database icons show repositories
for holding in-process work. The rectangular callouts indicate the three primary con-
cepts captured in this model: user roles, verbs associated with the output sides of
tasks, and the business artifacts processed by the solution.

Fig. 4. Business Artifact

At the business layer, artifacts are detailed in terms of their attributes. Figure 4 shows
that a License Application contains various fields, similar to properties in UML
classes.

What’s missing from the business-layer model is any concept of business rules. For
example, perhaps the applicant must be at least 18 years old to get a driver’s license.
In the current MDBT approach, such rules must be implemented manually at the PSM
layer. A method of specifying such rules at the business layer and then transforming
them to the implementation would improve the MDBT methodology. The objective
of this project is to examine the suitability of SBVR for this purpose.

SBVR

SBVR provides a framework for defining business vocabulary and rules at the busi-
ness modeling layer using “Structured English” and applying stylized text to four key
concepts:

− The ‘term’ style applies to noun concepts, such as ‘License Application’.
− The ‘Name’ style designates individual concepts, such as a clerk named ‘Bill’.
− The ‘verb’ style identifies fact types, which define relationships between concepts.

For example, ‘clerk validates application’.
− The ‘keyword’ style distinguishes various words used to construct vocabulary defi-

nitions and rule statements. The keywords designate built-in SBVR concepts such
as ‘it is permitted that’ and ‘exactly one’.

SBVR supports standard logical operations (‘and’, ‘or’, and so forth) and first order
predicate logic (e.g. ‘each’, ‘some’). SBVR also supports certain modal logic con-
cepts such as necessity, possibility, obligation, and permission. Some example rules
given in “Structured English” are:

It is permitted that each clerk validates each license application only if the current

age of the license application is greater than 18.

It is obligatory that each applicant pass the written test.

Note the influence of the vocabulary design on the expression of the rules. The first
example references the “the current age of the license application,” rather than “…of
the applicant,” because “current age” is a field of the “license application” artifact.
The vocabulary – and perhaps the underlying application – would have to be restruc-
tured to enable a more natural rule statement.

The project described here is creating a prototype tool to evaluate the technical issues
involved in writing SBVR rules, and then transforming them to executable implemen-
tations.

Prototype Design

Business Model
with restricted permission
rules expressed in SBVR,

using an extension of
IBM WebSphere Business

Modeler

Platform Independent
Model (PIM)

with rules expressed as
OCL preconditions on

artifact operations, using
IBM Rational Software

Architect

Platform Specific
Model (PSM)

implementation
with rules implemented

in Java, using
IBM WebSphere

Integration Developer

Fig. 5. Prototype Summary

The SBVR prototype is designed as an extension of the MDBT project, in order to
build upon the existing MDBT modeling and transformation technology. As shown
in figure 5, the rules are entered in a new tool added onto the WebSphere Business
Modeler, and then transformed into a PIM-layer solution, and then further trans-
formed into a PSM-level implementation.

Specifying Rules in the Business Model

The SBVR specification is large and fairly complex. Rather than attempt to support
the entire specification, this prototype focuses on a limited subset called “restricted
permission rules”. These are rules expressed as permissions (someone or something
may do something) associated with conditions. The first example rule given above is a
restricted permission rule. In the prototype, all such rules are associated with an
MDBT business model such as the one shown above. Each rule references a user
role, an action, and a business artifact in the model.

start
select

role/verb/artifact
used in rule

select “not”
if desired

enter first
operand

select fact
type

appropriate
to operand

enter
second
operand

another
clause?

select
“and”, “or”,
“xor”, etc.

done

if unary

no

yes

Fig. 6. Rule Wizard Navigation Path

Tw imagined. One involves a tool that parses

his prototype employs an alternate approach in which rules are entered through a

Transforming from Business Model to Platform Independent (PIM) Model

Following the MDBT technology, the rules entered through the wizard are converted

dvantages of OCL for this purpose include the fact that it is an established standard,

o methods of entering rules could be
“Structured English” text and attempts to discover the underling meaning. The prob-
lem with that approach is that all text – even “Structured English” – has ambiguities.
Manual user involvement would be required to resolve those ambiguities.

T
tool “wizard” that guides users, step-by-step, through the process of creating a com-
plete rule. Figure 6 summarizes the wizard steps. Advantages of this approach are
two-fold: (a) users can only enter valid rules; (b) the meaning of the rules is explicit.

to a PIM-layer solution as part of the overall MDBT transformation. MDBT models
the PIM layer using UML class, state, and use case diagrams. This prototype extends
the class diagrams by converting the rules to pre-conditions on the class operations.
These pre-conditions are expressed using the Object Constraint Language [17].

A
the potential to convert to any appropriate PIM-layer implementation, and OCL’s
built-in collection operators. The latter facilitate SBVR’s use of universal and exis-
tential logic. For example, a rule fragment such as “each line item of the order is
complete” may be converted to an OCL fragment such as
“lineItems select(isComplete)”.

Transforming from Platform Independent Model to Platform Specific (PSM)

The transformation from PIM-layer to PSM-layer potentially converts the pre-

or simplicity, this prototype converts the OCL preconditions only to Java. The

Model

conditions to equivalent tests in various aspects of the implementation. These include
code that enables or disables buttons in the user interface, guards on state machine
transitions, and potentially access control statements in a language such as the eXten-
sible Access Control Markup Language (XACML) [12]. The first example rule given
above might map to all of these. This illustrates the power of SBVR and the MDBT
approach: a single rule given at the business layer potentially drives multiple aspects
of the ultimate solution.

F
transformation is simple, except that collection operators must be generated as corre-
sponding “for” loops. Mappings to implementations such as rule languages,
XACML, script languages, and others are possible and relatively easy with the
MDBT approach.

Related Work

Since SBVR is quite new, relatively little work has been published about it. One an-
nounced commercial implementation and a research prototype of SBVR exist:

• RuleExpress is a commercial SBVR tool produced by a collaboration of Business

Rule Solutions, LLC [1] and LibRt [11]. The website [16] says RuleExpress pro-
vides “Business-people capabilities for business rules … capture, expression, vali-
dation, verification, visualization, management, publication, audit.”

• SBeaVer [3] is an open-source SBVR tool created by Maurizio De Tommasi and
Pierpaolo Cira at the University of Lecce in Italy, in a project funded by the Euro-
pean Digital Business Ecosystem [4] project. This tool runs as a plugin for the
Eclipse [5] tools platform, and provides for creation, editing, validation, verifica-
tion, and export of both vocabulary and rules.

These tools enable entry and modification of rules and vocabulary using “Structured
English”. In contrast, the work described here focuses upon transformation of the
rules to executable code.

Summary and Outlook

The project experience so far is that entering rules in SBVR “Structured English”
seems to be a useful adjunct of the existing Model-Driven Business Transformation
(MDBT) technology. Conversion of the limited subset of SBVR supported by this
prototype into OCL and Java is straightforward.

This prototype addresses a small portion of the concepts defined by SBVR. Features
of particular interest for future work include:

• Synonyms to permit alternative terms and part of speech in rules. For example, a

‘License Application’ might also be named an ‘Application’.
• Noun and fact type definitions to simplify the expression of certain rules. For ex-

ample, rather than specifying rules for when a clerk may validate an application,
one might define a ‘valid application’ according to a set of conditions.

• Additional modalities, such as necessities and obligations. The second example
above gives an example of an obligation rule.

These three require very different kinds of technology. Synonyms are entirely a mat-
ter of tools function. Definitions and other modalities require either new transforma-
tions among modeling levels or new execution mechanisms such as inferencing.

SBVR brings together concepts from several distinct traditional academic subjects:
philosophy (modal logics, taxonomies), linguistics (semantics, pragmatics), and
mathematics (first order logic). The application of these concepts to computer science
topics such as modeling, model transformation, Description Logics, and rules, offers

rich opportunities for scientific and technical progress. The expression of these con-
cepts in “Structured English” promises to make rules practical and useful for every-
day business solutions.

References

1. Business Rule Solutions, LLC. See http://www.brsolutions.com/.
2. Chowdhary, P., Bhaskaran, K., Caswell, N. S., Chang, H., Chao, T., Chen, S.-K., Dikun, M.,

Lei, H., Jeng, J.-J., Kapoor, S., Lang, C. A., Mihaila, G., Stanoi, I., Zeng, L. “Model Driven
Development for Business Performance Management.” IBM Systems Journal, Volume 45,
Number 3, Page 587 (2006). Available at http://www.research.ibm.com/journal/sj45-3.html

3. De Tommasi, Maurizio, Cira, Pierpaolo. SbeaVer Business Modeler Editor. Available at
http://sbeaver.sourceforge.net.

4. Digital Business Ecosystem project, “an Internet-based software environment in which busi-
ness applications can be developed and used”. Available at http://www.digital-
ecosystem.org/.

5. “Eclipse is an open source community whose projects are focused on providing an extensi-
ble development platform and application frameworks for building software.” Available at
http://www.eclipse.org/.

6. IBM Rational Software Architect. See http://www-
306.ibm.com/software/awdtools/architect/swarchitect/index.html.

7. IBM WebSphere Business Modeler. See
 http://www-306.ibm.com/software/integration/wbimodeler/.
8. IBM WebSphere Integration Developer. See
 http://www-306.ibm.com/software/integration/wid/.
9. IBM WebSphere Process Server. See
 http://www-306.ibm.com/software/integration/wps/.
10. Koehler, Jana; Hauser, Rainer; Kapoor, Shubir; Wu, Fred Y.; and Kumaran, Santhosh. A

Model-Driven Transformation Method. In Proceedings of the Seventh International Confer-
ence on Enterprise Distributed Object Computing, pages 186--197. IEEE, September 2003.
Available at http://doi.ieeecomputersociety.org/10.1109/EDOC.2003.1233848.

11. LibRT. See http://www.librt.com/.
12. Organization for the Advancement of Structured Information Standards (OASIS). eXtensi-

ble Access Control Markup Language (XACML). See http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=xacml.

13. Object Modeling Group (OMG). MDA Guide, version 1.01, 2003. Available at
http://www.omg.org/docs/omg/03-06-01.pdf.

14. Object Modeling Group (OMG). Production Rules Representation Revised Submission,
June 5, 2006.

15. Object Modeling Group (OMG). Semantics of Business Vocabulary and Rules Specifica-
tion Drafted Adopted Specfication, March 2, 2006.

16. RuleExpress, “The business tool for expressing and communicating business rules.” Avail-
able at http://www.rulexpress.com/index.php.

17. Warmer, Jos, Kleppe, Anneke. The Object Constraint Language: Getting Your Models
Ready for MDA. second edition, Addison-Wesley Professional; 2003; ISBN 0321179366.

http://www.brsolutions.com/
http://www.research.ibm.com/journal/sj45-3.html
http://sbeaver.sourceforge.net/
http://www.digital-ecosystem.org/
http://www.digital-ecosystem.org/
http://www.eclipse.org/
http://www-306.ibm.com/software/awdtools/architect/swarchitect/index.html
http://www-306.ibm.com/software/awdtools/architect/swarchitect/index.html
http://www-306.ibm.com/software/integration/wbimodeler/
http://www-306.ibm.com/software/integration/wid/
http://www-306.ibm.com/software/integration/wps/
http://doi.ieeecomputersociety.org/10.1109/EDOC.2003.1233848
http://www.librt.com/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://www.omg.org/docs/omg/03-06-01.pdf
http://www.rulexpress.com/index.php

