CEUR-WS.org/Vol-2070/paper—-01.pdf

Bringing Incremental Builds to Continuous Integration

Guillaume Maudoux

guillaume.maudoux@uclouvain.be

Kim Mens
kim.mens@Quclouvain.be

ICTEAM Institute for Information & Communication Technologies, Electronics and Applied Mathematics
Université catholique de Louvain,
Louvain-la-Neuve, Belgium

Abstract

Incremental builds can considerably speed up
the edit-compile-test loop during program de-
velopment. While this technique is commonly
used for local builds, it is seldom enabled
during continuous integration. Correctness of
continuous integration builds is usually pre-
ferred to compilation speed. With current
tools, it is not trivial to get both properties,
but we show that it is theoretically achiev-
able with a carefully designed system. We
first assess the potential benefits of incremen-
tal builds in continuous integration environ-
ments. We then identify different reasons that
prevent that optimisation in practice. From
these, we derive requirements to be met by
future build systems to support incremental
continuous integration. These steps are illus-
trated with existing tools, research insight and
sample cases from industry. Ultimately, this
paper defines a new research direction at the
intersection of build systems and continuous
integration.

1 Context

The field of release engineering is concerned with the
pipeline of techniques and operations between isolated
developers writing source code and end users enjoying
released applications. Release engineers maintain and
optimize this pipeline from end to end. A classical re-
lease engineering pipeline [1], as depicted on Figure 1,

Copyright © by the paper’s authors. Copying permitted for
private and academic purposes.
Proceedings of the Seminar Series on Advanced Techniques and

Tools for Software Evolution SATToSE 2017 (sattose.org).
07-09 June 2017, Madrid, Spain.

starts with source code management (A). When com-
mits are ready, they enter continuous integration (B)
where software is built and tested in different stages
of increasing complexity and duration. To bring these
modifications to end-users, code needs to be deployed
(D) and released (E). This pipeline is all about tooling,
and a particular importance is attached to the build
system (C) used by developers to test their code lo-
cally and by continuous integration to both produce
artifacts and drive tests. As pressure increases to get
frequent releases and shorter development cycles, re-
lease engineers try to optimize this pipeline at each
stage. In particular, the goal of continuous integra-
tion is to have short build times and fast test feedback
to developers. Optimizing the edit-compile-test loop
shortens developers’ critical paths and accelerates soft-
ware evolution. A recent study on Travis CI [2] showed
that [t|he main factor for delayed feedback from test
runs is the time required to execute the build ”.

Incremental compilation is the technique by which a
build system can efficiently update previous build arti-
facts. With sufficient information about dependencies
between build steps, it is possible to tell which steps
are impacted by the updated sources and run only
these to generate correct build artifacts. The other
optimization based on build task dependencies is par-
allel execution of independent tasks. These two fea-
tures explain why developers use build systems despite
the added hassle of configuring them. However, dur-
ing continuous integration (CI) software is generally
built from clean sources, making incremental builds
impossible.

This paper is motivated by the need to understand
why incremental builds are considered essential to de-
velopers on their own machines but are seldom used
in continuous integration environments where they
could seemingly bring the same outstanding advan-
tages. Shunning incremental builds, release engineers
voluntarily lose the performance gain of updating only
the required build products. We will show that re-

A source %
code B RSl ,....,%hb
. - ‘.
version continuous . A b e,
q . Nay, AN
control repo —_—p Ntegration _ ies
(building & Cl
short tests) reports N
it . binaries
commi build 1 N /‘u AT
1
review system . : PO A
' test reports B more stages of tests,
code changes (o] ! S, progressively taking longer (on deployment in
(patches) N T test infrastructure), e.g., =P production === release to users
U acceptance tests, performance environment E
,' tests, Ul tests, manual tests, etc. ' ’
. v .- ’ PR
ya "¢ ---_- ---__—
. - mm
feedback to release . rm==" emEEECIl i -
‘ eEEC R === -
engineers, release planners, = # 2 = = = = = == == ==

developers, operators, ...

Figure 1: An overview of the release engineering pipeline, borrowed and freely simplified from [1]

lease engineers prefer correctness over optimization,
and that it is not so trivial to scale incremental com-
pilation to CI environments. Because continuous in-
tegration is mostly automated, release engineers trade
slower compilations against better quality guarantees
on build products. Computer time is quite cheap, and
tracking build issues is time consuming. We will see
that in that context their decision makes sense.

But decreasing the edit-compile-test loop time is a
pressing concern of most organizations. Developers
waiting for CI test results start to work on unrelated
issues. When the compilation finishes, developers need
to switch context to understand test failures on their
previous issue. With very slow compilations, develop-
ers may need to juggle with three issues at the same
time, losing more concentration to context switches.
Some developers may prefer to wait for CI results in-
stead of switching contexts too often, wasting even
more time.

That being said, there are other challenges involved
in enabling incremental builds on continuous integra-
tion servers. For example, builds are distributed on
a cluster of workers. Workers may not be assigned
to consecutive builds, making incremental builds less
useful.

In this article, we show that wasted time on com-
pilation is significant, and that there are solutions to
make build systems correct. We outline the features
required for the next generation of build system to en-
able incremental builds in continuous integration se-
tups while guaranteeing correctness in all cases.

2 Incremental build experiment

We claim that incremental builds would benefit CI en-
vironments. Were it not the case, there would be no
reason to update CI tools to support it. The experi-

ment described in this section illustrates how much re-
sources and developer time could be spared with such
an optimization.

To assert the usefulness of incremental builds in
continuous integration, we reproduced the workload
of an integration server. A list of consecutive com-
mits are build incrementally from a complete build
of their parent. The build time for the first commit
serves as an estimate of the duration of a full rebuild
from clean sources. Comparing duration of incremen-
tal builds with full rebuilds gives an idea of the po-
tential gain. This experiment relies on the simplifying
assumptions detailed below.

In practice, we analyzed the last 63 commits' on
morzilla-inbound?. As its name suggests, this repos-
itory belongs to the Mozilla foundation. It contains
mainly the source code of the web browser Firefox.
mozilla-inbound accepts briefly tested patches and gets
merged daily into mozilla-central if the branch passes
extensive tests. It is the normal landing point for non-
critical changes [6]. In their analysis of Mozilla’s patch
management infrastructure, Rodrigo Souza et al. [§]
have shown that continuous integration is key to early
patch backout and stable builds on stable branches.

For each of the 62 most recent commits, we have
launched an incremental build, the 63rd was used to
bootstrap the incremental build chain, and it’s build
time was used to estimate the duration of a full re-
build. The results are presented in Figure 2, in an em-
pirical cumulated density function (CDF) where the 62
builds are ordered by build time. The horizontal line
represents the time required for a full rebuild, and the
other one represents the time for an incremental build
of a given commit from it’s parent build. The coloured
area between these lines represents the potential gain

lhg log -r341198:341136
’https://hg.mozilla.org/integration/mozilla-inbound/

cpu time wall clock time

4h+

time [hours]
N w
> >
Il Il

=
>
1

Oh

— e)
0% 20% 40% 60% 80% 100%
builds (ordered by wall time)

Figure 2: Empirical distribution function of incremen-
tal build times and the potential gain they introduce
compared to full rebuilds.

in time due to incremental builds. Two different met-
rics are reported. The wall time corresponds to the
real time elapsed between the start and the end of the
incremental build. CPU time on the other hand is the
cumulative time spent on the task by all the CPU’s.
As the experiment was run on an Intel i5 with two
cores and four threads, the CPU time cannot be more
than four times the wall time. CPU time can be seen
as the expected duration of a sequential build on the
same machine.

Of course, this experiment is not perfect. From the
number of commits analyzed, it is difficult to draw
meaningful conclusions. We also conducted two fast
experiments on the much smaller i3 project® which ex-
posed a similar distribution of the build times. We can
expect that many repositories follow the same pattern,
following the intuition that most changes are small and
local and very few are spanning the entire project. We
made the assumption that the duration of a full re-
build is stable across patches. The duration of the
only full-rebuild is represented by the horizontal line
on Figure 2. It seems reasonable to think that big,
longstanding projects like Firefox have little variations
in their full rebuild duration, but this hypothesis re-
mains to be checked. Also, all the times were sampled
only once. Displaying the results as a CDF provides
some smoothing, but we cannot provide an estimate
of the variability of build times. This should also be
addressed with more experiments. Finally, we assume
that it is possible to build each commit incrementally
from its parent. As we will see in the next section, this
is not trivial when builds are spread on a cluster.

These limitations of our initial experiment do not
invalidated its main conclusion, however. A closer
analysis of the Firefox case shows that when there is
nothing to rebuild, an incremental build takes 29 sec-
onds +/-1 (wall clock time). This is 100 times faster
than a full rebuild, and happened for 10 builds out of
61. The median case spent two minutes and 23 sec-

Shttps://i3wm.org/

onds, which is still more than 20 times faster than a
full rebuild. This means that for a majority of builds,
compilation time can be reduced by one and sometimes
two orders of magnitude.

The graph shows that 65% of the commits have lit-
tle impact on the build. For the first 20% there is
no impact at all. The cost of an incremental build
in that case is minimal. It is the time needed by the
build system to detect that nothing needs to be done.
Such commits are more frequent than one would ex-
pect. A closer look at their contents shows documen-
tation changes, but also changes to the test suite. For
these changes in particular, rebuilding Firefox from
scratch seems a real waste of time. After these com-
mits follows a chunk of minor commits. They change
files with low impact on the final Firefox executable.
They contain for example .js files that are bundled as-
is in the final data archive. Incremental builds need
only rebuild the said archive to complete. The right
part of the curve contains average-impact changes (.c
files or their equivalent) requiring some rebuild and
high-impact changes (.h files or equivalent) that trig-
ger the recompilation of complete sub-components of
the project. Very high impact changes include changes
to the build definition itself (change in compiler flags),
and mass edits of source files (update of copyright
headers for example). Such big changes where not in-
cluded in our test set.

The potential gain of achieving correct incremental
builds during CI can be represented on the graph as
the area between the incremental build time (CDF)
and the time required for a full rebuild represented by
the horizontal line of corresponding color. When ap-
plied to CPU time, this gives the amount of wasted
CPU time. During that time, CI workers are building
products that are known to be the same as before as
per the build specification. Applied to the wall time,
this gives the useless latency introduced in the edit-
compile-test loop of programmers. This has a real im-
pact on programmer workflow. When they work on
updates to the test suite, the result of the tests on the
CI infrastructure will be delayed by that amount of
time.

This problem is obviously not restricted to Mozilla.
If, as preliminary experiments tend to show, the cumu-
lative density function of incremental build times has
the same shape for most projects, then nearly 90% of
CPU time on CI workers is wasted. From this experi-
ment, we see that incremental builds could save a lot
resources, either developer attention and time or bare
computing power. Despite this, the optimization is
not used on continuous integration infrastructures. In
the next section, we take a closer look at the reasons
behind this absence.

3 Build properties

Having illustrated that incremental builds could pro-
vide huge performance gains, we now try to explain
why such a well known optimization is never used in
automated build farms. We identify three reasons that
make incremental builds unfit for CI environments.

a. (lack of) Correctness: Existing build systems im-
plement incremental builds incorrectly. The ob-
tained build result with incremental compilation
differs from the one produced by a clean, full re-
build.

b. (lack of) Control over the environment: Build sys-
tems rely heavily on their environment. If not
strictly controlled, products built from the same
source may not be the same. After multiple in-
cremental builds, these impurities stack up, and
correctness is impacted.

c. (lack of) Linearity: CI uses clusters to build and
test patches. A given worker may not have access
to the build products of previous builds, forcing
it to rebuild from scratch. This requires commu-
nication and caching between builds.

We discuss details of these aspects in the following
sections.

3.1 Correctness

At the heart of correctness resides the idea that a
build system should behave like a pure function. For
a given initial state, the build system should always
produce the same result. This means that incremental
builds and full rebuilds from the same sources should
always yield the same products. There are various
ways to break current build systems. While some
build systems are more robust than others, most can
be tricked into producing wrong results. This topic
has been extensively studied by Mike Shal [7]. We will
only give a small example of such incorrect behavior
of make. Because it has no memory of its previous
invocations, make cannot tell sources from old build
products. When a target ’old’ is renamed into a tar-
get 'new’, make does not delete 'old’ when it produces
'new’. The resulting state has both ’old” and ’'new’,
which would not be the case if the system had been
build from clean sources. This example also shows that
correctness requires to keep a trace of previous execu-
tions. However make is a stateless program. It explores
the working tree at each invocation to discover what
needs to be done. If it remains stateless, it will never
achieve correctness as described here.

Together with his article, Mike Shal developped
tup?, a correct build system as per his own exten-

4http://gittup.org/tup/

sive definition. Recent build systems like pluto [4],
bazel®, buildsome®, button’ and many more claim
to be correct. Although their definitions of correct-
ness are not equivalent, most agree on the fact that
correct build systems never need full rebuilds because
their incremental build algorithms will always man-
age to “do the right thing”. This is a feature of new
build systems only. Existing projects will need time
to switch to these build systems. For example, it is
still recommended® to clean the source tree before and
after every build of the Linux kernel.

The number of new build systems claiming to be
correct is a strong hint that old, approximative build
systems do not meet today’s expectations of quality
and usability.

3.2 Control of the environment

Definitions of correctness used by legacy build systems
are local to the source tree. There is a broader scope
in which builds happen, commonly referred to as the
environment. The environment is composed of all the
parameters that are not under direct control of the
build system but that may influence the build results
and therefore its correctness with respect to the whole
environment. Variability in build environments ap-
pears with the set of available applications, their in-
stalled versions, the processor architecture of the build
machine and many other parameters. Even small set-
tings like the hostname, the amount of RAM or the
current time can impact builds in subtle ways.

For incremental builds to produce correct results,
they must either take these impurities into account, or
great care should be taken to run successive incremen-
tal builds into (nearly) identical environments. Next-
gen build systems and package managers are starting
to run their subprocesses in controlled sandboxes to
tame the impact of developer’s environments. For ex-
ample, sandboxing was added in bazel in late 2015°.

Also, CI platforms have long seen the usefulness of
controlling the build environments for reproducibility
purposes. Docker and VirtualBox are probably the
most used tools to manage build environments. Start-
ing from this, it remains to be ensured that build sys-
tems can detect environment changes. Based on that
information, they can rebuild the impacted parts or
take other appropriate actions. Smarter build system
could track important parameters from the environ-
ment and try to hide the others from the build tasks.

Shttps://bazel.build/
Shttp://buildsome.github.io/buildsome/
"http://jasonwhite.github.io/button/
8https://www.csee.umbc.edu/courses/undergraduate/
CMSC421/fall02/burt/projects/howto_build_kernel.html
9https://blog.bazel.build/2015/09/11/sandboxing.html

The nix package manager [3] is an interesting
project in this context. It installs every software pack-
age in a different path. As packages cannot conflict,
multiple versions of the same package can be installed
at the same time. When using full paths, it is trivial to
detect different versions of the same binary; they have
different paths. This also means that you have control
over which version of libraries are used. Nix packages
do not depend on common installation paths like /usr
or /lib. They reference their dependencies directly by
their full path. nix allows fine-grained control over
execution environments and system configuration, and
could be used to wrap old-fashioned build systems that
do not take the environment into account.

By properly controlling the environment and tak-
ing it into account, build systems will produce correct
incremental builds at the level required by release en-
gineers.

3.3 Lack of linearity

The last obstacle for CI to use incremental builds is
that CI builds are usually performed by a cluster of
different workers. These workers cannot perform effi-
cient incremental builds because they probably did not
build the most recent version before the change being
tested. If nothing is done, chances are that the worker
will have to catch up with intermediary commits and
build more products than strictly needed. This has
been observed at mozilla and motivated the develop-
ment of a shared build cache named sccache [5]. On
a lower level, it also requires workers to maintain a
cache of previous builds. This is not easy to do when
workers are provisioned dynamically on the cloud. In
both cases, the solution is identical. A cache of build
results needs to be maintained.

Caching build results is not a new idea. It is exactly
what the ccache program performs for the C/C++
compiler. By comparing input files’ content and com-
piler flags, ccache is able to cache object files and
detect equivalent compiler invocations. In that situ-
ation, ccache does not call the compiler but directly
produces the object files from its cache. As explained
above, this does only work if all the relevant parame-
ters are taken into account. Failing to detect parame-
ter changes, ccache may produce incorrect object files.
A similar mechanism could be implemented for entire
build steps. Given a build system with enough con-
trol on the environment of its sub-processes, it could
cache the result of sub-commands execution and query
the cache before each sub-command. A well-designed
cache could be shared by all the CI workers making the
knowledge of one available to the others at once. Many
questions remain on the feasibility and practical per-
formance of such an implementation. Much remains

to be done in the future.

With these three issues addressed, we have sketched
the key issues to be addressed by a build system good
enough to be used in continuous integration. With
these three features, the build system would meet the
correctness and reproducibility requirements of release
engineers while still providing the full benefit of in-
cremental builds. All these aspects are individually
present in different pieces of software. The challenge
resides in making them work together.

4 Ideal build system

In order to support continuous integration for CI, we
propose a design for an ideal build system. To anchor
this discussion in the real world, we propose to reuse
existing software. This would avoid building yet an-
other build system from the ground up. The tools pro-
posed here could most probably be replaced by other
equivalent tools.

At the core, we need a correct algorithm to manage
incremental builds. The algorithm from tup is correct
(see Section 3.1) and could be reused as-is. However,
tup does not take into account changes to the host
system, and does not provide caching.

To manage the environment, we propose to use nix
as described in Section 3.2. Combining tup with nix,
we can generate build configuration files containing the
full path to the command to run. The way nix in-
stalls packages ensures that the command path will
change when the executable or one of its dependencies
change. This way tup will detect changes to the build
command and trigger rebuilds where needed. As tup
already tracks environment variables, and nix allows
to remove much variability between systems, the build
environment would be under control.

Finally, to provide sharing across the workers, we
need an efficient and correct caching mechanism. The
cache should be implemented at the lowest level, be-
neath tup. Whenever tup invokes a build command,
the cache will first check if there is already a build
result for that exact compilation. If the same step al-
ready happened, the cache produces the build outputs
without running the build step. If not, the build step
is executed and the results are added to the cache and
shared on the cluster. The cache needs to take into
account the content of the input files, and all the com-
pilation parameters like the compiler version and its
flags as well as the available packages.

While there exist excellent caching tools, significant
research and testing is required for this step. In partic-
ular it requires to design a proper encoding of a build
command and all its dependencies to make lookup of
previous identical builds efficient. Also, caching the
result of a build may be more complex than it looks.

How should we cache the result of a build step that ap-
pends to an existing file for example? Finally, caching
is never easy to implement correctly, and may turn
out to be impractical. For example, network access
could be slower than a local rebuild. This part of the
tool requires investigations to ensure its feasibility and
practicality.

A tool designed like this should provide correct and
efficient incremental builds for distributed continuous
integration environments. Like most optimizations,
this tool would add complexity and introduce poten-
tial bugs to be discovered. A careful assessment of the
final tool would have to be realized. While we cannot
provide guarantees that it would be adopted by indus-
try, we believe that a huge speed-up in compilation
time could make it attractive.

5 Conclusion

With incremental builds, we have argued that it is
possible to improve build performance by one or two
orders of magnitude. That speed-up is needed because
it is on the critical path of developers that must wait
before getting test results. We have analysed the main
barriers to the usage of incremental builds as an op-
timization technique for continuous integration. For
each of these we explained how it can be handled and
provided examples of existing tools capable of doing it.
Taken together, these features address all the remain-
ing issues to deploy incremental builds to CI. A tool
that implements them all, possibly by reusing existing
partial tools, would make it possible to get the same
speed-up on CI as for local incremental builds. Having
provided the need and path, we are ready to start the
journey.

6 Acknowledgments

We thank Bram Adams for his comments on an earlier
version of this paper. We would also like to thank
Kim Moir and Mike Shal for their attentive reading
and their eagerness at discussing release engineering
practices at Mozilla.

References

1]

Bram Adams and Shane Mclntosh. “Modern
Release Engineering in a Nutshell — Why Re-
searchers Should Care”. In: IEEE 23rd Interna-
tional Conference on Software Analysis, Evolu-
tion, and Reengineering (SANER). Vol. 5. Mar.
2016, pp. 78-90. DOT: 10.1109/SANER.2016.108.

Moritz Beller, Georgios Gousios, and Andy Zaid-
man. 10ops, my tests broke the buildz: An Anal-
ysis of Travis CI Builds with Github. Tech. rep.
PeerJ Preprints, 2016.

Eelco Dolstra, Merijn De Jonge, Eelco Visser, et
al. “Nix: A Safe and Policy-Free System for Soft-
ware Deployment.” In: LISA. Vol. 4. 2004, pp. 79—
92.

Sebastian Erdweg, Moritz Lichter, and Manuel
Weiel. “A Sound and Optimal Incremental Build
System with Dynamic Dependencies”. In: SIG-
PLAN Not. 50.10 (Oct. 2015), pp. 89-106. ISSN:
0362-1340. po1: 10.1145/2858965.2814316.

Mike Hommey (glandium). Shared compilation
cache experiment. Jan. 2014. URL: https ://
glandium.org/blog/7p=3054.

Kim Moir. “Built to Scale: The Mozilla Re-
lease Engineering toolbox”. EclipseCon. 2014.
URL: https://www.eclipsecon.org/na2014/
session / built - scale - mozilla - release -
engineering-toolbox.html.

Mike Shal. Build system rules and algorithms.
2009. URL: http://gittup.org/tup/build _
system_rules_and_algorithms.pdf.

Rodrigo Souza, Christina Chavez, and Roberto A
Bittencourt. “Rapid releases and patch backouts:
A software analytics approach”. In: IEEE Soft-
ware 32.2 (2015), pp. 89-96.

