
Assessing Test Suite E↵ectiveness Using Static

Metrics

Paco van Beckhoven1,2, Ana Oprescu1, and Magiel Bruntink2

1University of Amsterdam
2Software Improvement Group

Abstract

With the increasing amount of automated
tests, we need ways to measure the test
e↵ectiveness. The state-of-the-art tech-
nique for assessing test e↵ectiveness, mu-
tation testing, is too slow and cumber-
some to be used in large scale evolution
studies or code audits by external compa-
nies. In this paper we investigated two al-
ternatives, namely code coverage and as-
sertion count. We discovered that code
coverage outperforms assertion count by
showing a relation with test suite e↵ec-
tiveness for all analysed project. Asser-
tion count only displays such a relation in
only one of the analysed projects. Further
analysing this relationship between asser-
tion count coverage and test e↵ectiveness
would allow to circumvent some of the
problems of mutation testing.

1 Introduction

Software testing is an important part of the soft-
ware engineering process. It is widely used in
the industry for quality assurance as tests can
tackle software bugs early in the development pro-
cess and also serve for regression purposes [20].
Part of the software testing process is covered by
developers writing automated tests such as unit
tests. This process is supported by testing frame-
works such as JUnit [19]. Monitoring the quality
of the test code has been shown to provide valu-
able insight when maintaining high-quality assur-
ance standards [18]. Previous research shows that
as the size of production code grows, the size of
test code grows along [43]. Quality control on test
suites is therefore important as the maintenance

Copyright

c� by the paper’s authors. Copying permitted for

private and academic purposes.

Proceedings of the Seminar Series on Advanced Techniques

and Tools for Software Evolution SATToSE 2017 (sat-

tose.org).

07-09 June 2017, Madrid, Spain.

on tests can be di�cult and generate risks if done
incorrectly [22]. Typically, such risks are related
to the growing size and complexity which conse-
quently lead to incomprehensible tests. An impor-
tant risk is the occurrence of test bugs i.e., tests
that fail although the program is correct (false pos-
itive) or even worse, tests that do not fail when the
program is not working as desired (false negative).
Especially the latter is a problem when breaking
changes are not detected by the test suite. This
issue can be addressed by measuring the fault de-
tecting capability of a test suite, i.e., test suite
e↵ectiveness Test suite e↵ectiveness is measured
by the number of faulty versions of a System Un-
der Test (SUT) that are detected by a test suite.
However, as real faults are unknown in advance,
mutation testing is applied as a proxy measure-
ment. It has been shown that mutant detection
correlates with real fault detection [26].

Mutation testing tools generate faulty versions
of the program and then run the tests to determine
if the fault was detected. These faults, called mu-
tants, are created by so-called mutators which mu-
tate specific statements in the source code. Each
mutant represents a very small change to pre-
vent changing the overall functionality of the pro-
gram. Some examples of mutators are: replacing
operands or operators in an expression, removing
statements or changing the returned values. A mu-
tant is killed if it is detected by the test suite, ei-
ther because the program fails to execute (due to
exceptions) or because the results are not as ex-
pected. If a large set of mutants survives, it might
be an indication that the test quality is insu�cient
as programming errors may remain undetected.

1.1 Problem statement

Mutation analysis is used to measure the test suite
e↵ectiveness of a project [26]. However, mutation
testing techniques have several drawbacks, such as
limited availability across programming languages
and being resource expensive [46, 25]. Further-
more, it often requires compilation of source code
and it requires running tests which often depend

1

on other systems that might not be available, ren-
dering it impractical for external analysis. Exter-
nal analysis is often applied in industry by compa-
nies such as Software Improvement Group (SIG) to
advise companies on the quality of their software.
All these issues are compounded when performing
software evolution analysis on large-scale legacy or
open source projects. Therefore our research goal
has both industry and research relevance.

1.2 Research questions and method

To tackle these issues, our goal is to understand
to what extent metrics obtained through static
source code analysis relate to test suite e↵ective-
ness as measured with mutation testing.

Preliminary research [40] on static test metrics
highlighted two promising candidates: assertion
count and static coverage. We structure our anal-
ysis on the following research questions:

RQ 1 To what extent is assertion count a good
predictor for test suite e↵ectiveness?

RQ 2 To what extent is static coverage a good
predictor for test suite e↵ectiveness?

We select our test suite e↵ectiveness metric and
mutation tool based on state of the art literature.
Next, we study existing test quality models to in-
spect which static metrics can be related to test
suite e↵ectiveness. Based on these results we im-
plement a set of metrics using only static analysis.

To answer the research questions, we implement
a simple tool that reads a project’s source files and
calculates the metrics scores using static analysis.

Finally, we evaluate the individual metrics’
suitability as indicators for e↵ectiveness by per-
forming a case study using our tool on three
projects: Checkstyle, JFreeChart and JodaTime.
The projects were selected from related research,
based on size and structure of their respective test
suites. We focus on Java projects as Java is one
of the most popular programming languages [15]
and forms the subject of many recent research pa-
pers surrounding test e↵ectiveness. We rely on
JUnit [7] as the unit testing framework. JUnit is
the most used unit testing framework for Java [44].

1.3 Contributions

In an e↵ort to tackle the drawbacks of using mu-
tation testing to measure test suite e↵ectiveness,
our research makes the following contributions:
1. In-depth analysis on the relation between test
e↵ectiveness, assertion count and coverage as mea-
sured using static metrics for three large real-world
projects. 2. A set of scenarios which influence the
results of the static metrics and their sources of
imprecision. 3. An tool to measure static cover-
age and assertion count using only static metrics.

Outline. Section 2 revisits background con-
cepts. Section 3 introduces the design of the static
metrics that will be investigated together with an
e↵ectiveness metric and a mutation tool. Section 4
describes the empirical method of our research.
Results are shown in Section 5 and discussed in
Section 6. Section 7 summarises related work and
Section 8 presents the conclusion and future work.

2 Background

First, we introduce some basic terminology. Next,
we describe a test quality model used as input for
the design of our static metrics. We briefly in-
troduce mutation testing and compare mutation
tools. Finally, we summarize test e↵ectiveness
measures and describe mutation analysis.

2.1 Terminology

We define several terms used in this paper:

Test (case/method) An individual JUnit test.
Test suite A set of tests.
Test suite size Number of tests in a test suite.
Master test suite All tests of a given project.
Dynamic metrics Metrics that can only be

measured by, e.g., running a test suite. When
we state that something is measured dynam-
ically, we refer to dynamic metrics.

Static metrics Metrics measured by analysing
the source code of a project. When we state
that something is measured statically, we re-
fer to static metrics.

2.2 Measuring test code quality

Athanasiou et al. introduced a Test Quality Model
(TQM) based on metrics obtained through static
analysis of production and test code [18]. This
TQM consists of the following static metrics:

Code coverage is percentage of code tested, im-
plemented via static call graph analysis [16].

Assertion-McCabe ratio indicates tested deci-
sion points in the code; computed as the
total number of assertion statements in the
test code divided by the McCabe’s cyclomatic
complexity score [33] of the production code.

Assertion Density indicates the ability to de-
tect defects; computed as the number of asser-
tions divided by Lines Of Test Code (TLOC).

Directness indicates the ability to detect the lo-
cation a defect’s cause when a test fails. Sim-
ilar to code coverage, except that only meth-
ods directly called from a test are counted.

Maintainability based on an existing maintain-
ability model [21], adapted for test suites.
The model consists of the following metrics
for test code: Duplication, Unit Size, Unit
Complexity and Unit Dependency.

2

2.3 Mutation testing

Test e↵ectiveness is measured by the number of
mutants that were killed by a test suite. Recent
research introduced a variety of e↵ectiveness mea-
sures and mutants. We describe di↵erent types
of mutants, mutation tools, types of e↵ectiveness
measures, and work on mutation analysis.

2.3.1 Mutant types

Not all mutants are equally easy to detect. Easy
or weak mutants are killed by many tests and thus
often easy to detect. Hard to kill mutants can only
be killed by very specific tests and often subsume
other mutants. Below is an overview of the di↵er-
ent types of mutants in the literature:

Mutant represents a small change to the pro-
gram, i.e., a modified version of the SUT.

Equivalent mutants do not change the outcome
of a program, i.e., they cannot be detected.
Given a loop that breaks if i == 10, and i

increments by 1. A mutant changing the con-
dition to i >= 10 remains undetected as the
loop still breaks when i becomes 10.

Subsuming mutants are sole contributors to
the e↵ectiveness scores [36]. If mutants are
subsumed, they are often killed “collaterally”
together with the subsuming mutant. Killing
these collateral mutants does not lead to more
e↵ective tests, but they influence the test ef-
fectiveness score calculation.

2.3.2 Comparison of mutation tools

Three criteria were used to compare mutation
tools for Java: 1. E↵ectiveness of the mutation

adequate test suite of each tool. A mutation ade-
quate test suite kills all the mutants generated by
a mutation tool. Each test of this test suite con-
tributes to the e↵ectiveness score, i.e., if one test
is removed, less than 100% e↵ectiveness score is
achieved. A cross-testing technique is applied to
evaluate the e↵ectiveness each tool’s mutation ad-
equate test suite. The adequate test suite of each
tool is run on the set of mutants generated by the
other tools. If the mutation adequate test suite for
tool A would detect all the mutants of tool B, but
the suite of tool B would not detect all the mu-
tants of tool A, then tool A would subsume tool
B. 2. Tool’s application cost in terms of the num-
ber of test cases that need to be generated and the
number of equivalent mutants that would have to
be inspected. 3. Execution time of each tool.

Kintis et al. analysed and compared the e↵ec-
tiveness of PIT, muJava and Major [27]. Each tool
was evaluated using the cross-testing technique on
twelve methods of six Java projects. They found
that the mutation adequate test suite of muJava

was the most e↵ective, followed by Major and PIT.
The ordering in terms of application cost was dif-
ferent: PIT required the least test cases and gen-
erated the smallest set of equivalent mutants.

Marki and Lindstrom performed similar re-
search on the same mutation tools [32]. They used
three small Java programs popular in literature.
They found that none of the mutation tools sub-
sumed each other. muJava generated the strongest
mutants followed by Major and PIT, however, mu-
Java generated significantly more equivalent mu-
tants and was slower than Major and PIT.

Laurent et al. introduced PIT+, an improved
version of PIT with an extended set of muta-
tors [31]. They combined the test suites generated
by Kintis et al. [27] into a mutation adequate test
suite that would detect the combined set of mu-
tants generated by PIT, muJava and Major. A
mutation adequate test suite was also generated
for PIT+. The set of mutants generated by PIT+
was equally strong as the combined set of mutants.

2.3.3 E↵ectiveness measures

We found three types of e↵ectiveness measures:

Normal e↵ectiveness calculated as the number
of killed mutants divided by the total number
of non-equivalents.

Normalised e↵ectiveness calculated as the
number of killed mutants divided by the
number of covered mutants, i.e., mutants
located in code executed by the test suite.
Intuitively, test suites killing more mutants
while covering less code are more thorough
than test suites killing the same number of
mutants in a larger piece of source code [24].

Subsuming e↵ectiveness is the percentage of
killed subsuming mutants. Intuitively, strong
mutants, i.e., subsuming mutants, are not
equally distributed [36], which could lead to
skewed e↵ectiveness results.

2.3.4 Mutation analysis

In this section, we describe research conducted on
mutation analysis that underpins our approach.

Mutants and real faults. Just et al. in-
vestigated whether generated faults are a correct
representation of real faults [26]. Statistically sig-
nificant evidence shows that mutant detection cor-
relates with real fault detection. They could relate
73% of the real faults to common mutators. Of the
remaining 27%, 10% can be detected by enhanc-
ing the set of commonly used mutators. They used
Major for generating mutations. Equivalent mu-
tants were ignored as mutation scores were only
compared for subsets of a project’s test suite.

Code coverage and e↵ectiveness. Inozemt-
seva and Holmes analysed the correlation between

3

code coverage and test suite e↵ectiveness [24] on
twelve studies. They found three main shortcom-
ings: 1. Studies did not control the suite size. As
code coverage relates to the test suite size (more
coverage is achieved by adding more tests), it re-
mains unclear whether the correlation with e↵ec-
tiveness was due to size or coverage of the test
suite. 2. Small or synthetic programs limit gen-
eralisation to industry. 3. Comparing only test
suites that fully satisfy a certain coverage criterion.
They argue that these results can be generalised to
more realistic test suites. Eight studies showed a
correlation between some coverage type and e↵ec-
tiveness independently of size; the strength varied,
in some studies appearing only for high coverage.

They also conducted an experiment on five large
open source Java projects. All mutants undetected
by the master test suite were marked equivalent.
To control for size, fixed size test suites are gener-
ated by randomly selecting tests from the master
test suite. Coverage was measured using Code-
Cover [3] on statement, decision and modified con-
dition levels. E↵ectiveness was measured using
normal and normalised e↵ectiveness. They found
a low to moderate correlation between coverage
and normal e↵ectiveness when controlling for size.
The coverage type had little impact on the cor-
relation strength and only a weak correlation was
found for normalised e↵ectiveness.

Assertions and e↵ectiveness. Zhang and
Mesbah studied the relationship between asser-
tions and test suite e↵ectiveness [45]. Their exper-
iment used five large open source Java projects,
similarly to Inozemtseva and Holmes [24]. They
found a strong correlation between assertion count
and test e↵ectiveness, even when test suite size
was controlled for. They also found that some as-
sertion types are more e↵ective than others, e.g.,
boolean and object assertions are more e↵ective
than string and numeric assertions.

3 Metrics and mutants

Our goal is to investigate to what extent static
analysis based metrics are related to test suite ef-
fectiveness. First, we need to select a set of static
metrics. Secondly, we need a tool to measure these
metrics. Thirdly, we need a way to measure test
e↵ectiveness.

3.1 Metric selection

We choose two static analysis-based metrics that
could predict test suite e↵ectiveness. We analyse
the state of the art TQM by Athanasiou et al. [18]
because it is already based on static source code
analysis. Furthermore, the TQM was developed in
collaboration with SIG, the host company of this
thesis, which means that knowledge of the model

is directly available. This TQM consists of the fol-
lowing static metrics: Code Coverage, Assertion-
McCabe ratio, Assertion Density, Directness and
Test Code Maintainability (see also Section 2.2).

Test code maintainability relates to code read-
ability and understandability, indicating how eas-
ily we can make changes. We drop maintainability
as a candidate metric as we consider it the least
related to completeness or e↵ectiveness of tests.

The model also contains two assertion- and two
coverage based metrics. Based on preliminary re-
sults we found that the number of assertions had
a stronger correlation with test e↵ectiveness than
the two assertion based TQM metrics for all anal-
ysed projects. Similarly, the static code coverage
performed better than directness in the correlation
test with test e↵ectiveness. To get a more quali-
tative analysis, we focus on one assertion based
metric and one coverage based metric, respectively
assertion count and static coverage.

Furthermore, coverage was shown to be related
to test e↵ectiveness [24, 35]. Others found a rela-
tion between assertions and fault density [28] and
between assertions and test suite e↵ectiveness [45].

3.2 Tool implementation

In this section, we explain the foundation of the
tool and the details of the implemented metrics.

3.2.1 Tool architecture

Figure 1 presents the analysis steps. The rectan-
gles are artefacts that form the in/output for the
two processing stages.

The first processing step is performed by the
Software Analysis Toolkit (SAT) [29], it constructs
a call graph using only static source code analysis.
Our analysis tool uses the call graph to measure
both assertion count and static method coverage.

The SAT analyses source code and computes
several metrics, e.g., Lines of Code (LOC), Mc-
Cabe complexity [33] and code duplication, which
are stored in a source graph. This graph contains
information on the structure of the project, such
as which packages contain which classes, which
classes contain which methods and the call rela-
tions between these methods. Each node is an-
notated with information such as lines of code.
This graph is designed such that it can be used for
many programming languages. By implementing
our metrics on top of the SAT, we can do mea-
surements for di↵erent programming languages.

3.2.2 Code coverage

Alves and Visser designed an algorithm for mea-
suring method coverage using static source code
analysis [16]. The algorithm takes as input a call

graph obtained by static source code analysis. The

4

Figure 1: Analysis steps to statically measure coverage and assertion count.

calls from test to production code are counted by
slicing the source graph and counting the methods.
This includes indirect calls, e.g., from one produc-
tion method to another. Additionally, the con-
structor of each called method’s class is included.
They found a strong correlation between static and
dynamic coverage. (The mean of the di↵erence be-
tween static and dynamic coverage was 9%). We
use this algorithm with the call graph generated by
the SAT to calculate the static method coverage.

However, the static coverage algorithm has four
sources of imprecision [16]. The first is conditional
logic, e.g., a switch statement that for each case
invokes a di↵erent method. Second is dynamic dis-
patch (virtual calls), e.g., a parent class with two
subclasses both overriding a method that is called
on the parent. Third, library/framework calls,
e.g., java.util.List.contains() invoke the .equals()
method of each object in the list. The source code
of third party libraries is not included in the anal-
ysis making it impossible to trace which methods
are called from the framework. And fourth, the use
of Java reflection, a technique to invoke methods
dynamically during runtime without knowledge of
these methods or classes during compile time.

For the first two sources of imprecision, an op-
timistic approach is chosen i.e., all possible paths
are considered covered. Consequently, the cover-
age is overestimated. Invocations by the latter two
sources of imprecision remain undetected, leading
to underestimating the coverage.

3.2.3 Assertions

We measure the number of assertions using the
same call graph as the static method coverage al-
gorithm. For each test, we follow the call graph
through the test code to include all direct and
indirect assertion calls. Indirect calls are impor-
tant because often tests classes contain some util-
ity method for asserting the correctness of an ob-
ject. Additionally, we take into account the num-
ber of times a method is invoked to approximate
the number of executed assertions. Only assertions
that are part of JUnit are counted.

Identifying tests. By counting assertions
based on the number of invocations from tests, we
should also be able to identify these tests stati-
cally. We use the SAT to identify all invocations
to assertion methods and then slice the call graph
backwards following all call and virtual call edges.
All nodes within scope, that have no parameters
and have no incoming edges, are marked as tests.

Assertion content types. Zhang and Mesbah

found a significant di↵erence between the e↵ective-
ness of assertions and the type of objects they as-
sert [45]. Four assertion content types were clas-
sified: numeric, string, object and boolean. They
found that object and boolean assertions are more
e↵ective than string and numeric assertions. The
type of objects in an assertion can give insights in
the strength of the assertion. We will include the
distribution of these content types in the analysis.

We use the SAT to analyse the type of objects in
an assertion. The SAT is unable to detect the type
of an operator expression used inside a method in-
vocation, e.g., assertTrue(a >= b);, resulting in
unknown assertion content types. Also, fail state-
ments are put in a separate category as these are a
special type of assertion without any content type.

3.3 Mutation analysis

In this section we discuss our choice for the muta-
tion tool and test e↵ectiveness measure.

3.3.1 Mutation tool

We presented four candidate mutation tools for
our experiment in Section 2.3.2: Major, muJava,
PIT and PIT+. MuJava has not been updated
in the last two years and does not support JU-
nit 4 and Java versions above 1.6 [9]. Conforming
to these requirements would decrease the set of
projects we could use in our experiment as both
JUnit 4 and Java 1.7 have been around for quite
some time. Major does support JUnit 4 and has
recently been updated [8]. However, it only works
in Unix environments [32]. PIT targets indus-
try [27], is open source and actively developed [12].
Furthermore, it supports a wide scale of build tool-
ing and is significantly faster than the other tools.
PIT+ is based on a two-year-old branched version
of PIT and was only recently made available [10].
The documentation is very sparse, the source code
is missing. However, PIT+ generates a stronger
set of mutants than the other three tools whereas
PIT generates the weakest set of mutants.

Based on these observations we decided that
PIT+ would be the best choice for measuring test
e↵ectiveness. Unfortunately, PIT+ was not avail-
able at the start of our research. We first did
the analysis based on PIT and then later switched
to PIT+. Because we first used PIT, we selected
projects that used Maven as a build tool. PIT+
is based on an old version, 1.1.5, not yet support-
ing Maven. To enable using the features of PIT’s
new version we merged the mutators provided by
PIT+ into the regular version of PIT [11].

5

3.3.2 Dealing with equivalent mutants

Equivalent mutants are mutants that do not
change the outcome of the program. Manually re-
moving equivalent mutants is time-consuming and
generally undecidable [35]. A commonplace so-
lution is to mark all the mutants that are not
killed by the project’s test suite as equivalent.
The resulting non-equivalent mutants are always
detected by at least one test. The disadvantage
of this approach is that many mutants might be
falsely marked as equivalent. The number of false
positives depends for example on the coverage of
the tests: if the mutated code is not covered by
any of the tests, it will never be detected and con-
sequently be marked as equivalent. Another cause
of false positives could be the lack of assertions
in tests, i.e., not checking the correctness of the
program’s result. The percentage of equivalent
mutants expresses to some extent the test e↵ec-
tiveness of the project’s test suite.

With this approach, the complete test suite
of each project will always kill all the remaining
non-equivalent mutants. As the number of non-
equivalent mutants heavily relies on the quality of
a project’s test suite, we cannot use these e↵ective-
ness scores to compare between di↵erent projects.
To compensate for that, we will compare sub test
suites within the same project.

3.3.3 Test e↵ectiveness measure

Next, we evaluate both normalised and subsuming
e↵ectiveness in the subsections below and describe
our choice for an e↵ectiveness measure.

Normalised e↵ectiveness. Normalised e↵ec-
tiveness is calculated by dividing the killed mu-
tants with the number of non-equivalent mutants
that are present in the code executed by the test.

Given the following example in which there are
two Tests T1 and T2 for Method M1. Suppose M1

is only covered by T1 and T2. In total, there are
five mutants Mu1..5 generated for M1. T1 detects
Mu1 and T2 detects Mu2. As T1 and T2 are the
only tests to kill M1, the mutants Mu3..5 remain
undetected and are marked as equivalent. Both
tests only cover M1 and detect 1 of the two mu-
tants resulting in a normal e↵ectiveness score of
0.5. A test suite consisting of only the above tests
would detect all mutants in the covered code, re-
sulting in a normalised e↵ectiveness score of 1.

We notice that the normalised e↵ectiveness
score heavily relies on how mutants are marked
as equivalent. Suppose the mutants marked as
equivalent were valid mutants but the tests failed
to detect them (false positive), e.g., due to miss-
ing assertions. In this scenario, the (normalised)
e↵ectiveness score suggests that a bad test suite is
actually very e↵ective. Projects that have ine↵ec-

tive tests will only detect a small portion of the
mutants. As a result, a large percentage will be
marked as equivalent. This increases the chances
of false positives which decrease the reliability of
the normalised e↵ectiveness score.

Given a project of which only a portion of the
code base is thoroughly tested. There is a high
probability that the equivalent mutants are not
equally distributed among the code base. Code
covered by poor tests is more likely to contain false
positives than thoroughly tested code. The poor
tests scramble the results e.g., a test with no asser-
tions can be incorrectly marked as very e↵ective.

Normalised e↵ectiveness is intended to compare
the thoroughness of two test suites, i.e., penalise
the test suites that cover lots of code but only a
small number of mutants. We believe that it is less
suitable as a replacement for normal e↵ectiveness

We consider normal e↵ectiveness scores more
reliable when studying the relation with our met-
rics. Normal e↵ectiveness is positively influenced
by the breadth of a test and penalises small test
suites as a score of 1.0 can only be achieved if all
mutants are found. However, this is less of a prob-
lem when comparing test suites of equal sizes.

Subsuming e↵ectiveness. Current algo-
rithms for identifying subsuming mutants are in-
fluenced by the overlap between tests. Suppose
there are five mutants, Mu1..5, for method M1.
There are 5 tests, T1..5, that kill Mu1..4 and one
test, T6, that kills all five mutants.

Amman et al. defined subsuming mutants as
follows: “one mutant subsumes a second mutant if
every test that kills the first mutant is guaranteed
also to kill the second [17].” According to this
definition, Mu5 subsumes Mu1..4 because the set
of tests that kill Mu5 is a subset of the tests that
kill Mu1..4 : {T6} ⇢ {T1..5}. The tests T1..5 will
have a subsuming e↵ectiveness score of 0.

Our goal is to identify properties of test suites
that determine their e↵ectiveness. If we would
measure the subsuming e↵ectiveness, T1..5 would
be significantly less e↵ective. This would sug-
gest that the assertion count or coverage of these
tests did not contribute to the e↵ectiveness, even
though they still detected 80% of all mutants.

Another vulnerability of this approach is that
it is vulnerable to changes in the test set. If we re-
move T6, the mutants previously marked as “sub-
sumed” are now subsuming because Mu5 is no
longer detected. Consequently, T1..5 now detect
all the subsuming mutants. In this scenario, we
decreased the quality of the master test suite by
removing a single test, which leads to a signifi-
cant increase in the subsuming e↵ectiveness score
of tests, T1..5. This can lead to strange results over
time, as the addition of tests can lead to drops in
the e↵ectiveness of others.

6

Choice of e↵ectiveness measure. Nor-
malised e↵ectiveness loses precision when large
amounts of mutants are incorrectly marked as
equivalent. Furthermore, normalised e↵ectiveness
is intended as a measurement for the thoroughness
of a test suite which is di↵erent from our definition
of e↵ectiveness. Subsuming e↵ectiveness scores
change when tests are added or removed which
makes the measure very sensitive to change. Fur-
thermore, subsuming e↵ectiveness penalises tests
that do not kill a subsuming mutant.

We choose to apply normal e↵ectiveness as this
measure is more reliable. It also allows for com-
paring with similar research on e↵ectiveness and
assertions/coverage [24, 45]. We refer to test suite
e↵ectiveness also as normal e↵ectiveness.

4 Are static metrics related to test

suite e↵ectiveness?

Mutation tooling is resource expensive and re-
quires running the test suites i.e., dynamic analy-
sis. To address these problems, we investigate to
what extent static metrics are related to test suite
e↵ectiveness. In this section, we describe how we
will measure whether static metrics are a good pre-
dictor for test suite e↵ectiveness.

4.1 Measuring the relationship between
static metrics and test e↵ectiveness

We consider two static metrics, assertion count
and static method coverage, as candidates for pre-
dicting test suite e↵ectiveness.

4.1.1 Assertion count

We hypothesise that assertion count is related to
test e↵ectiveness. Therefore, we first measure as-
sertion count by following the call graph from all
tests. As our context is static source code analysis,
we should be able to identify the tests statically.
Thus, we next compare the following approaches:

Static approach we use static call graph slicing
(Section 3.2.3) to identify all tests of a project
and measure the total assertion count for the
identified tests.

Semi-dynamic approach we use Java reflection
(Section 4.3) to identify all the tests and mea-
sure the total assertion count for these tests.

Finally, we inspect the type of the asserted ob-
ject as input for the analysis of the relationship
between assertion count and test e↵ectiveness.

4.1.2 Static method coverage

We hypothesise that static method coverage is re-
lated to test e↵ectiveness. To test this hypothesis,
we measure the static method coverage using static
call graph slicing. We include dynamic method

coverage as input for our analysis to: a) inspect
the accuracy of the static methods coverage al-
gorithm and b) to verify if a correlation between
method coverage and test suite e↵ectiveness exists.

4.2 Case study setup

We study our selected projects using an experi-
ment design based on work by Inozemtseva and
Holmes [24]. They surveyed similar studies on
the relation between test e↵ectiveness and cover-
age and found that most studies implemented the
following procedure: 1. Create faulty versions of
one or more programs. 2. Create or generate many
test suites. 3. Measure the metric scores of each
suite. 4. Determine the e↵ectiveness of each suite.
We describe our approach for each step in the fol-
lowing subsections.

4.2.1 Generating faults

We employ mutation testing as a technique for
generating faulty versions, mutants, of the di↵er-
ent projects that will be analysed. We employ PIT
as a mutation tool. Mutants are generated using
the default set of mutators 1. All mutants that are
not detected by the master test suite are removed.

4.2.2 Project selection

We have chosen three projects for our analysis
based on the following set of requirements: The
projects had in the order of hundreds of thousands
LOC and thousands of tests.

Based on these criteria we selected a set of
projects: Checkstyle[1], JFreeChart[5] and Joda-
Time [6]. Table 1 shows properties of the projects.
Java LOC and TLOC are generated using David
A. Wheeler’s SLOCCount [14].

Checkstyle is a static analysis tool that checks
if Java code and Javadoc comply with some
coding rules, implemented in checker classes.
Java and Javadoc grammars are used to gen-
erate Abstract Syntax Trees (ASTs). The
checker classes visit the AST, generating mes-
sages if violations occur. The core logic is in
the com.puppycrawl.tools.checkstyle.checks

package, representing 71% of the project’s size.
Checkstyle is the only project that used contin-
uous integration and quality reports on GitHub
to enforce quality, e.g., the build that is triggered
by a commit would break if coverage or e↵ective-
ness would drop below a certain threshold. We
decided to use the build tooling’s class exclusion
filters to get more representative results. These
quality measures are needed as there are several
developers that contributed to the project. The
project currently has five active team members [2].

1
http://pitest.org/quickstart/mutators/

7

JFreeChart is a chart library for Java. The
project is split into two parts: the logic used for
data and data processing, and the code focussed
on construction and drawing of plots. Most no-
table are the classes for the di↵erent plots in the
org.jfree.chart.plot package, which contains
20% of the production code. JFreeChart is build
and maintained by one developer [5].

JodaTime is a very popular date and time li-
brary. It provides functionality for calculations
with dates and times in terms of periods, durations
or intervals while supporting many di↵erent date
formats, calendar systems and time zones. The
structure of the project is relatively flat, with only
five di↵erent packages that are all at the root level.
Most of the logic is related to either formatting
dates or date calculation. Around 25% of the code
is related to date formatting and parsing. Joda-
Time was created by two developers, only of them
is maintaining the project [6].

4.2.3 Composing test suites

It has been shown that test suite size influences the
relation with test e↵ectiveness [35]. When a test
is added to a test suite it can never decrease the
e↵ectiveness, assertion count or coverage. There-
fore, we will only compare tests suites of equal sizes
similar to previous work [24, 45, 35].

We compose test suites of relative sizes, i.e.,
test suites that contain a certain percentage of all
tests in the master test suite. For each size, we
generate 1000 test suites. We selected the follow-
ing range of relative suite sizes: 1%, 4%, 9%, 16%,
25%, 36%, 49%, 64% and 81%. Larger test suite
were not included because the di↵erences between
the generated test suites would become too small.
Additionally, we found that this sequence had the
least overlap in e↵ectiveness scores for the di↵er-
ent suite sizes while still including a wide spread
of the test e↵ectiveness across di↵erent test suites.

Our approach di↵ers from existing research [24]
in which they used suites of sizes: 3, 10, 30, 100,
300, 1000 and 3000. A disadvantage of this ap-
proach is that the number of test suites for Jo-
daTime is larger than for the others because Jo-
daTime is the only project that has more than
3000 tests. Another disadvantage is that a test
suite with 300 tests might be 50% of the master
test suite for one project and only 10% of another
project’s test suite. Additionally, most composed
tests suites in this approach represent only a small
portion of the master test suite. With our ap-
proach, we can more precisely study the behaviour
of the metrics as the suites grow in size. Further-
more, we found that test suites with 16% of all
tests already dynamically covered 50% to 70% of
the methods covered by the master test suite.

4.2.4 Measuring metric scores and e↵ec-
tiveness

For each test suite, we measure the e↵ectiveness,
assertion count and static method coverage. The
dynamic equivalents of both coverage metrics are
included to evaluate their comparison. We obtain
the dynamic coverage metrics using JaCoCo [4].

4.2.5 Statistical analysis

To determine how we will calculate the correla-
tion with e↵ectiveness we analyse related work on
the relation between test e↵ectiveness and asser-
tion count [45] and coverage [24]. Both works have
similar experiment set-ups in which they generated
sub test suites of fixed sizes and calculated metric
and e↵ectiveness scores for these suites. Further-
more, both studies used a parametric and non-

parametric correlation test, respectively Pearson

and Kendall. We will also consider the Spearman
rank correlation test, another nonparametric test,
as it is commonly used in literature. A parametric
test assumes the underlying data to be normally
distributed whereas nonparametric tests do not.

The Pearson correlation coe�cient is based on
the covariance of two variables, i.e., the metric
and e↵ectiveness scores, divided by the product of
their standard deviations. Assumptions for Pear-
son include the absence of outliers, the normality
of variables and linearity. The Kendall’s Tau rank
correlation coe�cient is a rank based test used to
measure the extent to which rankings of two vari-
ables are similar. Spearman is a rank based ver-
sion of the Pearson correlation tests, commonly
used as its computation is more lightweight than
Kendall’s. However, our data set leads to similar
computation time for Spearman and Kendall.

We discard Pearson because we cannot make
assumptions on our data distribution. Moreover,
Kendall “is a better estimate of the correspond-
ing population parameter and its standard error is
known [23]”. As the advantages of Spearman over
Kendall do not apply in our case and Kendall has
advantages over Spearman, we choose Kendall’s
Tau rank correlation test. The correlation coe�-
cient is calculated with R’s “Kendall” package [13].
We use the Guilford scale (Table 2) for verbal de-
scriptions of the correlation strength [35].

4.3 Evaluation tool

We compose 1000 test suites of nine di↵erent sizes
for each project. Running PIT+ on the master
test suite took from 0.5 to 2 hours depending on
the project. As we have to calculate the e↵ec-
tiveness of 27,000 test suites, this approach would
take too much time. Our solution is to measure
the test e↵ectiveness of each test only once. We
then combine the results for di↵erent sets of tests

8

Table 1: Characteristics of the selected projects. Total Java LOC is the sum of the pro-
duction LOC and TLOC

Property Checkstyle JFreeChart JodaTime

Total Java LOC 73,244 134,982 84,035

Production LOC 32,041 95,107 28,724

TLOC 41,203 39,875 55,311

Number of tests 1875 2,138 4,197

Method Coverage 98% 62% 90%

Date cloned from GitHub 4/30/17 4/25/17 3/23/17

Citations in literature [43, 39] [45, 24, 31, 26, 16] [24, 31, 26, 39]

Number of generated mutants 95,185 310,735 100,893

Number of killed mutants 80,380 80,505 69,615

Number of equivalent mutants 14,805 230,230 31,278

Equivalent mutants (%) 15.6% 74.1% 31.0%

Table 2: Guilford scale for the verbal description of correlation coe�cients.

Correlation coe�cient below 0.4 0.4 to 0.7 0.7 to 0.9 above 0.9

Verbal description low moderate high very high

Figure 2: Overview of the experiment set-up to obtain the relevant metrics for each test.

to simulate test suites. To get the scores for a
test suite with n tests, we combine the coverage
results, assertion counts and killed mutants of its
tests. Similarly, we calculate the static metrics and
dynamic coverage only once for each test.

Detecting individual tests. We use a reflec-
tion library to detect both JUnit 3 and 4 tests for
each project according to the following definitions:

JUnit 3 All methods in non-abstract subclasses
of JUnit’s TestCase class. Each method
should have a name starting with “test”, be
public, void and have no parameters.

JUnit 4 All public methods annotated with JU-
nit’s @Test annotation.

We verified the number of detected tests with
the number of executed tests reported by each
project’s build tool.

We also need to include the set-up and tear-
down logic of each test. We use JUnit’s test run-
ner API to execute individual tests. This API en-
sures execution of the corresponding set-up and
tear-down logic. This extra test logic should also
be included in the static coverage metric to get
similar results. With JUnit 3 the extra logic
is defined by overriding TestCase.setUp() or
TestCase.tearDown(). JUnit 4 uses the @before

or @after annotations. However, the SAT does
not provide information on the used annotations.
A common practice is to still name these methods
setUp or tearDown. We include methods that are
named setUp or tearDown and are located in the
same class as the tests in the coverage results.

Aggregating metrics. To aggregate e↵ective-
ness, we need to know which mutants are detected
by each test as the set of detected mutants could
overlap. However, PIT does not provide a list of
killed mutants. We solved this issue by creating
a custom reporter using PIT’s plug-in system to
export the list of killed mutants.

The coverage of two tests can also overlap.
Thus, we need information on the methods covered
by each test. JaCoCo exports this information in
a jacoco.exec report file, a binary file containing
all the information required for aggregation. We
aggregate these files via JaCoCo’s API. For the
static coverage metric, we export the list of cov-
ered methods in our analysis tool.

The assertion count of a test suite is simply cal-
culated as the sum of each test’s assertion count.

Figure 2 provides an overview of the involved
tools used and the data they generate. The eval-
uation tool’s input is raw test data and the sizes

9

of the test suites to create. We then compose test
suites by randomly selecting a given number of
tests from the master test suite. The output of the
analysis tool is a data set containing the scores on
the dynamic and static metrics for each test suite.

5 Results

We first present the results of our analysis on the
assertion count metric, followed by the results of
our analysis on code coverage.

Table 3 provides an overview of the assertion
count, static and dynamic method coverage, and
the percentage of mutants that were marked as
equivalent for the master test suite of each project.

5.1 Assertion count

Figure 3 shows the distribution of the number of
assertions for each test of each project.

We notice some tests with exceptionally high
assertion counts. We manually checked these tests
and found that the assertion count was correct for
the outliers. We briefly explain a few outliers:

TestLocalDateTime Properties.testPropertyRoun

dHour (140 asserts), checks the correctness
of rounding 20 times, with for each check 7
assertions on year, month, week, etc.

TestPeriodFormat.test wordBased pl regEx (140
asserts) calls and asserts the results of the pol-
ish regex parser 140 times.

TestGJChronology.testDurationFields (57 as-
serts), tests for each duration field whether
the field names are correct and if some flags
are set correctly.

CategoryPlotTest.testEquals (114 asserts), in-
crementally tests all variations of the equals
method of a plot object. The other tests with
more than 37 assertions are similar tests for
the equals methods of other types of plots.

Figure 4 shows the relation between the asser-
tion count and normal e↵ectiveness. Each dot rep-
resents a generated test suite; and its colour of
the dot represents the size of the suite relative
to the total number of tests. The normal e↵ec-
tiveness, i.e., the percentage of mutants killed by
a given test suite is shown on the y-axis. The
normalised assertion count is shown on the x-axis.
We normalised the assertion count as the percent-
age of the total number of assertions for a given
project. For example, as Checkstyle has 3819 as-
sertions (see Table 3), a test suite with 100 asser-
tions would have a normalised assertion count of
100

3819
⇤ 100 ⇡ 2.6%.

We observe that test suites of the same rela-
tive suite are clustered. For each group of test
suites, we calculated the Kendall correlation coef-
ficient between normal e↵ectiveness and assertion

count. These coe�cients for each set of test suites
of a given project and relative size are shown in
Table 4. We highlight statistically significant cor-
relations that have a p-value < 0.005 with two
asterisks (**), and results with a p-value < 0.01
with a single asterisk (*).

We observe a statistically significant, low to
moderate correlation for nearly all groups of test
suites for JFreeChart. For JodaTime and Check-
style, we notice significant but weaker correlations:
0.08-0.2 compared to JFreeChart’s 0.14-0.4.

Table 5 shows the results of the two test identi-
fication approaches for the assertion count metric
(see Section 4.1.1). False positives are tests that
were incorrectly marked as tests. False negatives
are tests that were not detected.

Figure 5 shows the distribution of asserted ob-
ject types. Assertions for which we could not de-
tect the content type are categorised as unknown.

5.2 Code coverage

Figure 6 shows the relation between static method
coverage and normal e↵ectiveness. A dot repre-
sents a test suite and its colour, the relative test
suite size. Table 6 shows the Kendall correlation
coe�cients between static coverage and normal ef-
fectiveness for each set of test suites. We highlight
statistically significant correlations that have a p-
value < 0.005 with two asterisks (**), and results
with a p-value < 0.01 with a single asterisk (*).

5.2.1 Static vs. dynamic method coverage

To evaluate the quality of the static method cov-
erage algorithm, we compare static coverage with
its dynamic counterpart for each suite (Figure 7).
A dot represents a test suite, colours represent the
size of a suite relative to the total number of tests.
The black diagonal line illustrates the ideal line:
all test suites below this line overestimate the cov-
erage and all the test suites above underestimate
the coverage. Table 7 shows the Kendall correla-
tions between static and dynamic method coverage
for the di↵erent projects and suite sizes. Each cor-
relation coe�cient maps to a set of test suites of
the corresponding suite size and project. Coe�-
cients with one asterisk (*) have a p-value < 0.01
and coe�cients with two asterisks (**) have a p-
value < 0.005. We observe a statistically signif-
icant, low to moderate correlation for all sets of
test suites for JFreeChart and JodaTime.

5.2.2 Dynamic coverage and test suite ef-
fectiveness

Figure 8 shows the relation between dynamic
method coverage and normal e↵ectiveness. Each
dot represents a test suite; its colour represents
the size of that suite relative to the total number

10

Table 3: Results for the master test suite of each project.

Project Assertions Static coverage Dynamic coverage Equivalent mutants

Checkstyle 3,819 85% 98% 15.6%

JFreeChart 9,030 60% 62% 74.1%

JodaTime 23,830 85% 90% 31.0%

●● ●●● ●●● ●● ●●● ●●●●●● ●●●●●● ●●● ●●●● ●●●● ●●●●●●● ●● ●●●● ● ●●●● ● ●●●● ●●●● ●● ●●● ●●● ●●● ●●●● ●●●●● ●●●●●●● ●● ● ●●●● ● ●●●● ●● ●●●●● ●●●● ●●●●●● ● ●●●●●● ●●●●● ●●●●● ● ●●●●●● ●● ● ●●● ● ●●● ●● ●●● ●●● ●● ● ●●● ●●●●● ●●●●● ● ● ●● ●●● ●●●● ●●●●●● ●●● ●●●● ●● ●●● ●●●● ●●●●● ●●●● ●●● ●● ●●●●●●●●● ●●●●●●●●● ●●●●●● ●●● ●●●●● ●●● ● ● ●●● ●●●●●●●●●● ● ●● ● ●●● ●●●● ● ●●● ●●●● ● ● ●●● ●● ●● ●●●● ●●●● ●● ● ●●●●●●● ●●●● ●● ●● ●●● ●●● ● ●●●● ●●●● ● ●● ●●●● ●●● ●● ● ● ●● ●● ● ● ●●●● ●●● ●●● ●●● ●● ●● ●●●● ●●● ●● ●● ●●● ●●●● ●● ●● ●●● ● ●●● ●●● ●● ● ●●● ●● ●●●●●●●●● ●●● ● ●●●●● ● ●● ●●●● ● ●● ●● ●●●●●● ●●●●● ●● ●●●● ●● ●● ●●● ●●●●●●●●●● ●●● ●●●● ●●●●●●● ●● ●●●●●● ●●● ●●● ●●● ●●●●●●● ●●● ●●●● ●● ●●●● ●●● ●● ● ●●● ●● ●● ●●● ●● ● ●●●●●●●● ●● ●●● ●●●● ● ●●●● ●● ●●●●● ●●● ● ●●● ● ●●●●●●● ●●● ●●● ● ●●●● ●●●●● ●● ●●●●●● ● ●● ●●●●●● ●●● ● ●●●● ●● ●●●●● ● ●● ●● ●●●● ●● ●●●●●●●●●●● ●● ●

●●● ●●●● ●●●●●● ●●●● ●● ●●●● ●●● ●● ●● ●● ● ●●● ●● ●● ● ●●● ●●●●● ● ●● ●●●● ●● ● ●●● ●● ●● ● ●● ●●● ●● ●● ●● ●● ●●●●● ● ● ●●● ●● ● ●● ●● ● ●● ● ●●●● ● ● ●● ● ●● ●●●● ●●● ●●●●● ●●● ● ●● ●●●● ●●● ●● ●● ●● ● ●●● ● ●●●

● ●● ●● ●●● ●●●● ● ●●● ●● ●●● ●●● ●●● ●● ● ● ●●● ●●● ●●●●● ●●● ●● ●● ●● ●●● ●●● ●● ●● ●● ● ● ● ●●●●●● ●● ●●● ● ●● ● ●●● ● ● ●● ●● ●●● ●● ●● ●●● ● ●●●● ● ●●● ●● ● ●● ● ●●●● ●● ● ●●● ●● ●● ●● ● ●● ●●● ●●● ● ● ●●●●● ●● ●● ● ●●● ● ●● ●● ●● ●● ● ● ● ●●● ●●● ●●● ●●●●●●●●● ●● ●●●●● ●● ●●●● ●●● ● ●● ●●●● ●●●● ●●● ●● ●● ●● ● ●● ●● ●● ●● ● ●●● ● ●● ●●● ● ● ●●●●●●● ●●● ●● ●● ●●● ●●●● ●● ●● ●● ● ●●● ●● ●●● ●● ●● ●● ●

Checkstyle

JFreeChart

JodaTime

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140
Number of assertions

Figure 3: Distribution of the assertion count among individual tests per project.

Figure 4: Relation between assertion count and test suite e↵ectiveness.

Table 4: Kendall correlations between assertion count and test suite e↵ectiveness.

Project Relative test suite size

1% 4% 9% 16% 25% 36% 49% 64% 81%

Checkstyle -0.04 0.08** 0.13** 0.18** 0.20** 0.16** 0.16** 0.12** 0.10**

JFreeChart 0.03 0.14** 0.23** 0.32** 0.34** 0.35** 0.39** 0.40** 0.36**

JodaTime 0.05 0.11** 0.13** 0.13** 0.07** 0.09** 0.07** 0.10** 0.06*

Table 5: Comparison of di↵erent approaches to identify tests for the assertion count metric.

Project Semi-static approach Static approach

Number
of tests

Assertion
count

Number of
tests (di↵)

Assertion
count (di↵)

False
positives

False
negatives

CheckStyle 1,875 3,819 1,821 (-54) 3,826 (+0.18%) 5 59

JFreeChart 2,138 9,030 2,172 (+34) 9,224 (+2.15%) 39 7

JodaTime 4,197 23,830 4,180 (-17) 23,943 (+0.47%) 15 32

5% 7% 7% 36% 39% 5%

2% 12% 24% 2% 58% 1%

1% 18% 47% 13% 14% 7%

Checkstyle

JFreeChart

JodaTime

0% 25% 50% 75% 100%
Percentage of total assertion count

Assertion
content type

fail

boolean

string

numeric

object

unknown

Figure 5: The distribution of assertion content types for the analysed projects.

11

Figure 6: Relation between static coverage and test suite e↵ectiveness.

Table 6: Kendall correlations between static method coverage and test suite e↵ectiveness.

Project Relative test suite size

1% 4% 9% 16% 25% 36% 49% 64% 81%

Checkstyle -0.05 -0.01 -0.02 -0.02 0.00 -0.04 -0.01 0.00 0.01

JFreeChart 0.49** 0.28** 0.23** 0.26** 0.27** 0.28** 0.31** 0.31** 0.26**

JodaTime 0.13** 0.28** 0.32** 0.28** 0.24** 0.25** 0.23** 0.20** 0.21**

Figure 7: Relation between static and dynamic method coverage. Static coverage of test
suites below the black line is overestimated, above is underestimated.

Table 7: Kendall correlation between static and dynamic method coverage.

Project Relative test suite size

1% 4% 9% 16% 25% 36% 49% 64% 81%

Checkstyle -0,03 -0,01 0,01 -0,02 0,00 0,00 0,05 0,10** 0,15**

JFreeChart 0,67** 0,33** 0,28** 0,31** 0,33** 0,35** 0,43** 0,45** 0,44**

JodaTime 0,35** 0,44** 0,48** 0,47** 0,51** 0,51** 0,52** 0,54** 0,59**

of tests. Table 8 shows the Kendall correlations
between dynamic method coverage and normal ef-
fectiveness for the di↵erent groups of test suites for
each project. Similarly to the other tables, two as-
terisks indicate that the correlation is statistically
significant with a p-value < 0.005.

6 Discussion

We structure our discussion as follows: First, for
each metric, we compare the results across all
projects, perform an in-depth analysis on some of
the projects and then answer to the corresponding
research question. Next, we describe the practi-

cality of this research and the threats to validity.

6.1 Assertions and test suite e↵ectiveness

We observe that test suites of the same relative
size form groups in the plots in Figure 4, i.e., the
assertion count and e↵ectiveness score of same size
test suites are relatively close to each other.

For JFreeChart, groups of test suites with a rel-
ative size >=9% exhibit a diagonal shape. This
shape is ideal as it suggests that test suites with
more assertions are more e↵ective. These groups
also show the strongest correlation between asser-
tion count and e↵ectiveness (Table 4).

12

Figure 8: Relation between dynamic method coverage and test suite e↵ectiveness.

Table 8: Kendall correlation between dynamic method coverage and test suite e↵ectiveness.

Project Relative test suite size

1% 4% 9% 16% 25% 36% 49% 64% 81%

Checkstyle 0.67** 0.71** 0.68** 0.59** 0.45** 0.36** 0.33** 0.31** 0.36**

JFreeChart 0.65** 0.59** 0.52** 0.48** 0.44** 0.47** 0.47** 0.49** 0.45**

JodaTime 0.48** 0.49** 0.53** 0.51** 0.48** 0.52** 0.48** 0.47** 0.44**

We notice that the normalised assertion count
of a test suite is close to the relative suite size, e.g.,
suites with a relative size of 81% have a normalised
assertion count between 77% and 85%. The di↵er-
ence between the relative suite size and normalised
assertion count is directly related to the variety in
assertion count per test. More variety means that
a test suite could exist with only below average
assertion counts, resulting in a ¡80% normalised
assertion count.

We analyse each project to find to what extent
assertion count could predict test e↵ectiveness.

6.1.1 Checkstyle

We notice a very low, statistically significant corre-
lation between assertion count and test suite e↵ec-
tiveness for most of Checkstyle’s test suite groups.

Most of the Checkstyle’s tests target the dif-
ferent checks in Checkstyle. Out of the 1875
tests, 1503 (80%) tests belong to a class that
extends the BaseCheckTestSupport class. The
BaseCheckTestSupport class contains a set of
utility methods for creating a checker, executing
the checker and verifying the messages generated
by the checker. We notice a large variety in test
suite e↵ectiveness among the tests that extend this
class. Similarly, we expect the same variety in as-
sertion counts. However, the assertion count is the
same for at least 75% of these tests.

We found that 1156 of these tests (62% of
the master test suite) use the BaseCheckTestSup-

port.verify method for asserting the checker’s re-
sults. The verify method iterates over the ex-
pected violation messages which are passed as a
parameter. This iteration hides the actual num-
ber of executed assertions. Consequently, we de-

tect only two assertions for tests which might ex-
ecute many assertions at runtime. In addition to
the verify method, we found 60 tests that directly
applied assertions inside for loops.

Finding 1: Assertions within in an iter-
ation block skew the estimated assertion
count. These iterations are a source of im-
precision because the actual number of as-
sertions could be much higher than the as-
sertion count we measured.

Another consequence of the high usage of
verify is that these 1156 tests all have the same
assertion count. Figure 3 shows similar results for
the distribution of assertions for Checkstyle’s tests.

The e↵ectiveness scores for these 1156 tests
range from 0% to 11% (the highest e↵ectiveness
score of an individual test). This range shows that
the group of tests with two assertions include both
the most and least e↵ective tests. There are ap-
proximately 1200 tests for which we detect exactly
two assertions. As this concerns 64% of all tests,
we state there is too little variety in the assertion
count to make predictions on the e↵ectiveness.

Finding 2: 64% of Checkstyle’s tests have
identical assertion counts. Variety in the
assertion count is needed to distinguish be-
tween the e↵ectiveness of di↵erent tests.

6.1.2 JFreeChart

JFreeChart is the only project exhibiting a low to
moderate correlation for most groups of test suites.

13

We found many strong assertions in
JFreeChart’s tests. By strong, we mean that
two large objects, e.g., plots, are compared in an
assertion. This assertion uses the object’s equals
implementation. In this equals method, around
50 lines long, many fields of the plot, such as
Paint or RectangleInsets are compared, again
relying on their consecutive equals implemen-
tation. We also notice that most outliers for
JFreeChart in Figure 3 are tests for the equals
methods which suggests that the equals methods
contain much logic.

Finding 3: Not all assertions are equally
strong. Some only cover a single property,
e.g., a string or a number, whereas others
compare two objects, potentially covering
many properties. For JFreeChart, we no-
tice a large number of assertions that com-
pare plot objects with many properties.

Next, we searched for the combination of loops
and assertions that could skew the results, and
found no such occurrences in the tests.

6.1.3 JodaTime

The correlations between assertion count and test
suite e↵ectiveness for JodaTime are similar to
that of Checkstyle, and much lower than those of
JFreeChart. We further analyse JodaTime to find
a possible explanation for the weak correlation.

Assertions in for loops. We searched for test
utility methods similar to the verify method of
Checkstyle, i.e., a method that has assertions in-
side an iteration and is used by several tests. We
observe that the four most e↵ective tests, shown in
Table 9, all call testForwardTransitions and/or
testReverseTransitions, both are utility meth-
ods of the TestBuilder class. The rank columns
contain the rank relative to the other tests of to
provide some context in how they compare. Ranks
are calculated based on the descending order of
e↵ectiveness or assertion count. If multiple tests
have the same score, we show the average rank.
Note that the utility methods are di↵erent from
the tests in the top 4 that share the same name.
The top 4 tests are the only tests calling these
utility methods. Both methods iterate over a
two-dimensional array containing a set of approx-
imately 110 date time transitions. For each tran-
sition, 4 to 7 assertions are executed, resulting in
more than 440 executed assertions.

Additionally, we found 22 tests that combined
iterations and assertions. Out of these 22 tests,
at least 12 tests contained fix length iterations,
e.g., for(int i = 0; i < 10; i++), that could
be evaluated using other forms of static analysis.

In total, we found only 26 tests of the master
test suite (0.6%) that were directly a↵ected by as-
sertions in for loops. Thus, for JodaTime, asser-
tions in for loops do not explain the weak correla-
tion between assertion count and e↵ectiveness.

Assertion strength. JodaTime has sig-
nificantly more assertions than JFreeChart and
Checkstyle. We observe many assertions on nu-
meric values as one might expect from a library
that is mostly about calculations on dates and
times. For example, we noticed many utility meth-
ods that checked the properties of Date, DateTime
or Duration objects. Each of these utility meth-
ods asserts the number of years, months, weeks,
days, hours, etc. This large number of numeric as-
sertion corresponds with the observation that 47%
of the assertions are on numeric types (Figure 5).

However, the above is not always the case. For
example, we found many tests, related to parsing
dates or times from a string or tests for formatters,
that only had a 1 or 2 assertions while still being
in the top half of most e↵ective tests.

We distinguish between two types of tests: a)
tests related to the arithmetic aspect with many
assertions and b) tests related to formatting with
only a few assertions. We find that assertion count
does not work well as a predictor for test suite
e↵ectiveness since the assertion count of a test does
not directly relate to how e↵ective the test is.

Finding 4: Almost half of JodaTime’s as-
sertions are on numeric types. These as-
sertions often occur in groups of 3 or more
to assert a single result. However, a large
number of e↵ective tests only contains a
small number of mostly non-numeric asser-
tions. This mix leads to poor predictions.

6.1.4 Test identification

We measure the assertion count by following the
static call graph for each test. As our context is
static source code analysis, we also need to be able
to identify the individual tests in the test code.
We compare our static approach with a semi-static
approach that uses Java reflection to identify tests.

Table 5 shows that the assertion count ob-
tained with the static-approach is closer to the dy-
namic approach than the assertion count obtained
through the semi-static approach.

For all projects the assertion count of the static
approach is higher. If the static algorithm does
not identify tests, there are no call edges between
the tests and the assertions. The absence of edges
implies that these tests either have no assertions
or an edge in the call graph was missing. These
tests do not contribute to the assertion count.

14

Table 9: JodaTime’s four most e↵ective tests

Test Normal E↵ectiveness Assertions

Score Rank Score Rank

TestCompiler.testCompile() 17.23% 1 13 361.5

TestBuilder.testSerialization() 14.61% 2 13 361.5

TestBuilder.testForwardTransitions() 12.94% 3 7 1,063.5

TestBuilder.testReverseTransitions() 12.93% 4 4 1,773.0

We notice that the methods that were incor-
rectly marked as tests, false positives, are meth-
ods used for debugging purposes or methods that
were missing the @Test annotation. The latter
is most noticeable for JFreeChart. We identified
39 tests that were missing the @Test annotation.
Of these 39 tests, 38 tests correctly executed when
the @Test annotation was added. According to the
repository’s owner, these tests are valid tests 2.

Based on the results of these three projects, we
also show that the use of call graph slicing gives
accurate results on a project level.

6.1.5 Assertion count as a predictor for
test e↵ectiveness

We found that the correlation for Checkstyle and
JodaTime is weaker than for JFreeChart. Our
analysis indicates that the correlation for Check-
style is less strong because of a combination of
assertions in for loops (Finding 1) and the asser-
tion distribution (Finding 2). However, this does
not explain the weak correlation for JodaTime.
As shown in Figure 3, JodaTime has a much larger
spread in the assertion count of each test. Fur-
thermore, we observe that the assertion-iteration
combination does not have a significant impact
on the relationship with test suite e↵ectiveness
compared to Checkstyle. We notice a set of strong
assertions for JFreeChart (Finding 3) whereas
JodaTime has mostly weak assertions (Finding 4).

RQ 1: To what extent is assertion count a
good predictor for test suite e↵ectiveness?

Assertion count has potential as a predictor for
test suite e↵ectiveness because assertions are di-
rectly related to detection of mutants. However,
more work on assertions is needed as the correla-
tion with test suite e↵ectiveness is often weak or
statistically insignificant.

For all three projects, Table 3, we observe dif-
ferent assertion counts. Checkstyle and Joda-
Time are of similar size and quality, but Check-
style only has 16% of the assertions JodaTime
has. JFreeChart has more assertions than Check-
style, but the production code base that should be
tested is also three-times bigger. A test quality
model that includes the assertion count should in-

2
https://github.com/jfree/jfreechart/issues/57

corporate information about the strength of the as-
sertions, either by incorporating assertion content
types, assertion coverage [45] or size of the asserted
object. Furthermore, such a model should also in-
clude information about the size of a project.

If assertion count would be used, we should
measure the presence of its sources of impreci-
sion to judge the reliability. This measurement
should also include the intensity of the usage of
errornous methods. For example, we found hun-
dreds of methods and tests with assertions in for-
loops. However, only few methods that were often
used had a significant impact on the results.

6.2 Coverage and e↵ectiveness

We observe a diagonal-like shape for most groups
of same size test suites in Figure 6. This shape
is ideal as it suggests that within this group, test
suites with more static coverage are more e↵ective.
These groups also show the strongest correlation
between static coverage and test suite e↵ective-
ness, as shown in Table 6.

Furthermore, we notice a di↵erence in the
spread of the static coverage on the horizontal axis.
For example, coverage for Checkstyle’s tests suites
can be split into three groups: around 30%, 70%
and 80% coverage. JFreeChart shows a relatively
large spread of coverage for smaller tests suites,
ranging between 18% and 45% coverage, but the
coverage converges as test suites grow in size. Jo-
daTime is the only project for which there is no
split in the coverage scores of same size test suites.
We consider these di↵erences in the spread of cov-
erage a consequence of the quality of the static
coverage algorithm. These di↵erences are further
explored in Section 6.2.1. We perform an in-depth
analysis on Checkstyle in Section 6.2.2 because it
is the only project which does not exhibit either a
statistically significant correlation between static
coverage and test e↵ectiveness, or one between
static coverage and dynamic method coverage.

6.2.1 Static vs. dynamic method coverage

When comparing dynamic and static coverage in
Figure 7, we notice that the degree of over- or
underestimation of the coverage depends on the
project and test suite size. Smaller test suites tend
to overestimate, whereas larger test suites under-
estimate. We observe that the quality of the static

15

coverage for the Checkstyle project is significantly
di↵erent compared to the other projects. Check-
style is discussed in Section 6.2.2.

Overestimating coverage. The static cover-
age for the smaller test suites is significantly higher
than the real coverage, as measured with dynamic
analysis. Suppose a methodM1 has a switch state-
ment that, based on its input, calls one of the
following methods, M2,M3,M4. There are three
tests, T1, T2, T3, that each call M1, with one of the
three options for the switch statement in M1 as
a parameter. Additionally, there is a Test suite
TS1 that consists of T1, T2, T3. Each test covers
M1 and one of M2,M3,M4, all tests combined in
TS1 cover all 4 methods. The static coverage al-
gorithm does not evaluate the switch statement
and detects for each test that 4 methods are cov-
ered. This shows that static coverage is not very
accurate for individual tests. However, the static
coverage for TS1 matches the dynamic coverage.
This example illustrates why the loss in accuracy,
caused by overestimating the coverage, decreases
as test suites grow in size. The paths detected
by the static and dynamic method coverage will
eventually overlap once a test suite is created that
contains all tests for a given function. The amount
of overestimated coverage depends on how well the
tests cover the di↵erent code paths.

Finding 5: The degree of overestima-
tion by the static method coverage algo-
rithm depends on the real coverage and the
amount of conditional logic and inheritance
in the function under test.

Underestimating coverage. We observe
that for larger test suites the coverage is often un-
derestimated, see Figure 7. Similarly, the under-
estimation is also visible in the di↵erence between
static and dynamic method coverage of the dif-
ferent master test suites as shown in the project
results overview in Table 3.

A method that is called through reflection or
by an external library is not detected by the static
coverage algorithm. Smaller test suites do not
su↵er from this issue as the number of overesti-
mated methods is often significantly larger than
the amount of underestimated methods.

We observe di↵erent tipping points be-
tween overestimating and underestimating for
JFreeChart and JodaTime. For JFreeChart the
tipping point is visible for tests suites with a rel-
ative size of 81%, whereas JodaTime reaches the
tipping point at a relative size of 25%. We as-
sume this is caused by the relatively low “real”
coverage of JFreeChart. We notice that many of
JFreeChart’s methods that were overestimated by
the static coverage algorithm are not covered.

We illustrate the overlap between over- and
underestimation with a small synthetic example.
Given a project with 100 methods and test suite
T. We divide these methods into three groups:
1. Group A, with 60 methods that are all cov-
ered by T, as measured with dynamic coverage.
2. Group B, with 20 methods that are only called
through the Java Reflection API, all covered by T
similar to Group A. 3. Group C, with 20 methods
that are not covered by T. The dynamic coverage
for T consists of the 80 methods in groups A and
B. The static method coverage for T also consists
of 80 methods. However, the coverage for Group C
is overestimated as they are not covered, and the
coverage for Group B is underestimated as they
are not detected by the static coverage algorithm.

JFreeChart has a relatively low coverage score
compared to the other projects. It is likely that the
parts of the code that are deemed covered by static
and dynamic coverage will not overlap. However,
it should be noted that low coverage does not im-
ply more methods are overestimated. When parts
of the code base are completely uncovered, the
static method coverage might also not detect any
calls to the code base.

Finding 6: The degree of underestimation
by the static coverage algorithm partially
depends on the number of overestimated
methods, as this will compensate for the
underestimated methods, and on the num-
ber of methods that were called by reflec-
tion or external libraries.

Correlation between dynamic and static
method coverage. Table 4 shows, for
JFreeChart and JodaTime, statistically significant
correlations that increase from a low correlation
for smaller suites to a moderate correlation for
larger suites. One exception is the correlation for
JFreeChart”s test suites with 1% relative size. We
could not find a explanation for this exception.

We expected that the tipping point between
static and dynamic coverage would also be visible
in the correlation table. However, this is not the
case. Our rank correlation test checks whether two
variables follow the same ordering, i.e., if one vari-
able increases, the other also increases. Underesti-
mating the coverage does not influence the correla-
tion when the degree of underestimation is similar
for all test suites. As test suites grow in size, they
become more similar in terms of included tests.
Consequently, the chances of test suites forming
an outlier decrease as the size increases.

Finding 7: As test suites grow, the corre-
lation between static and dynamic method
coverage increases from low to moderate.

16

6.2.2 Checkstyle

Figures 6 and 7 show that the static coverage re-
sults for Checkstyle’s test suites are significantly
di↵erent from JFreeChart and JodaTime. For
Checkstyle, all groups of test suites with a relative
size of 49% and lower are split into three subgroups
that have around 30%, 70% and 80% coverage. In
the following subsections, we analyse the quality
of the static coverage for Checkstyle and the pre-
dictability of test suite e↵ectiveness.

Quality of static coverage algorithm. To
analyse the static coverage algorithm for Check-
style we compare the static coverage with the dy-
namic coverage for individual tests (Figure 9a),
and inspect the distribution of the static coverage
among the di↵erent tests (Figure 9b).

We regard the di↵erent groupings of test suites
in the static coverage spread as a consequence of
the few tests with high static method coverage.

Checker tests. Figure 9b shows 1104 tests
scoring 30% to 32.5% coverage. Furthermore, dy-
namic coverage only varied between 31.3% and
31.6% coverage and nearly all tests are located in
the com.puppycrawl.tools.checkstyle.checks

package. We call these tests checker tests, as they
are all focussed on the checks. A small experi-
ment where we combined the coverage of all 1104
tests, resulted in 31.8% coverage, indicating that
all these checker tests almost completely overlap.

Listing 1 shows the structure typical for
checker tests: the logic is mostly located in utility
methods. Once the configuration for the checker is
created, verify is called with the files that will be
checked and the expected messages of the checker.

@Test

public void t e s tCo r r e c t () throws Exception {
f ina l Defau l tCon f i gura t i on checkConf ig =

createCheckConf ig (

AnnotationLocationCheck . class) ;

f ina l St r ing [] expected = CommonUtils .

EMPTY STRING ARRAY;

v e r i f y (checkConfig , getPath (”

InputCorrectAnnotat ionLocat ion . java ”) ,

expected) ;

}

Listing 1: Test in AnnotationLocationCheckTest

Finding 8: Most of Checkstyle’s tests are
focussed on the checker logic. Although
these tests vary in e↵ectiveness, they cover
an almost identical set of methods as mea-
sured with the static coverage algorithm.

Coverage subgroups and outliers. We no-
tice three vertical groups for Checkstyle in Figure 7
starting around 31%, 71% and 78% static coverage
and then slowly curving to the right. These group-
ings are a result of how test suites are composed

and the coverage of the included tests.

The coverage of the individual tests is shown
in Figure 9a. We notice a few outliers at 48%,
58%, 74% and 75% coverage. We construct test
suites by randomly selecting tests. A test suite’s
coverage is never lower than the highest coverage
among its individual tests. For example, every
time a test with 74% coverage is included, the test
suite’s coverage will jump to at least that percent-
age. As test suites grow in size, the chances of
including a positive outlier increases. We notice
that the outliers do not exactly match with the
coverage of the vertical groups. The second verti-
cal for Checkstyle in Figure 7 starts around 71%
coverage. We found that if the test with 47.5%
coverage, AbstractChecktest.testVisitToken,
is combined with a 30% coverage test (any
of the checker tests), it results in 71% cov-
erage. This shows that only 6.5% coverage
is overlapping between both tests. We ob-
serve that all test suites in the vertical group
at 71% include at least one checker test and
AbstractCheckTest.testVisitToken and that
they do not include any of the other outliers with
more than 58%. The most right vertical group
starts at 79% coverage. This coverage is achieved
by combining any of the tests with more than 50%
coverage with a single checker test.

The groupings in Checkstyle’s coverage scores
are a consequence of the few coverage outliers. We
show that these outliers can have a significant im-
pact on a project’s coverage score. Without these
few outliers, the static coverage for Checkstyle’s
master test suite would only be 50%

Test suites with low coverage. Figure 9b
shows that more than half of the tests have at
least 30% coverage. Similarly, Figure 7 shows that
all test suites cover at least 31% of the methods.
However, there are 763 tests with less than 30%
coverage, and no test suites with less than 30%
coverage. We explain this using probability the-
ory. The smallest test suite for Checkstyle has a
relative size of 1% which are 19 tests. The chance
of only including tests with less than 31% cover-
age 763

1875 ⇤ 763�1
1875�1 ⇤ . . . ⇤ 763�18

1875�18 ⇡ 3 ⇤ 10�8. These
chances are negligible, even without considering
that a combination of the selected tests might still
lead to a coverage above 31%.

Missing coverage. We found that
AbstractCheckTest.testVisitToken scores
47.5% static method coverage, although it only
tests the AbstractCheck.visitToken method.
Therefore any test calling the visitToken method
will have at least 47.5% static method coverage.

160 classes extend AbstractCheck, of which
123 override the visitToken method. The
static method coverage algorithm includes 123
virtual calls when AbstractCheck.visitToken is

17

(a) Static and dynamic method coverage of

individual tests. Static coverage of tests be-

low the black line is overestimated, above is

underestimated.

(b) Distribution of the tests over the di↵er-

ent levels of static method coverage.

Figure 9: Static method coverage scores for individual tests of Checkstyle.

called.The coverage of all visitToken overrides
combined is 47.5%. Note that the static cover-
age algorithm also considers constructor calls and
static blocks as covered when a method of a class
is invoked. We found that only 6.5% of the total
method coverage overlaps with testVisitToken.

This large overlap between both tests suggests
that visitToken is not called by any of the
check tests. However, we found that the verify

method indirectly calls visitToken. The call
process(File, FileText), is not matched
with AbstractFileSetCheck.process(File,

List). The parameter of type FileText extends
AbstractList which is part of the java.util

package. During the construction of the static call
graph, it was not detected that AbstractList is
an implementation of the List interface because
only Checkstyle’s source code was inspected.
If these calls were detected the coverage of all
checker tests would increase to 71%, filling the
gap between the two right-most vertical groups in
the plots for Checkstyle in both Figures 6 and 7.

Finding 9: Our static coverage algorithm
fails to detect a set of calls in the tests for
the substantial group of checker tests due
to shortcomings in the static call graph. If
these the calls were correctly detected, the
static coverage for test suites of the same
size would be grouped more closely possibly
resulting in a more significant correlation.

High reflection usage. Checkstyle applies a
visitor pattern on an AST for the di↵erent code
checks. The AbstractCheck class forms the ba-
sis of this visitor and is extended by 160 checker
classes. These classes contain the core function-
ality of Checkstyle and consist of 2090 methods
(63% of all methods), according to SAT. Running
our static coverage algorithm on the master test

suite missed calls to 328 methods. Of these meth-
ods, 248 (7.5% of all methods) are setter meth-
ods. Further inspection showed that checkers are
configured using reflection, based on a configura-
tion file with properties that match the setters of
the checkers. This large group of methods missed
by the static coverage algorithm partially explains
the di↵erence between static and dynamic method
coverage of Checkstyle’s master test suite.

Finding 10: The large gap between static
and dynamic method coverage for Check-
style is caused by a significant amount of
setter methods for the checker classes that
are called through reflection.

Relation with e↵ectiveness. Checkstyle is
the only project for which there is no statistically
significant correlation between static method cov-
erage and test suite e↵ectiveness.

We notice a large distance, regarding invoca-
tions in the call hierarchy, between most checkers
and their tests. There are 9 invocations between
visitToken and the much used verify method.

In addition to the actual checker logic, a lot in-
frastructure is included in each test. For example,
instantiating the checkers and its properties based
on a reflection framework, parsing the files and cre-
ating an AST, traversing the AST, collecting and
converting all messages of the checkers.

These characteristics seem to match those of in-
tegration tests. Zaidman et al. studied the evolu-
tion of the Checkstyle project and arrived at sim-
ilar findings: “Moreover, there is a thin line be-
tween unit tests and integration tests. The Check-
style developers see their tests more as I/O inte-
gration tests, yet associate individual test cases
with a single production class by name” [43].

Directness. We implemented the directness
measure to inspect whether it would reflect the

18

presence of mostly integration like tests. The di-
rectness is based on the percentage of methods
that are directly called from a test. The master
test suites of Checkstyle, JFreeChart and Joda-
Time cover respectively 30%, 26% and 61% of all
methods directly. As Checkstyle’s static coverage
is significantly higher than that of JFreeChart we
observe that Checkstyle covers the smallest por-
tion of methods directly from tests. Given that
unit tests should be focused on small functional
units, we expected a relatively high directness
measure for the test suites.

Finding 11: Many of Checkstyle’s tests
are integration-like tests that have a large
distance between the test and the logic un-
der test. Consequently, only a small por-
tion of the code is covered directly.

To make matters worse, the integration-like
tests were mixed with actual tests. We argue
that integrations tests have di↵erent test proper-
ties compared to unit tests: they often cover more
code, have less assertions, but the assertions have
a higher impact, e.g., comparing all the reported
messages. These di↵erences can lead to a skew in
the e↵ectiveness results.

6.2.3 Dynamic method coverage and e↵ec-
tiveness

We observe in Figure 8 that, within groups of test
suites of the same size, test suite with more dy-
namic coverage are also more e↵ective. Similarly,
we observe a moderate correlation between dy-
namic method coverage and normal e↵ectiveness
for all three projects in Table 8.

When comparing test suite e↵ectiveness with
static method coverage, we observe a low to mod-
erate correlation for JFreeChart and JodaTime
when accounting for size in Table 6, but no statis-
tically significant correlation for Checkstyle. Sim-
ilarly, only the Checkstyle project does not show a
statistically significant correlation between static
and dynamic method coverage, as shown in Ta-
ble 7. We believe this is a consequence of the inte-
gration like test characteristics of the Checkstyle
project. Due to the large distance between tests
and code and the abstractions used in-between,
the static coverage is not very accurate.

The moderate correlation between dynamic
method coverage and e↵ectiveness suggests there
is a relation between method coverage and normal
e↵ectiveness. However, the static method coverage
does not show a statistically significant correlation
with normal e↵ectiveness for Checkstyle. We state
that our static method coverage metric is not ac-
curate enough for the Checkstyle project.

6.2.4 Method coverage as a predictor for
test suite e↵ectiveness

We found a statistically significant, low correlation
between test suite e↵ectiveness and static method
coverage for JFreeChart and JodaTime. We evalu-
ated the static coverage algorithm and found that
smaller test suites typically overestimate the cov-
erage (Finding 5), whereas for larger test suites the
coverage is often underestimated (Finding 6). The
tipping point depends on the real coverage of the
project. We also found that static coverage cor-
relates better with dynamic coverage as test suite
increase in size (Finding 7).

An exception to these observations is Check-
style, the only project without a statistically sig-
nificant correlation between static method cover-
age and both, test suite e↵ectiveness and dynamic
method coverage. Most of Checkstyle’s tests have
nearly identical coverage results (Finding 8) albeit
the e↵ectiveness varies. The SAT could calculate
static code coverage, however it is less suitable for
more complex projects. The large distance be-
tween tests and tested functionality (Finding 11)
in the Checkstyle project in terms of call hierar-
chy led to skewed results as some of the must used
calls were not resolved (Finding 9). This can be
partially mitigated by improving the call resolving.

We consider the inaccurate results of the static
coverage algorithm a consequence of the quality of
the call graph and the frequent use of Java reflec-
tion(Finding 10). Furthermore, the unit tests for
Checkstyle show similarities with integration tests.

RQ 2: To what extent is static coverage a
good predictor for test suite e↵ectiveness?

First, we found a moderate to high correla-
tion between dynamic method coverage and e↵ec-
tiveness for all analysed projects which suggests
that method coverage is a suitable indicator. The
projects that showed a statistically significant cor-
relation between static and dynamic method cov-
erage also showed a significant correlation between
static method coverage and test suite e↵ectiveness.
Although the correlation between test suite e↵ec-
tiveness and static coverage was not statistically
significant for Checkstyle, the coverage score on
project level provided a relatively good indication
of the project’s real coverage. Based on these ob-
servations we consider coverage suitable as a pre-
dictor for test e↵ectiveness.

6.3 Practicality

A test quality model based on the current state of
the metrics would not be su�ciently accurate.

Although there is evidence of a correlation be-
tween assertion count and e↵ectiveness, the as-
sertion count of each project’s master test suite

19

did not map to the relative e↵ectiveness of each
project. Each of the analysed projects had on aver-
age a di↵erent number of assertions per test. Fur-
ther improvements to the assertion count metric,
e.g., including the strength of the correlation, are
needed to get more usable results.

The static method coverage could be used to
evaluate e↵ectiveness to a certain extent. We
found a low to moderate correlation for two of the
project between e↵ectiveness and static method
coverage. Furthermore, we found a similar cor-
relation between static and dynamic method cov-
erage. The quality of the static call graph should
be improved to better estimate the real coverage.

We did not investigate the quality of these met-
rics for other programming languages. However,
the SAT supports call graph analysis and identi-
fying assertions for a large range of programming
languages, facilitating future experiments.

We encountered scenarios for which the static
metrics gave imprecise results. If these sources of
imprecision would be translated to metrics, they
could indicate the quality of the static metrics. An
indication of low quality could suggest that more
manual inspection is needed.

6.4 Internal threats to validity

Static call graph. We use the static call graph
constructed by the SAT, for both metrics. We
found several occurrences where the SAT did not
correctly resolve the call graph. We fixed some of
the issues encountered during our analysis. How-
ever, as we did not manually analyse all the calls,
this remains a threat to validity.

Equivalent mutants. We treated all mutants
that were not detected by the master test suite
as equivalent mutants, an approach often used in
literature [35, 24, 45]. There is a high probability
that this resulted in overestimating the number
of equivalent mutants, especially for JFreeChart
where a large part of the code is simply tested. In
principle, this is not a problem as we only compare
the e↵ectiveness of sub test suites. However, our
statement on the order of the master’s tests suite
e↵ectiveness is vulnerable to this threat as we did
not manually inspect each mutant for equivalence.

Accuracy of analysis. We manually in-
spected large parts of the Java code of each
project. Most of the inspections were done by
a single person with four years of experience in
Java. Also, we did not inspect all the tests. Most
tests were selected on a statistic driven-basis, i.e.,
we looked at tests that showed high e↵ectiveness
but low coverage, or tests with a large di↵erence
between static and dynamic. To mitigate this, we
also verified randomly selected tests. However, the
chances of missing relevant source of imprecision
remains a threat to validity.

6.5 External threats to validity

We study three open source Java projects. Our re-
sults are not generalisable to projects using other
programming languages. Also, we only included
assertions provided by JUnit. Although JUnit is
the most popular testing library for Java, there
are testing libraries possibly using di↵erent asser-
tions [44]. We also ignored mocking libraries in
our analysis. Mocking libraries provide a form of
assertions based on the behaviour of units under
test. These assertions are ignored by our analysis,
albeit they can lead to an increase in e↵ectiveness.

6.6 Reliability

Tengeri et al. compared di↵erent instrumentation
techniques and found that JaCoCo produces in-
accurate results especially when mapped back to
source code [39]. The main problem was that Ja-
CoCo did not include coverage between two di↵er-
ent sub-modules in a Maven project. For example,
a call from sub-module A to sub-module B is not
registered by JaCoCo because JaCoCo only anal-
yses coverage on a module level. As the projects
analysed in this thesis do not contain sub-modules,
this JaCoCo issue is not applicable to our work.

7 Related work

We group related work as follows: test quality
models, standalone test metrics, code coverage and
e↵ectiveness, and assertions and e↵ectiveness.

7.1 Test quality models

We compare the TQM [18] we used, as described
in Section 2.2 with two other test quality models.
We first describe the other models, followed by a
motivation for the choice of a model.

STREW. Nagappan introduced the Software
Testing and Reliability Early Warning (STREW)
metric suite to provide “an estimate of post-
release field quality early in software development
phases [34].” The STREW metric suite consists
of nine static source and test code metrics. The
metric suite is divided into three categories: Test
quantification, Complexity and OO-metrics, and
Size adjustment. The test quantifications metrics
are the following: 1. Number of assertions per line
of production code. 2. Number of tests per line
of production code. 3. Number of assertion per
test. 4. The ratio between lines of test code and
production code, divided by the ratio of test and
production classes.

TAIME. Tengeri et al. introduced a system-
atic approach for test suite assessment with a focus
on code coverage [38]. Their approach, Test Suite
Assessment and Improvement Method (TAIME),
is intended to find improvement points and guide

20

the improvement process. In this iterative process,
first, both the test code and production code are
split into functional groups and paired together.
The second step is to determine the granularity of
the measures, start with coarse metrics on proce-
dure level and in later iterations repeat on state-
ment level. Based on these functional groups they
define the following set of metrics:

Code coverage calculated on both procedure
and statement level.

Partition metric “The Partition Metric
(PART) characterizes how well a set of
test cases can di↵erentiate between the
program elements based on their coverage
information [38]”.

Tests per Program how many tests have been
created on average for a functional group.

Specialisation how many tests for a functional
group are in the corresponding test group.

Uniqueness what portion of covered functional-
ity is covered only by a particular test group.

STREW, TAIME and TQM are models for as-
sessing aspects of test quality. STREW and TQM
are both based on static source code analysis.
However, STREW lacks coverage related metrics
compared to TQM. TAIME is di↵erent from the
other two models as it does not depend on a spe-
cific programming language or xUnit framework.
Furthermore, TAIME is more an approach than a
simple metric model. It is an iterative process that
requires user input to identify functional groups.
The required user input makes it less suitable for
automated analysis or large-scale studies.

7.2 Standalone test metrics

Bekerom investigated the relation between test
smells and test bugs [41]. He built a tool using the
SAT to detect a set of test smells: Eager test, Lazy
test, Assertion Roulette, Sensitive Equality and
Conditional Test Logic. He showed that classes
a↵ected by test bugs score higher on the presence
of test smells. Additionally, he predicted classes
that have test bugs based on the eager smell with
a precision of 7% which was better than random.
However, the recall was very low which led to the
conclusion that it is not yet usable to predict test
bugs with smells.

Ramler et al. implemented 42 new rules for
the static analysis tool PDM to evaluate JUnit
code [37]. They defined four key problem areas
that should be analysed: Usage of the xUnit test
framework, implementation of the unit test, main-
tainability of the test suite and testability of the
SUT. The rules were applied to the JFreeChart
project and resulted in 982 violations of which one-
third was deemed to be some symptom of problems
in the underlying code.

7.3 Code coverage and e↵ectiveness

Namin et al. studied how coverage and size in-
dependently influence e↵ectiveness [35]. Their ex-
periment used seven Siemens suite programs which
varied between 137 and 513 LOC and had between
1000 and 5000 test cases. Four types of code cov-
erage were measured: block, decision, C-Use and
P-Use. The size was defined by the number of
tests and e↵ectiveness was measured using muta-
tion testing. Test suites of fixed sizes and di↵erent
coverage levels were randomly generated to mea-
sure the correlation between coverage and e↵ec-
tiveness. They showed that both coverage and size
independently influence test suite e↵ectiveness.

Another study on the relation between test ef-
fectiveness and code coverage was performed by
Inozemtseva and Holmes [24]. They conducted
an experiment on a set of five large open source
Java projects and accounted for the size of the
di↵erent test suites. Additionally, they intro-
duced a novel e↵ectiveness metric, normalized ef-
fectiveness. They found moderate correlations be-
tween coverage and e↵ectiveness when size was ac-
counted for. However, the correlation was low for
normalized e↵ectiveness.

The main di↵erence with our work is that
we used static source code analysis to calculate
method coverage. Our experiment set-up is simi-
lar to that of Inozemtseva and Holmes except that
we chose a di↵erent set of data points which we
showed as more representative.

7.4 Assertions and e↵ectiveness

Kudrjavets et al. investigated the relation between
assertions and fault density [28]. They measured
the assertion density, i.e., number of assertions per
thousand lines of code, for two components of Mi-
crosoft Visual Studio written in C and C++. Ad-
ditionally, real faults were taken from an internal
bug database and converted to fault density. Their
result showed a negative relation between asser-
tion density and fault density, i.e., code that had
a higher assertion density has a lower fault density.
Instead of assertion density we focussed on the as-
sertion count of Java projects and used artificial
faults, i.e., mutants.

Zhang and Mesbah [45] investigated the rela-
tionship between assertions and test suite e↵ec-
tiveness. They found that, even when test suite
size was controlled for, there was a strong corre-
lation between assertion count and test e↵ective-
ness. Our results overlap with their work as we
both found a correlation between assertion count
and e↵ectiveness for the JFreeChart project. How-
ever, we showed that this correlation is not always
present as both Checkstyle and JodaTime showed
di↵erent results.

21

8 Conclusion

We analysed the relation between test suite e↵ec-
tiveness and metrics, assertion count and static
method coverage, for three large Java projects,
Checkstyle, JFreeChart and JodaTime. Both met-
rics were measured using static source code anal-
ysis. We found a low correlation between test
suite e↵ectiveness and static method coverage for
JFreeChart and JodaTime and a low to moderate
correlation with assertion count for JFreeChart.
We found that the strength of the correlation de-
pends on the characteristics of the project. The
absence of a correlation does not imply that the
metrics are not useful for a TQM.

Our current implementation of the assertion
count metric only shows promising results when
predicting test suite e↵ectiveness for JFreeChart.
We found that simply counting the assertions for
each project gives results that do not align with the
relative e↵ectiveness of the projects. The project
with the most e↵ective master test suite had a sig-
nificantly lower assertion than the other projects.
Even for sub test suites of most project, the asser-
tion count did not correlate with test e↵ectiveness.
Incorporating the strength of an assertion could
lead to better predictions.

Static method coverage is a good candidate for
predicting test suite e↵ectiveness. We found a sta-
tistically significant, low correlation between static
method coverage and test suite e↵ectiveness for
most analysed projects. Furthermore, the cover-
age algorithm is consistent in its predictions on
a project level, i.e., the ordering of the projects
based on the coverage matched the relative rank-
ing in terms of test e↵ectiveness.

8.1 Future work

Static coverage. Landman et al. investigated
the challenges for static analysis of Java reflec-
tion [30]. They identified that is at least possible
to identify and measure the use of hard to resolve
reflection usage. Measuring reflection usage could
give an indication of the degree of underestimated
coverage. Similarly, we would like to investigate
whether we can give an indication of the degree of
overestimation of the project.

Assertion count. We would like to investi-
gate further whether we can measure the strength
of an assertion. Zhang and Mesbah included as-
sertion coverage and measured the e↵ectiveness of
di↵erent assertion types [45]. We would like to in-
corporate this knowledge into the assertion count.
This could result in a more comparable assertion
count on project level.

Deursen et al. described a set of test smells
including the eager tests, a test the verifies too
much functionality of the tested function [42].

We found a large number of tests in the Jo-
daTime project that called the function under
test several times. For example, JodaTime’s
test wordBased pl regEx test checks 140 times
if periods are formatted correctly in Polish. These
eager tests should be split into separate cases that
test the specific scenarios.

8.2 Acknowledgements

We would like to thank Prof. Serge Demeyer for
his elaborate and insightful feedback on our paper.

References

[1] Checkstyle. https://github.com/checkstyle/

checkstyle. Accessed: 2017-07-15.

[2] Checkstyle team. http://checkstyle.

sourceforge.net/team-list.html. Accessed:
2017-11-19.

[3] Code cover. http://codecover.org/. Accessed:
2017-07-15.

[4] JaCoCo. http://www.jacoco.org/. Accessed:
2017-07-15.

[5] JFreeChart. https://github.com/jfree/

jfreechart. Accessed: 2017-07-15.

[6] JodaTime. https://github.com/jodaorg/

joda-time. Accessed: 2017-07-15.

[7] JUnit. http://junit.org/. Accessed: 2017-07-
15.

[8] MAJOR mutation tool . http://

mutation-testing.org/. Accessed: 2017-07-15.

[9] muJava mutation tool. https://cs.gmu.edu/

~offutt/mujava/. Accessed: 2017-07-15.

[10] PIT+. https://github.com/LaurentTho3/

ExtendedPitest. Accessed: 2017-07-15.

[11] PIT fork. https://github.com/pacbeckh/

pitest. Accessed: 2017-07-15.

[12] PIT mutation tool . http://pitest.org/. Ac-
cessed: 2017-07-15.

[13] R’s Kendall package. https://cran.r-project.
org/web/packages/Kendall/Kendall.pdf. Ac-
cessed: 2017-07-15.

[14] SLOCCount. https://www.dwheeler.com/

sloccount/. Accessed: 2017-07-15.

[15] TIOBE-Index. https://www.tiobe.com/

tiobe-index/. Accessed: 2017-07-15.

[16] Tiago L. Alves and Joost Visser. Static estima-
tion of test coverage. In Ninth IEEE Interna-
tional Working Conference on Source Code Anal-
ysis and Manipulation, SCAM 2009, Edmonton,
Alberta, Canada, September 20-21, 2009, pages
55–64, 2009.

[17] Paul Ammann, Márcio Eduardo Delamaro, and
Je↵ O↵utt. Establishing theoretical minimal
sets of mutants. In Seventh IEEE International
Conference on Software Testing, Verification and
Validation, ICST 2014, March 31 2014-April 4,
2014, Cleveland, Ohio, USA, pages 21–30, 2014.

22

[18] Dimitrios Athanasiou, Ariadi Nugroho, Joost
Visser, and Andy Zaidman. Test code quality and
its relation to issue handling performance. IEEE
Trans. Software Eng., 40(11):1100–1125, 2014.

[19] Kent Beck and Erich Gamma. Test infected:
Programmers love writing tests. Java Report,
3(7):37–50, 1998.

[20] Antonia Bertolino. Software testing research:
Achievements, challenges, dreams. In Interna-
tional Conference on Software Engineering, ISCE
2007, Workshop on the Future of Software En-
gineering, FOSE 2007, May 23-25, 2007, Min-
neapolis, MN, USA, pages 85–103, 2007.

[21] Ilja Heitlager, Tobias Kuipers, and Joost Visser.
A practical model for measuring maintainabil-
ity. In Quality of Information and Communi-
cations Technology, 6th International Conference
on the Quality of Information and Communica-
tions Technology, QUATIC 2007, Lisbon, Portu-
gal, September 12-14, 2007, Proceedings, pages
30–39, 2007.

[22] Ferenc Horváth, Bela Vancsics, László Vidács,
Árpád Beszédes, Dávid Tengeri, Tamás Gergely,
and Tibor Gyimóthy. Test suite evaluation using
code coverage based metrics. In Proceedings of
the 14th Symposium on Programming Languages
and Software Tools (SPLST’15), Tampere, Fin-
land, October 9-10, 2015., pages 46–60, 2015.

[23] David C Howell. Statistical methods for psychol-
ogy. Cengage Learning, 2012.

[24] Laura Inozemtseva and Reid Holmes. Coverage is
not strongly correlated with test suite e↵ective-
ness. In 36th International Conference on Soft-
ware Engineering, ICSE ’14, Hyderabad, India -
May 31 - June 07, 2014, pages 435–445, 2014.

[25] Yue Jia and Mark Harman. An analysis and sur-
vey of the development of mutation testing. IEEE
Trans. Software Eng., 37(5):649–678, 2011.

[26] René Just, Darioush Jalali, Laura Inozemtseva,
Michael D. Ernst, Reid Holmes, and Gordon
Fraser. Are mutants a valid substitute for real
faults in software testing? In Proceedings of the
22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, (FSE-
22), Hong Kong, China, November 16 - 22, 2014,
pages 654–665, 2014.

[27] Marinos Kintis, Mike Papadakis, Andreas
Papadopoulos, Evangelos Valvis, and Nicos
Malevris. Analysing and comparing the e↵ec-
tiveness of mutation testing tools: A manual
study. In 16th IEEE International Working Con-
ference on Source Code Analysis and Manipula-
tion, SCAM 2016, Raleigh, NC, USA, October
2-3, 2016, pages 147–156, 2016.

[28] Gunnar Kudrjavets, Nachiappan Nagappan, and
Thomas Ball. Assessing the relationship between
software assertions and faults: An empirical in-
vestigation. In 17th International Symposium on
Software Reliability Engineering (ISSRE 2006),
7-10 November 2006, Raleigh, North Carolina,
USA, pages 204–212, 2006.

[29] Tobias Kuipers and Joost Visser. A tool-based
methodology for software portfolio monitoring.
In Software Audit and Metrics, Proceedings of
the 1st International Workshop on Software Au-
dit and Metrics, SAM 2004, In conjunction with
ICEIS 2004, Porto, Portugal, April 2004, pages
118–128, 2004.

[30] Davy Landman, Alexander Serebrenik, and Ju-
rgen J. Vinju. Challenges for static analysis of
java reflection: literature review and empirical
study. In Proceedings of the 39th International
Conference on Software Engineering, ICSE 2017,
Buenos Aires, Argentina, May 20-28, 2017, pages
507–518, 2017.

[31] Thomas Laurent, Mike Papadakis, Marinos Kin-
tis, Christopher Henard, Yves Le Traon, and An-
thony Ventresque. Assessing and improving the
mutation testing practice of PIT. In 2017 IEEE
International Conference on Software Testing,
Verification and Validation, ICST 2017, Tokyo,
Japan, March 13-17, 2017, pages 430–435, 2017.

[32] András Márki and Birgitta Lindström. Mutation
tools for java. In Proceedings of the Symposium on
Applied Computing, SAC 2017, Marrakech, Mo-
rocco, April 3-7, 2017, pages 1364–1415, 2017.

[33] Thomas J. McCabe. A complexity measure. IEEE
Trans. Software Eng., 2(4):308–320, 1976.

[34] Nachiappan Nagappan. A Software Testing and
Reliability Early Warning (Strew) Metric Suite.
PhD thesis, North Carolina State University,
2005.

[35] Akbar Siami Namin and James H. Andrews. The
influence of size and coverage on test suite e↵ec-
tiveness. In Proceedings of the Eighteenth Interna-
tional Symposium on Software Testing and Anal-
ysis, ISSTA 2009, Chicago, IL, USA, July 19-23,
2009, pages 57–68, 2009.

[36] Mike Papadakis, Christopher Henard, Mark Har-
man, Yue Jia, and Yves Le Traon. Threats to
the validity of mutation-based test assessment. In
Proceedings of the 25th International Symposium
on Software Testing and Analysis, ISSTA 2016,
Saarbrücken, Germany, July 18-20, 2016, pages
354–365, 2016.

[37] Rudolf Ramler, Michael Moser, and Josef Pichler.
Automated static analysis of unit test code. In
First International Workshop on Validating Soft-
ware Tests, VST@SANER 2016, Osaka, Japan,
March 15, 2016, pages 25–28, 2016.

[38] Dávid Tengeri, Árpád Beszédes, Tamás
Gergely, László Vidács, David Havas, and
Tibor Gyimóthy. Beyond code coverage - an
approach for test suite assessment and improve-
ment. In Eighth IEEE International Conference
on Software Testing, Verification and Validation,
ICST 2015 Workshops, Graz, Austria, April
13-17, 2015, pages 1–7, 2015.

[39] Dávid Tengeri, Ferenc Horváth, Árpád Beszédes,
Tamás Gergely, and Tibor Gyimóthy. Nega-
tive e↵ects of bytecode instrumentation on java

23

source code coverage. In IEEE 23rd Interna-
tional Conference on Software Analysis, Evolu-
tion, and Reengineering, SANER 2016, Suita,
Osaka, Japan, March 14-18, 2016 - Volume 1,
pages 225–235, 2016.

[40] Paco van Beckhoven. Assessing test suite e↵ec-
tiveness using static analysis. Master’s thesis,
University of Amsterdam, 2017.

[41] Kevin van den Bekerom. Detecting test bugs us-
ing static analysis tools. Master’s thesis, Univer-
sity of Amsterdam, 2016.

[42] Arie van Deursen, Leon Moonen, Alex van den
Bergh, and Gerard Kok. Refactoring test code.
In Proceedings of the 2nd international confer-
ence on extreme programming and flexible pro-
cesses in software engineering (XP2001), pages
92–95, 2001.

[43] Andy Zaidman, Bart Van Rompaey, Serge De-
meyer, and Arie van Deursen. Mining software
repositories to study co-evolution of production
& test code. In First International Conference
on Software Testing, Verification, and Validation,
ICST 2008, Lillehammer, Norway, April 9-11,
2008, pages 220–229, 2008.

[44] Ahmed Zerouali and Tom Mens. Analyzing
the evolution of testing library usage in open
source java projects. In IEEE 24th International
Conference on Software Analysis, Evolution and
Reengineering, SANER 2017, Klagenfurt, Aus-
tria, February 20-24, 2017, pages 417–421, 2017.

[45] Yucheng Zhang and Ali Mesbah. Assertions
are strongly correlated with test suite e↵ective-
ness. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, Bergamo, Italy, August 30 -
September 4, 2015, pages 214–224, 2015.

[46] Hong Zhu, Patrick A. V. Hall, and John H. R.
May. Software unit test coverage and adequacy.
ACM Comput. Surv., 29(4):366–427, 1997.

24

