
The Impact of

Automated Code Quality Feedback

in Programming Education

Julian Jansen1,2,3, Ana Oprescu2, and Magiel Bruntink3

1julian.jansen@gmail.com
2University of Amsterdam

3Software Improvement Group

Abstract

While some university-level programming

courses focus on software quality, often in

introductory courses code quality is little

touched upon due to time constraints. Stu-

dents usually get feedback on code quality

after the grading of their assignment, feed-

back that cannot be used on that same

assignment. Our aim is to improve students’

skills for code quality during the evolution of

a students’ programming assignment, while

keeping the overhead low for teaching sta↵

as well as for students. Better Code Hub is a

service that checks code quality according to

ten guidelines. We employ Better Code Hub
as a formative assessment and feedback tool

enabling students to monitor their progress on

code quality. Our findings indicate that there

is an improvement in the code quality of the

students’ assignments over the period the tool

is used. Our experiments show that students

benefited the most from feedback on unit

length, unit complexity, and code duplication.

Copyright

c� by the paper’s authors. Copying permitted for

private and academic purposes.

Proceedings of the Seminar Series on Advanced Techniques and

Tools for Software Evolution SATToSE 2017 (sattose.org).

07-09 June 2017, Madrid, Spain.

1 Introduction

An important programmer’s skill is the ability to write

high quality code. Code of low quality can cause main-

tainability, security, performance, and reliability prob-

lems. Education is a means to fill the gap between the

supply and demand of skilled programmers.

As Ala-Mutka states [1, p. 84], programming

courses are often large in size and cause a heavy work-

load for the teacher. We observed that in introductory

programming courses there can be little to none sys-

tematic teaching in the rationale behind code quality.

Ala-Mutka also states, that “[a]ssessing and providing

feedback on computer programs is time-consuming,

because there are many aspects relating to good pro-

gramming that need to be considered [1, p. 84].” We

observed that most of the educational e↵ort is spent on

the aspects of learning the fundamentals of program-

ming, new languages, and development environments.

Given the time constraints and the focus on these three

aspects, students might get elaborate feedback on their

code quality only at the end of the assignment. There-

fore it cannot be used during the assignment itself.

Often, the grade depends (partially) on code quality

criteria.

This research focuses on measuring the impact of

a tool that helps novice programmers improve their

code quality. Better Code Hub (BCH) is such a tool,

developed by the Software Improvement Group (SIG)

based on their maintainability model [7]. BCH uses

ten guidelines as shown in Table 1 to provide the user

with code quality feedback. The tool indicates if the

user is compliant with the guidelines as set by BCH.

It presents refactoring candidates and a short text of

how and why the refactorings should be done. The

1



BCH website (www.bettercodehub.com) provides an

explanation per guideline.

1.1 Motivating examples

At the University of Amsterdam (UvA), students en-

rolled in a programming minor require no a-priori pro-

gramming knowledge. During one semester, students

start by learning the fundamentals of programming

and later on specializes in making mobile applications

or data visualisations.

The programming minor consists of six courses. A

course can be four weeks full-time (average of 40 to

45 hours per week of total workload), or eight weeks

part-time. “Programming 1” and “Programming 2”

are partially based on Harvard’s CS50, teaching the

students the basics of computer science. “Program-

meertheorie” focuses on heuristics and solving cases

as a team. “App Studio” focuses on building a mobile

application for Android or iOS. “Data Processing” fo-

cuses on gathering and visualizing data. “Program-

meerproject” builds on “App Studio” and “Data Pro-

cessing”, where students work four full-time weeks on

an assignment of their own choice.

“Programmeertheorie” has no systematic teaching

in code quality, albeit code quality requirements like

decomposition, style, and comments influence the fi-

nal grade. “App Studio” and “Programmeerproject”

courses use a grading rubric [14] to assess ten code

quality criteria. Stegeman et al. [13] set out to for-

mulate an empirically validated model for code qual-

ity assessment in introductory programming courses.

The model is based on statements about code qual-

ity, sourced from three popular software engineering

handbooks, and three instructors. From the model

ten criteria are formulated in the rubric, that can each

be graded on a scale from one to four. Based on the

rubric, students get feedback on code quality after the

grade is determined, meaning they cannot use the feed-

back during the assignment.

Again, although these courses have little to none

systematic teaching in the theory and rationale behind

code quality, the final assessment is partially based on

code quality criteria.

1.2 Research questions

Our goal is to improve students’ skills for code quality

during the evolution of a student’s programming as-

signment, while keeping the overhead low for teaching

sta↵ as well as for students. Naturally, we require

a method to measure the impact of di↵erent strategies.

RQ 1: How can we measure the impact of an

automated code quality feedback tool on the code

quality of students’ assignments?

RQ 2: What kind of impact does an automated code

quality feedback tool have on the code quality of

students’ assignments over the span of a learning unit?

Our hypothesis is that the introduction of an auto-

matic code quality feedback tool like BCH, improves

the code quality of students’ assignments. Our re-

search contributes methods to measure the impact of

introducing automated code quality feedback tools in

programming education. It also provides insight into

the impact of automated code quality feedback tools

on students’ code quality of assignments in program-

ming education.

2 Background

This section presents research underpinning our work.

First, we describe how code quality is part of program-

ming education. Next, we describe how feedback can

be provided. Finally, we elaborate on di↵erent code

quality assessment tools.

2.1 Code quality in programming education

Our research is focused on teaching students about

code quality as part of the larger topic of software

maintenance, and is agnostic on impacting grading.

Teaching practical software maintenance can be done

in di↵erent ways. The Software Evolution course of

the UvA’s Software Engineering master has student

teams analyse open source code with tools they de-

velop themselves based on the SIG maintainability

model [7].

Szabo studied enhancing group-based maintenance

assignments, usually consisting of small code bases of

very good quality in which artificial problems were

introduced [15]. The author proposes to use old

medium-sized student projects with real software bugs.

These courses are maintenance-centric, and are aimed

at students that are somewhat experienced program-

mers.

Keuning et al. [8] studied code quality issues in stu-

dent programs. They investigate the frequency of is-

sues related to program flow, choice of programming

constructs and functions, clarity of expressions, de-

composition and modularization in a large body of

Java programs of novice programmers from the Black-
box database [3]. They found that novice program-

mers write programs with a substantial amount of code

quality issues, and they hardly fix code quality issues,

in particular those related to modularization. Code

quality issues were most prevalent in the expressions
and decomposition categories.

2



Table 1: 10 guidelines for code quality divided into three categories.

Code Architecture Way of Working

Write Short Units of Code Separate Concerns in Modules Automate Tests

Write Simple Units of Code Couple Architecture Components Loosely Write Clean Code

Write Code Once Keep Architecture Components Balanced

Keep Unit Interfaces Small Keep Your Codebase Small

2.2 Providing feedback

Hattie and Timperley conceptualize feedback as “in-

formation provided by an agent (e.g., teacher, peer,

book, parent, self, experience) regarding aspects of

ones performance or understanding [6].” The authors

state that feedback is one of the most powerful influ-

ences on learning and achievement, but the impact of

feedback can be either positive or negative [6]. Feed-

back can be accepted, modified, or rejected by the stu-

dent. The authors found that studies with the high-

est e↵ect sizes relating to feedback e↵ects, involved

students receiving information feedback about a task,

and how to do it more e↵ectively [6, p. 84]. Also,

“the most e↵ective forms of feedback provide cues or

reinforcement to learners; are in the form of video-

, audio-, or computer-assisted instructional feedback;

and/or relate to goals [6, p. 84].” And, “feedback is

more e↵ective when it provides information on correct

rather than incorrect responses and when it builds on

changes from previous trails [6, p. 85].” Feedback ap-

pears to have the most impact when “goals are specific

and challenging but task complexity is low [6, p. 85-

86].” Hattie and Timperley [6] arrived at a model for

feedback to enhance learning. It states that e↵ective

feedback must answer three major questions: “Where

am I going? (the goals)”, “How am I going?”, and

“Where to next?”.

We distinguish between two forms of providing feed-

back: formative and summative. Formative feedback

can be defined as “information communicated to the

learner that is intended to modify his or her thinking

or behavior to improve learning [12, p. 154].” This is

the feedback that can be used during an assignment,

or used in the next assignment within a course. We

understand summative feedback, as feedback that is

provided after the assessment of the last assignment

of a course. Or as Sadler defines it, summative assess-

ment “is concerned with summing up or summarizing

the achievement status of a student, and is geared to-

wards reporting at the end of a course of study espe-

cially for purposes of certification [11, p. 120].” As

stated by Shute, the crux is how feedback can be de-

livered correctly to significantly improve the learning

process and outcomes [12, p. 154]. According to Sadler

the key premise is, that “for students to be able to im-

prove, they must develop the capacity to monitor the

quality of their own work during actual production [11,

p. 119].”

2.3 Code quality feedback tools

We distinguish between tools that can provide auto-

mated feedback on code quality, and tools that fully

depend on manual work, either by the student or

teaching sta↵. This is not a division in formative and

summative tools. Also, we are not aiming to auto-

mate the grading process. However, automated grad-

ing tools for student assignments do exist (i.e. Web-
CAT, Autolab, and INGInious).

Automated code quality assessment tools.
As Ala-Mutka states, the undeniable benefits of au-

tomated assessment tools include objectivity, consis-

tency, speed, and 24-hour availability [1, p. 96]. Sev-

eral commercial and open source tools are available

that perform static code analysis, and provide code

quality feedback in some form. Examples are: Better
Code Hub (www.bettercodehub.com), Code Climate
(www.codeclimate.com), Codebeat (www.codebeat.

co), Codacy (www.codacy.com), PMD (pmd.github.

io), and SonarQube (www.sonarqube.org).

These tools can di↵er in the way they are im-

plemented in the process. Some provide the feed-

back within the Integrated Development Environment

(IDE), but are limited to this IDE. Others are inte-

grated into version control (i.e. GitHub), and can’t

be used with other version control systems. Lastly,

the tools di↵er in the programming languages that are

supported and the set-up needed per language (i.e. the

need for separate engines for di↵erent stacks).

BCH is a tool that provides feedback along ten

guidelines when integrated into GitHub. This means

it can be integrated into the existing work-flows com-

monly used in education. It is possible that at every

commit and push, the code is automatically analysed.

Via the BCH website, the analysis report can be in-

spected. No installation on the students’ computer is

required. Optionally a configuration file can be cre-

ated to scope the project to exclude code that should

not be included in the analysis (e.g. libraries). No ex-

tra set-up per programming language is required, and

the feedback is provided in an uniform way per guide-

line independent of di↵erent programming languages.

BCH makes use of “quality profiles” to allow for a cer-

tain degree of code quality violations. A quality pro-

3



file divides metrics in distinct categories, ranging from

fully compliant code to severe violations [16]. This is

based on the principle that some violations are worse

than others. With quality profiles, moderate viola-

tions, can be distinguished from severe violations [16].

A task-list can be made by selecting refactoring can-

didates from the list of presented violations. Students

can see which tasks have the highest impact on the

guideline. The quality profile gives a prediction when

a refactoring candidate is selected. This allows stu-

dents to focus on the highest impact refactoring tasks.

Manual code quality assessment tools
Becker proposes to use rubrics in programming ed-

ucation [2]. Becker’s approach is to create two rubrics

for each assignment: one focused on general style and

design issues, the other on specific elements of the par-

ticular problem being solved.

Stegeman et al. [14] discuss the design of a feedback

rubric for introductory programming courses, focused

on code quality. Their rubric is based on criteria from

their code quality model [13], and describes what is ex-
pected from these criteria. The rubric can also be used

as a manual formative assessment tool, to provide feed-

back to students to improve their performance. For

example, students can review each others code, or use

it for self reflection. Within the UvA programming

minor, the rubric is used for the code quality grad-

ing of the students’ programming assignments. The

model for assessment of code quality of Stegeman et
al. is based on nine criteria for code quality, and three

levels of achievement per criterion. The rubric we em-

ployed is a later iteration using ten criteria, and four

levels of achievement. The design decision to use four

levels of achievement mitigates the bias of graders to

a middle level [14]. Also, as explained by Stegeman et
al., the “flow” criterion “seemed to encompass two dif-

ferent parts: the control of complexity and the appro-

priate use of control structures and library functions;

as these goals were already formulated in a very iso-

lated fashion, we split o↵ the latter into a separate

criterion named ‘idiom’ [14]”.

3 Research method

We take the philosophical stance of critical theory. So,

as stated by Easterbrook et al.,“there is e↵ectively a

moral imperative to intervene to solve the problem.

Therefore, no attempt is made to establish a control

group: the moral imperative implies that it would

be unethical to withhold the intervention from some

groups. Instead, the emphasis is on identifying useful

lessons that help others who wish to pursue a similar

change agenda [5, p. 302].” This philosophical stance

we take, has an impact on the way we set-up our exper-

iments. We cannot make a control group of students

by denying them access to the automated code qual-

ity feedback tool, while students in the same iteration

of the course do have access. We are unable to per-

form a controlled experiment, since there are variables

which we cannot control that might a↵ect the exper-

iment. One of these is the fact that between courses

the group of students di↵er. We are also introducing

learning e↵ects, since students might be in multiple

courses that we use for our experiments.

Most research methods attempt to observe the

world as it currently exists, where we aim to inter-

vene in the studied situation to improve it [5]. We are

introducing an artefact in a real-life context to solve

a defined real-world problem. This leads us to Action

Research (AR), that has been pioneered in education,

where major changes in an educational strategy can-

not be studied without implementing them [5, p. 301].

AR is “an approach in which the action researcher and

a client collaborate in the diagnoses of a problem and

in the development of a solution based on the diagno-

sis [4, p. 709].” We take into account the positivists

concern of careful comparison of the “before” and “af-

ter” situations [5, p. 302], by analysing courses before

the research started to compare against.

We are looking for organizational problems we can

solve with this artefact, such as scaling the provision-

ing of timely feedback to a large number of students

without increasing the teaching load. For this ap-

proach, we use a specific form of AR method, the Tech-

nical Action Research (TAR) method [18, 17], since

this is an artefact-driven approach. TAR is an ap-

proach to validate new artefacts under conditions of

practice. TAR starts with an artefact that is tested

under conditions of practice by solving concrete prob-

lems with it [18, p. 220]. In this case, the artefact

is BCH and the practice is in an educational setting.

TAR bridges the relevance gap between “idealizations

made when designing the artefacts and the concrete

conditions of practice that occur in real-world prob-

lems [18, p. 220].”

The goal of the researcher is “to develop this

artifact for use in a class of situations imagined by the

researcher [18, p. 221].” The artefact is first tested on

toy-problems under idealized conditions. Afterwards,

it is scaled up to conditions of practice and more real-

istic problems are solved with it. This is done until it

can be tested by using it in one or more concrete client

organizations to solve concrete problems [18, p. 221].

In action research an intervention in a social situation

is done in order to both improve this situation and

learn from it [18, p. 220]. The entire TAR exercise

is based on the assumption that what the researcher

learns in this particular case, will provide lessons

learned that will be usable in the next case [18, p. 232].

4



4 Design of experiments

As we set out to understand how to measure the im-

pact, and what the impact of an automated code qual-

ity feedback tool is, we need data on how running

BCH analyses impacts the code produced by students.

Therefore we design two experiments where data is

gathered each time BCH is used to analyse code. The

first experiment is designed to understand how to mea-

sure the impact of introducing BCH. The second ex-

periment is designed to understand the impact of in-

troducing BCH in di↵erent variations. By establish-

ing methods to measure the impact, we can formulate

what kind of impact BCH has over the span of a learn-

ing unit. To increase generality, there is variation in

the experiment parameters, such as course duration,

size of student-teams, and the period the tool is used.

4.1 Experiment 1: Programmeertheorie

“Programmeertheorie” is an eight week part-time pro-

gramming course (see Table 2). The course focusses

on heuristic techniques to find solutions to problems,

where the state-space cannot be completely explored

by a computer. Students can choose between cases

with di↵erent kind of problems. The course starts with

the formation of a team of two to three students. Af-

terwards, the team commits to a case to work on for

the remaining weeks. The solutions must be imple-

mented in the Python programming language. The

grading partially depends on if the code is readable

/ understandable: divided into functions / classes /

modules, consistent style and comments are present

where needed.

As students know they will be graded on code qual-

ity, there is an incentive to use the feedback of BCH.

The use of BCH is mandatory, but the teams are free to

use the feedback in anyway they see fit. The teams are

instructed from week 2 to activate the “Push & Pull

request analysis” functionality of BCH. Every time the

team commits and pushes code to GitHub, an analysis

is run on the code. Feedback from BCH appears in

the commit history of GitHub, where they can browse

to the full analysis report. The introduction lecture

about maintainability and BCH is not part of this

course. However, some students also participate in

“App Studio”, where the lecture is given. Our aim is

to see how the teams pick up using the tool, without

active encouragement from the teaching sta↵. A ver-

sion of our BCH manual is made available, and the

accompanying book [16] is available in the classroom.

4.1.1 Data analysis

We start by providing insight into the use of BCH, this

time focused on the “Push & Pull request analysis”

functionality. As the teams work for eight weeks on a

single assignment, it is relatively long compared to the

other courses of the programming minor. This enables

us to explore how the repositories grow in volume.

We use the data generated by BCH in this experi-

ment to explore di↵erent metrics, such as the volume

trend and the guidelines (see Table 1). Because test-

ing and software architecture are outside of the scope

of this introductory course, we will focus on the guide-

lines of the “Code” category, and the “Write Clean

Code” guideline.

We look into the compliance of these guidelines over

time and the final compliance score of the last analysis.

This last analysis allows us to compare the student

teams against each other. Since each team started

using BCH at a di↵erent moment in time, we need to

align in time their respective first and last analysis of

their repositories in order to compare their respective

compliance trends. To normalize for the times BCH

is run, and mitigate its e↵ect on the trend line, we

linearly interpolate the data points.

4.2 Experiment 2: Programmeerproject

“Programmeerproject” is a four-week full-time pro-

gramming course, where students create a mobile ap-

plication (the Android or iOS track) or a web visu-

alization (the Data processing track using the D3.js
library) with some requirements. Programming lan-

guages used are JavaScript and Python for a web visu-

alization, Java for an Android app, or Swift for an iOS
app. The assignment will be graded on five aspects in-

cluding code, using the Stegeman et al. rubric [14]. As
the students know they will be graded on code quality,

there is an incentive to use the feedback of BCH.

The course is divided into four weeks. The first

week opens with an introduction lecture. This week

students write a proposal and design document, and

deliver a prototype. By the end of the second week,

students need to deliver an incomplete alpha version.

By the end of the third week, they must finish a fully

functional beta version. In the last week, the students

should not work on adding new features, rather on fin-

ishing their application and meeting the grading crite-

ria. The course ends with a product demonstration.

All set-ups based on this course are detailed in Ta-

ble 3.

Set-up 3.1: The baseline. For this set-up we con-

sider an instance of the “Programmeerproject” course

that took place before this research started. This set-

up has no involvement of BCH as indicated in Table 3.

Thus, this is the BCH-agnostic set-up which we use

as a baseline. This baseline set-up yields the com-

pliance level against which BCH-enabled set-ups are

compared. The students code base has been stored in

repositories.

5



Table 2: Programmeertheorie.

Set-up Week count Enrolled students BCH

2.1 8 53 Week 2 to 8

Table 3: Programmeerproject.

Set-up Week count Enrolled students BCH

3.1 4 40 No BCH

3.2a 4 66 Week 4

3.2b 4 66 No BCH

3.3 4 29 Week 1-2-3-4

Set-up 3.2. In this set-up of the “Programmeer-

project”, students are encouraged to use BCH, how-

ever it is not mandatory. Compared to set-up 3.1, the

student now can run their code through BCH. The dif-

ference between set-up 3.2a and 3.2b organically ap-

peared by students that wanted to use the tool (3.2a),

and students that ignored the tool (3.2b). To comply

with ethics we could not withhold the tool from a part

of the students.

The first week opens with a lecture that is also

partly about maintainability and BCH. In the third

week, the goal is to develop a fully functional beta

version, which should be analysed by BCH by the end

of that week. In the fourth week, the goal is to refactor

the code and fix bugs. Thus, in this set-up, students

are encouraged to use BCH only in this last week of

the course. The accompanying book [16] is available

in the classroom. With this set-up we can gather data

from deploying BCH over a short period in the last

week of the course.

Set-up 3.3. In this set-up the students must use

BCH from the prototype version on. Compared to set-

up 3.2, where the students are only encouraged to use

BCH after they had to run it once at the last Friday

of week three. The second week starts with a guest-

lecture about maintainability and BCH. From the pro-

totype version on, the students have to use BCH with

“Push & Pull request analysis” enabled. We moni-

tored which students did not yet start using BCH, so

we could inform the Teaching Assistants (TAs) to help

the student get started. Every time the student com-

mits and pushes code to GitHub, an analysis is run on

the code. Feedback from BCH appears in the com-

mit history of GitHub, from where they can browse

to the full analysis report. At every push to GitHub,
the code is automatically analysed with BCH. We vis-

ited the students a few times after the guest-lecture,

to help with questions about BCH. The accompanying

book [16] is also available in the classroom. With this

set-up we can gather data from an active approach of

deploying BCH over a longer period.

4.2.1 Data collection

Preparation of the manually analysed reposito-
ries. We cleaned the repositories that were not yet

analysed to make sure we only analyse the code writ-

ten by the students, not third-party code used by the

students. We also manually searched the repositories

for duplicate files that were created as local version

control (di↵erent versions put in separate folders in

the repository) and deleted them, so this has no ef-

fect on the analysis. Some students changed the name

of the repository during the course that caused the

repositories to not match with the BCH data. This

was manually fixed.

Set-up 3.1: Generating data. The projects are

downloaded from GitHub and analysed at di↵erent

points in time to be able to compare them to the data

from set-up 3.2 and 3.3. The last week of the course

was, just like in set-up 3.2 and 3.3, devoted to refac-

toring the code. To compare the data, we performed

two analyses with BCH after course completion. BCH

was not used or mentioned at all during the course.

The first analysis is performed on the code closest to

the last Friday of week three of the course, but no

later than that day. The second analysis is performed

on the code closest to the presentation deadline of the

last Friday of the course, but no later than that. We

removed two students that handed in code from a pre-

vious iteration of this course. One student had no

commits after week three, so was omitted.

Set-up 3.2: Generating a test group. Out of

the 66 students, 56 students used BCH. This organi-

cally gave us a group of 10 students that did not use

BCH. By running BCH a-posteriori, we can measure

the improvement over the last week of the course, sim-

ilarly to set-up 3.1. The first analysis is done on the

code closest to the last Friday of week three, but no

6



later. The second analysis is performed on the code

closest to the presentation deadline of Friday in the

last week of the course, with a margin of one day.

Some repositories needed cleaning up (e.g. libraries),

to make sure we only analysed the code of the students.

Students that had no commits close to both our dead-

lines were omitted. This gave us 6 students from the

set of 10 students we could generate data for. Two

belonged to the Android track, and four to the Data
processing track. We will call this set of 6 students

that did not use BCH themselves “set-up 3.2b”.

Set-up 3.3: Setting up a questionnaire. In ad-

dition to the quantitative data we gather with BCH,

we also have students fill in a questionnaire about their

experience with BCH to gather qualitative data. Our

goal is to evaluate the usability of BCH feedback. Un-

fortunately we could not enforce the structure of stu-

dents committing before and after BCH use, to see

how students reacted upon BCH feedback.

To set-up a questionnaire we use principles as

stated by Kitchenham and Pfleeger [9]. An ordinal

scale of “strongly disagree”, “disagree”, “agree”, and

“strongly agree” is used to limit the time needed to re-

spond to the closed questions. The typical “neutral”

column is left out to force the students to make a de-

cision between positive or negative. Also, to prevent a

“middle option” that could act as a neutral choice, we

have an even number of options for the closed ques-

tions. The closed questions are placed after the open

questions, to limit the influence of first on the latter.

They were handed out when the students used BCH

around 2,5 weeks in the ideal case.

4.2.2 Data analysis

To test our hypothesis that the introduction of an au-

tomatic code quality feedback tool like BCH improves

the code quality of students’ assignments, we gathered

BCH analysis data from set-up 3.1, 3.2a, 3.2b, 3.3. We

use the same rationale as in experiment 1 for choosing

the BCH guidelines. So, we will focus on the guidelines

of the “Code” category, and the “Write Clean Code”

guideline. We can directly compare set-ups 3.1 and

3.2 on the five guidelines. We cannot directly com-

pare set-up 3.3 with set-up 3.1 and 3.2, since set-up

3.3 was measured over a longer time span by starting

the measurements earlier in the four week course.

Per set-up we align in time the first and last analysis

of each repository. Hereby we improve the depiction of

the start and end compliance, and the compliance over

the span of the analyses. To normalize for the times

BCH is run, and mitigate its e↵ect on the trend line,

we linearly interpolate the data points. We plot the

trend lines and corresponding confidence bands with

a confidence interval of 95%. If the confidence bands

do not overlap, we can state their is a statistical sig-

nificant improvement in code quality when using BCH

for the selected guidelines.

We will look at the compliance trends per guide-

line over time, where we cluster Android and iOS un-

der Native applications to obtain a sizeable group.

The web visualization projects will be the Web group.

Also, the division between Web and Native was cho-

sen, because the coding style used in Web follows

a fundamental di↵erent approach than BCH’s Write
Short Units of Code guideline. The final compliance

scores per guideline allow us to compare all three set-

ups, including set-up 3.3.

We processed the data from the questionnaire by en-

coding the scale from “strongly disagree”, “disagree”,

“agree”, and “strongly agree”, to 1, 2, 3, 4. Entries

in-between circles are marked with ,5. The responses

are labelled to prevent double or missing entries.

5 Results

Our results are grouped per experiment.

5.1 Experiment 1

Figure 1 shows the number of analyses per team. With

the “Push & Pull request analysis” functionality of

BCH enabled, the teams on average ran BCH 82 times.

When we exclude outliers that run less than five analy-

ses, we find an average of 112,77 runs, as measured over

a period of seven weeks. Table 4 summarizes the final

compliance per team per guideline. Figure 2 shows the

volume trend per team, and the spread of the analyses

over time. Figure 3 depicts the trends of compliance

per guideline.

5.2 Experiment 2

With baseline datasets (set-up 3.1 and 3.2b) and

datasets of the groups that used the tool, the datasets

can be plotted against each other.

Our approach is the synchronize the first and last

analysis of every student by mapping the first analysis

and last analysis on a relative time line, to improve the

depiction of start and end compliance with the selected

guidelines. To normalize for the e↵ect that number of

times the tool is run has on the trend line, the data

must be normalized. Our approach was to linearly

interpolate the data points. A diagram that shows two

trend lines for each dataset can be produced. In order

to state there is a significant statistical improvement,

the confidence bands (with a 95% confidence interval)

of the corresponding trend lines should not overlap.

Figure 4a depicts the di↵erence in measured code

quality of the accumulation of five guidelines, for all

three tracks (Android, iOS and Data processing) com-

bined. The figure shows the improvement on the four

7



“Code” guidelines and the “Write Clean Code” guide-

line over time. Figure 5 shows the trends for set-up

3.1 and set-up 3.2a per platform (here the Android
and iOS track are combined). Figure 6 shows the im-

provement on the combined five guidelines for set-up

3.3. The assignments in “Native” and “Web” appli-

cations are more homogeneous in “Programmeerpro-

ject”, compared to the cases of “Programmeertheorie”

(experiment 1), so we are able to cluster the assign-

ments. With this platform clustering we can improve

the visualization of the compliance per guideline di-

agrams, as shown in Figure 7 and Figure 8. Table 5

allows us to directly compare the di↵erence in the final

compliance scores of each set-up.

6 Discussion

We examine how we can measure the impact of an

automated feedback tool, and what kind of impact the

introduction of a automated feedback tool has on the

code quality of students’ assignments. We start with

examining how to measure the impact by discussing

the two experiments, and answer the research question

of how this can be done. In the second section we

examine what kind of impact the introduction of a

automated feedback tool has, based on the results of

the second experiment.

6.1 How to measure the impact of an auto-
mated feedback tool

We performed two experiments, each with di↵erent

set-ups. In the first experiment we had just one set-up

where BCH was used for seven weeks by teams with

one assignment. In the second experiment BCH was

used for a full-time four week assignment.

6.1.1 Experiment 1

This experiment provided us with data that was dis-

tributed over the span of seven weeks. Figure 2 shows

that several teams have a wider spread over time in the

distribution of the analyses over time. It also shows

that some teams have performed few analyses (like

team 3, 6, 15, 16 and 17). Using also Figure 1, we gain

insight for the data filtering: it might be the case that

students use the tool incorrectly and skew the data.

Thus, data needs to be filtered to accurately measure

the impact of BCH. This can be done manually or by

helping the students correctly scope their project files.

Due to the diversity of the assignments, we cannot

aggregate the measurements of all the teams into one

diagram. We use Table 4 to summarize the final com-

pliance per team per guideline. This provides insight

into where the most compliance is per guideline. What

we learned is that methods that created Figure 3 and

Table 4 contribute to measuring the impact of distinct

parts of the tool at a smaller granularity.

6.1.2 Experiment 2

Intuitively, in order to examine if an improvement in

code quality can be attributed to an automated code

quality tool, we need a baseline dataset. This baseline

dataset is not straightforward to generate. A moral

imperative might hinder establishing a control group,

and generating data from an already finished course

requires extensive cleaning.

We chose to visualize the combined compliance of

a selected number of guidelines. Trend lines indicate

how the students comply overall on the selected

guidelines. In Figure 4a the confidence bands overlap,

due to the lower number of students in the set-up

3.2b dataset. In order to state there is a significant

statistical improvement, the confidence bands (with a

95% confidence interval) of the corresponding trend

lines should not overlap. With a larger sample size, as

used in set-up 3.1, we improved the confidence bands.

RQ 1: How can we measure the impact of an
automated code quality feedback tool on the
code quality of students’ assignments?
To measure the impact of an automated code quality

feedback tool we found that data is needed on how the

students are performing on code quality. Data needs

to be collected directly from the tool in a su�cient

volume, with a certain interval over a defined period

of time. For example, at least have the students com-

mit and push their code every day, so an analysis is

run in the background, over the period of the course

where code is developed by the students. External

reasons might prohibit the researcher from collecting

enough data. By planning in advance, the researcher

can mitigate scenarios that might be of influence. Stu-

dents might ignore the tool, than the researcher should

elicit information from the students to find out what

the reasons are.

Data cannot always be aggregated due to the diver-

sity of students’ programming assignments, or di↵er-

ent set-ups of courses. As a consequence, meaningful

statistics cannot be performed because of the small

sample size. However, the data can still be explored

to gain insight on a more granular level than overall

compliance scores produced by the tool. By visualizing

the distribution of analyses over time, and the number

of analyses per student/team, insight can be gained to

base the filtering of data on. Outliers can be spotted

and filtered out of the data. Guidelines of the tool can

be selected that show a meaningful trend. Filtering is

needed to improve the quality of the data and produce

meaningful visualizations and calculations.

8



Table 4: Programmeertheorie final compliance scores per team. Zero indicates guideline not met, one indicates

compliance with the guideline.

Team 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18

Write Short Units of Code 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

Write Simple Units of Code 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Write Code Once 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

Keep Unit Interfaces Small 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1

Write Clean Code 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 1: Set-up 2.1

9



Figure 2: Set-up 2.1 Volume trend per team, mapped against the date the analysis took place.

Figure 3: Set-up 2.1 Improvement on the four “Code” category guidelines, and the “Write Clean Code” guideline

per team. First and last analysis are synced up. 0 indicates that no compliance is met with the guidelines. 1

indicates compliance with the guideline. -1 and 2 are by-products of the confidence bands. Since we use trend

lines, the lines might not end exactly on zero or one. See Table 4 for the final compliance scores. Teams with

one measurement are excluded.

10



(a) Set-up 3.2 Set-up 3.2a are the students that used BCH. Set-up 3.2b are the students that did not use
BCH. Set-up 3.2b shows a straight line because we performed two measurements per repository.

(b) Set-up 3.1 & 3.2a Set-up 3.1 shows a straight line since we performed two measurements per repository.

Figure 4: Improvement on the four “Code” guidelines and the “Write Clean Code” guideline. First and last

analysis are synced. Zero indicates that no compliance is met with the guidelines. Five indicates that all five

selected guidelines are met. Each dotted line is a repository.

11



Figure 5: Set-up 3.1 & 3.2a Improvement on the four “Code” guidelines and the “Write Clean Code” guideline.

First and last analysis of each repository are mapped on a relative time line. Zero indicates that no compliance is

met with the guidelines. Each dotted line is a repository. Set-up 3.1 shows a straight line because we performed

two measurements per repository.

Figure 6: Set-up 3.3: Improvement on the four code guidelines and the write clean code guideline. First and

last analysis are synced up. Zero indicates that no compliance is met with the guidelines. The x-axes should
not be directly compared to the diagrams of set-up 3.1 and 3.2, since set-up 3.3 was measured
over a longer time span by starting the measurements earlier in the four week course. Each dotted

line is a repository.

12



(a) Set-up 3.1 The diagrams show straight lines because we performed two measurements per repository.

(b) Set-up 3.2a
Figure 7: Improvement on the four “Code” guidelines and the “Write Clean Code” guideline. First and last

analysis of each repository are mapped on a relative time line. The y-axes indicate the percentage of students

meeting the guideline. Zero means that no compliance is met with the guidelines.

13



Figure 8: Set-up 3.3 Improvement on the four “Code” guidelines and the “Write Clean Code” guideline. First

and last analysis are synced. Zero means that no compliance is met with the guidelines. The y-axes indicate

the percentage of students meeting the guideline. The x-axes should not be directly compared to the
diagrams of set-up 3.1 and 3.2, since set-up 3.3 was measured over a longer time span.

(a) Native platform (b) Web platform
Figure 9: Set-up 3.3: Improvement on the four “Code” guidelines and the “Write Clean Code” guideline, trend

lines normalized with code volume. First and last analysis of each repository are mapped on a relative time line.

Zero indicates that no compliance is met with the guidelines. The y-axes indicate the percentage of students

meeting the guideline. The x-axes should not be directly compared to the diagrams of set-up 3.1 and
3.2, since set-up 3.3 was measured over a longer time span.

14



From a cleaned dataset, trend line visualizations

mapped over time and tables with final compliance

scores can be produced to gain insight in the perfor-

mance of the students over time. To be able to state

that an improvement can be attributed to the intro-

duction of a tool, we need to compare against baseline

data. One way to obtain such a dataset is by estab-

lishing a control group that does not have access to the

tool. Moral imperatives might withhold the researcher

from establishing control groups. In some cases, a

group of students refuse to use the tool and data can

be generated from this group afterwards. If this is

not the case, the researcher can generate a baseline

dataset from a previous iteration of the same course,

where the tool was not used. In both cases cleaning

of the data is required to make sure that the measure-

ments represent the code quality of the students, not

that of external libraries and frameworks.

We were not able to directly map the guidelines of

BCH to the criteria of the rubric. So we did not use

the rubric to measure the impact of BCH.

6.2 The kind of impact of an automatic feed-
back tool

We first examine the measurable impact of an auto-

matic feedback tool. Next, we address how the stu-

dents experienced the tool, after using it for a period

of four weeks. Finally, we answer research question 2.

6.2.1 The measurable impact

In Figure 4a, the trend line of set-up 3.2a shows a

higher quality over the complete span o↵ the measured

period. This indicates that there is an improvement in

the code quality of the students’ assignments over the

period BCH was used. We cannot state that there is

a statistical significant improvement over set-up 3.2b,

due to the sample size of the control group that or-

ganically appeared. In Figure 4b we observe the same

positive trend for set-up 3.2a compared to the BCH-

agnostic trend line. This time we do observe that the

confidence bands do not overlap. Therefore, we can

state that there is a statistical significant improvement

in the code quality of students’ assignments over the

period BCH was used.

In Figure 5, the “Web” platform starts about one

guideline lower than the “Native” platform. Further

inspection in Figure 7a and Figure 7b show a notice-

able di↵erence between the platforms on the “Write

Short Units” guideline. This can be explained by the

programming style used in the “Web” platform. Func-

tions tend to become large, because these functions

in turn can hold other functions and variables. Since

BCH correctly detects the longer outer functions with

its variables, the guideline becomes harder to comply

with using that programming style. This explains why

the “Web” platform starts noticeably lower than the

“Native” platform.

In Figures 6 and 8, set-up 3.3 shows an interesting

di↵erence when compared to set-up 3.1 and 3.2, where

BCH was used to measure in the last week only (manu-

ally by the researcher in the case of set-up 3.1). Where

set-up 3.1 and 3.2 only show improvement over time,

we observe in set-up 3.3 first a decrease in code quality,

before improving again. We suspect that this is caused

by the increase in volume of the project, and the focus

in the last week of the course where it shifts towards

fixing bugs and improving the code. To explain the

decrease in code quality in set-up 3.3, we examine the

hypothesis that code quality will drop when the vol-

ume of code increases, until no more features are added

to the application (a slower increase in volume). We

extract overall volume trend lines per platform. The

volume trend lines are used to normalize the guideline

trend lines as shown in Figure 9. We filtered out data

points above the 2500 volume threshold, to exclude

data points that are skewed by incorrect configuration

files (e.g. the project is scoped in a way that third

party code is included, like frameworks).

For the “Native” platform, the “Write Clean Code”,

“Write Simple Units”, and “Write Code Once” guide-

lines tend to have a more linear trend of improve-

ment. For the “Small Unit Interfaces”, and “Write

Short Units” we only see a steady improvement in the

last part of the time span of the course. This might

be explained by the last week, where the students fix

bugs, and improve the code quality. For the “Web”

platform, we see, as expected, that the “Write Short

Units” guideline is not met at all by the students. The

other guidelines tend to become more linear, but with

a small decrease at the end. This might be explained

by the volume that decreased in the end, by removing

duplicate code.

Compared to set-up 3.1 all guidelines improve ex-

cept for the “Keep Unit Interfaces Small” and “Write

Clean Code” guidelines (see Table 5). From our vis-

its in the classroom during set-up 3.3, we learned that

the students o↵ the “Native” platform found it hard to

meet the “Keep Unit Interfaces Small” guideline be-

cause of the Firebase framework. A response we got

in the questionnaire from an Android track student is,

that it is found to be “impossible” to improve on the

standard functions with four parameters. This might

be explained by a risen popularity of Firebase being

used by the students. The “Write Clean Code” guide-

line is met by every student in all the set-ups on every

platform. Though, on the “Native” platform in set-up

3.2 the students start of higher on this guideline. We

cannot explain this observation from our data. We do

conclude that the use of BCH has no significant im-

15



pact on the “Write Clean Code” guideline. This con-

clusion is also supported by the final compliance scores

of “Programmeertheorie”, as compiled in Table 4.

Though we see improvements in code quality after

introducing BCH, it is not a steep improvement over-

all. This might be caused by the main focus of the

course, which is not on code quality. In a discussion

with the TAs, one remarks that some students do not

understand why the BCH feedback is useful to them.

Students are focused on functionality, not on code

quality. Some students are still working in the last

week on functionality, instead of focusing on the code

quality. We observe di↵erences in students perfor-

mance on the individual guidelines. “Native” platform

students appear to benefit most from the “Write Short

Units” guideline. In our baseline data we observed a

decrease over time on the “Native” platform, without

using the tool. In both the 3.2 and 3.3 set-up we mea-

sure nearly double the percentage of students meeting

the guideline. This guideline could not be successfully

complied with by the “Web” platform students, due to

the programming style. Both platforms improve with

the tool on the “Write Simple Units” guideline, in one

case an extra 30% of students. All students improved

with the use of the tool on the “Write Code Once”

guideline, the “Web” platform students with over a

doubling of the percentage. Students of both platforms

overall did not benefit from the tool on the “Keep Unit

Interfaces Small” guideline. Also, on the “Write Clean

Code” guideline all students did not need any extra

support from a tool, since they already scored 100%

in all set-ups, in both the “Programmeertheorie” and

“Programmeerproject” courses.

6.2.2 Experience of the students

We gathered qualitative data with a questionnaire

about the experience of the introduction of BCH from

the students in set-up 3.3. The results show that the

students agree that BCH helped them improving their

code. They mostly agree that BCH supported them

in the learning process. A bad score on BCH did not

demotivate the students, and they did not have the

feeling they had to endlessly improve their code. Over-

all, the students agree that BCH has a place within

the programming minor, and believe it should be used

again in the course. The book “Building Maintainable

Software” was hardly used during the course.

We do see some di↵erences between the “Data pro-

cessing” students responses compared to the other two

tracks. The “Data processing” tend to agree more that

they would have ended up with the same code qual-

ity without BCH, and some believe it unnecessarily

cost them time. Time they would rather have spend

with a Teaching Assistant (TA). They also think BCH

is less of a valuable addition to the programming mi-

nor, compared to the iOS and Android tracks. Also,

the “Data processing” found it to be less clear where

the biggest quality problems in their code were. And,

when asked to speculate if they would have used the

tool on recommendation as well, the “Data process-

ing” students lean towards the negative side. Over-

all, the “Data processing” students were more nega-

tive compared to the other two tracks. This might be

explained by the “Write Short Units” guideline, where

the students struggled with because of their program-

ming style. From the responses of the open questions

we can state that the students believe BCH to not

be working correctly with the D3.js framework they

used, despite correct measurements. From the open

questions we notice that the students want to be able

to meet all the guidelines on BCH, but because not all

guidelines are directly related to their projects, they

are not able to meet all of them (e.g. testing is not

part of the course).

In our interview after set-up 3.3 with the TAs,

we asked them how they think that the students

experienced BCH. They believed there were students

that did not fully understand the usefulness of a tool

like BCH. They focused more on functionality, not

on code quality. There were also people that took it

seriously, and worked to meet the guidelines. They

sometimes got angry when guidelines like “Automate

Test”, and “Write Short Units” could not be met,

despite their best e↵orts. Questions arose if these

kind of guidelines would be punished in the grading.

RQ 2: What kind of impact does an automated
code quality feedback tool have on the code
quality of students’ assignments over the span
of a learning unit?

We can state that there is a statistical significant im-

provement in the code quality of students’ assignments

when BCH is used. There are di↵erences in the per-

formance on individual guidelines. “Native” platform

students appear to benefit most from the “Write Short

Units” guideline. We measured nearly double the

percentage of students meeting the guideline (see Ta-

ble 5). “Web” platform students struggled with suc-

cessfully using this guideline because of their program-

ming style. Both platforms improve with the tool on

the “Write Simple Units” guideline, in one case an ex-

tra 30% of students. All students improved with the

use of the tool on the “Write Code Once” guideline,

where the “Web” platform students appear to benefit

most, with over a doubling of the percentage. Students

of both platforms overall did not benefit from the tool

on the “Keep Unit Interfaces Small” guideline. Also,

on the “Write Clean Code” guideline all students did

16



Table 5: Final compliance as percentage of students that complied with the guideline (rounded to next integer).

Set-up 3.1 3.2 3.3 3.1 3.2 3.3

Platform Native Native Native Web Web Web

BCH usage No BCH Week 4 Week 1-2-3-4 No BCH Week 4 Week 1-2-3-4

BCH Student count 19 34 16 16 22 13

Write Short Units of Code 26% 50% 50% 6% 5% 0%

Write Simple Units of Code 58% 79% 88% 44% 64% 54%

Write Code Once 58% 79% 75% 44% 77% 92%

Keep Unit Interfaces Small 79% 50% 63% 35% 50% 38%

Write Clean Code 100% 100% 100% 100% 100% 100%

not need any extra support from a tool, since they

already scored 100%.

Students agree that BCH helped them improving

their code, and mostly agree that BCH supported

them in the learning process. A bad score on BCH

did not demotivate the students, and they did not

have the feeling they had to endlessly improve their

code. Overall, the students agree that BCH has a place

within the programming minor, and believe it should

be used again. Though, an accompanying book was

hardly used. A noticeable di↵erence is that the stu-

dents of the “Data processing” track responded more

negatively compared to the other tracks.

7 Limitations

• The students between the set-ups di↵er, so the

perceived di↵erences might be influenced by them.

We mitigated this by maximizing the number of

students per set-up.

• We used relative small samples to base our statis-

tics on. We chose to only use the statistics that

made sense for our size of samples.

• Human error might be introduced by the re-

searcher when handling the data.

• Some of the students that used BCH struggled

with the configuration file (used to define the

scope of which files are analysed), or did not scope

in the beginning, despite our best e↵orts to in-

struct the students. This might have an e↵ect

on the measured code quality. We believe that

the scoping was mostly set correctly, and nearly

all of them towards the end. This observation is

supported by inspecting individual volume trends.

We saw the volume drops, most likely caused

by changing the configuration file, happen in the

middle of the time span. When generating analy-

sis data (as in set-up 3.1 and 3.2b), we manually

inspected the repositories, and deleted the code

that did not belong to the students (e.g. external

libraries and frameworks).

• Inherent to the nature of our research method, we

only tested BCH within the context of the pro-

gramming minor. Not all results might be gen-

eralizable and we can only hypothesise about the

usage in di↵erent contexts.

• Researcher bias might be introduced by present-

ing the data in a favourable way. We mitigated

this via critical reflection in the discussion.

8 Related work

In our work we focussed on employing an automated

code quality feedback tool in a formative way to the

students. As Ala-Mutka [1, p. 95] states, several au-

thors reported that assessment tools with resubmission

possibilities helped the students with their program-

ming assignments. The automatic feedback guides the

students, and, they note, that the type of feedback nat-

urally a↵ects the students’ working strategy. Though,

the authors referenced by Ala-Mutka focus on errors,

erroneous code fragments, and/or the correctness of

the program. Ala-Mutka concludes that it is unfor-

tunate that the present assessment tools in 2005 are

developed for local use, and only for a certain type

of assignment. Adding, that inter-operable tool ap-

proaches would o↵er new and concrete co-operation

possibilities for teachers for sharing knowledge. With

the rise of continuous integration tools like BCH, we

can contribute to the building of knowledge about ap-

proaches on the assessment of students code, that is

widely applicable.

Keuning et al. [8] examined the di↵erences in the oc-

currence of code quality issues between students who

use code analysis extensions compared to students who

do not. The extensions they selected are: Checkstyle
for checking code conventions, PMD for static analy-

sis to detect bad coding practices in Java programs,

and PatternCoder for support with implementing de-

17



sign patterns. Their conclusion is, that the use of code

analysis tools by students has little e↵ect on the occur-

rence of issues. They state that educators should pay

more attention to code quality in their courses, and au-

tomated tools need to be improved to better support

students in understanding and solving code quality is-

sues [8]. Their research is limited to Java programs,

where we look at multiple di↵erent programming lan-

guages. A tool like PMD can overwhelm students

with violations, where BCH works with quality pro-

files, meaning not everything has to be fixed, some per-

centage of violations are justified. PMD might present

issues that are out of scope for novice programmers

(e.g. Law of Demeter [10]). We are of the opinion

that the way in which feedback is presented to the

students, and the selection of feedback has an impact

on the learning results.

9 Conclusion

In this research we set out to examine a proposed tool

that may be used to mitigate the problem of the lack

feedback regarding code quality during an introduc-

tory programming course. Code quality feedback is

given after the grading and cannot be used during the

assignment itself. Often, the grade depends (partially)

on code quality criteria. Our goal was to improve stu-

dents’ skills for code quality during the evolution of a

student’s programming assignment by introducing an

automated code quality feedback tool. We performed

experiments for half a year within the programming

minor to examine what benefits can be gained from

introducing an automated code quality feedback tool

in programming education.

We contributed methods to measure the impact of

introducing automated code quality feedback tools in

programming education, and provided insight into the

impact of such a tool on students’ code quality of as-

signments in programming education.

Our findings indicate that there is an improvement

in the code quality of the students’ assignments over

the period an automated code quality feedback tool is

used.

9.1 Future work

Apart from the measurements performed with an auto-

mated code quality analysis tool, we propose to auto-

matically analyse the students’ repositories on a daily

basis. If the students daily commit and push their

work to an on-line repository, a code quality perfor-

mance trend can be generated, even if the students do

not use an automated code quality analysis tool them-

selves. When data can be gathered with this method,

it might allow the researchers to track students over

multiple courses and assignments. And, when more

uniform data is collected, we can further examine the

hypothesis that if the tool is used more by the students,

the higher the final code quality compliance. We did

not gather enough data with our method to produce a

meaningful visualization. It would also be interesting

to gather data on the refactoring candidates that are

being resolved, and allow us to examine the action-

ability of the feedback.

We explored more ways to be able to state claims

with statistical significance. We found that for several

tests for significance we did not have su�cient sample

sizes. An interesting test to examine is a T-Test, and

check if the groups statistically significant improved

per guideline.

Lastly, the tool we used could not cover all the cri-

teria of code quality where the students are graded

on in the programming minor. It might be interest-

ing to test a combination of tools, like tools that force

style and conventions of programming languages. This

might introduce to much overhead, and distinct tools

might be needed for all the programming languages

used.

Acknowledgements

We would like to thank Martijn Stegeman (UvA), Gra-

cia Redder (UvA), Michiel Cuijpers (SIG), Marco Di

Biase (SIG), Paco van Beckhoven (UvA / SIG), and

Nevena Lazarevic (SATToSE shepherd) for their feed-

back.

References

[1] Kirsti M. Ala-Mutka. A survey of automated

assessment approaches for programming assign-

ments. Computer Science Education, 15(2):83–

102, 2005.

[2] Katrin Becker. Grading programming assign-

ments using rubrics. In ACM SIGCSE Bulletin,
volume 35, pages 253–253. ACM, 2003.

[3] Neil Christopher Charles Brown, Michael Kölling,

Davin McCall, and Ian Utting. Blackbox: a large

scale repository of novice programmers’ activity.

In Proceedings of the 45th ACM technical sympo-
sium on Computer science education, pages 223–
228. ACM, 2014.

[4] Alan Bryman. Social research methods. Oxford

university press, 2015.

[5] Steve Easterbrook, Janice Singer, Margaret-Anne

Storey, and Daniela Damian. Selecting empiri-

cal methods for software engineering research. In

Guide to advanced empirical software engineering,
pages 285–311. Springer, 2008.

18



[6] John Hattie and Helen Timperley. The power

of feedback. Review of educational research,
77(1):81–112, 2007.

[7] Ilja Heitlager, Tobias Kuipers, and Joost Visser.

A practical model for measuring maintainabil-

ity. In Quality of Information and Communica-
tions Technology, 2007. QUATIC 2007. 6th Inter-
national Conference on the, pages 30–39. IEEE,

2007.

[8] Hieke Keuning, Bastiaan Heeren, and Johan Jeur-

ing. Code quality issues in student programs.

2017.

[9] Barbara A Kitchenham and Shari Lawrence

Pfleeger. Principles of survey research: part 3:

constructing a survey instrument. ACM SIG-
SOFT Software Engineering Notes, 27(2):20–24,
2002.

[10] Karl J. Lieberherr and Ian M. Holland. Assuring

good style for object-oriented programs. IEEE
software, 6(5):38–48, 1989.

[11] D Royce Sadler. Formative assessment and the

design of instructional systems. Instructional sci-
ence, 18(2):119–144, 1989.

[12] Valerie J Shute. Focus on formative feedback. Re-
view of educational research, 78(1):153–189, 2008.

[13] Martijn Stegeman, Erik Barendsen, and Sjaak

Smetsers. Towards an empirically validated model

for assessment of code quality. In Proceedings
of the 14th Koli Calling International Conference
on Computing Education Research, pages 99–108.
ACM, 2014.

[14] Martijn Stegeman, Erik Barendsen, and Sjaak

Smetsers. Designing a rubric for feedback on code

quality in programming courses. In Proceedings of
the 16th Koli Calling International Conference on
Computing Education Research, pages 160–164.

ACM, 2016.

[15] Claudia Szabo. Student projects are not throw-

aways: teaching practical software maintenance

in a software engineering course. In Proceedings of
the 45th ACM technical symposium on Computer
science education, pages 55–60. ACM, 2014.

[16] Joost Visser, Sylvan Rigal, Rob van der Leek,

Pascal van Eck, and Gijs Wijnholds. Building
Maintainable Software, Java Edition: Ten Guide-
lines for Future-Proof Code. ” O’Reilly Media,

Inc.”, 2016.

[17] Roel Wieringa. Technical action research. In

Design Science Methodology for Information Sys-
tems and Software Engineering, pages 269–293.

Springer, 2014.

[18] Roel Wieringa and Ayşe Moralı. Technical action

research as a validation method in information

systems design science. In International Confer-
ence on Design Science Research in Information
Systems, pages 220–238. Springer, 2012.

19


