
SATToSE 2017: The Post-Proceedings Editorial

Haidar Osman1, Andrei Chis2, Davide Di Ruscio3, Vadim Zaytsev4

1 University of Bern, Switzerland osman@inf.unibe.ch
2 Feenk GmbH, Switzerland chisvasileandrei@gmail.com
3 University of L’Aquila, Italy, davide.diruscio@univaq.it

4 Raincode Labs, Belgium, vadim@grammarware.net

Venue

SATToSE is the Seminar Series on Advanced Techniques and Tools for Software
Evolution. Its previous editions have happened in Waulsort (Belgium, 2008),
Côte d’Opale (France, 2009), Montpellier (France, 2010), Koblenz (Germany,
2011, 2012), Bern (Switzerland, 2013), L’Aquila (Italy, 2014), Mons (Belgium
2015), Bergen (Norway 2016). Its tenth edition took place in Madrid, Spain on
7–9 June 2017. Each edition of SATToSE witnesses presentations on software
visualisation techniques, tools for coevolving various software artefacts, their
consistency management, runtime adaptability and context-awareness, as well
as empirical results about software evolution.

The goal of SATToSE is to gather both undergraduate and graduate students
to showcase their research, exchange ideas, improve their communication skills,
attend and contribute technology showdown and hackathons.

The highlights of the programme included two invited talks given by Serge
Demeyer and Joost Visser, an interactive tutorial by Felipe Ortega Soto, and a
hands-on hackathon by Felienne Hermans. The detailed programme, as well as
the pre-proceedings drafts can be found on our website:
http://sattose.org/2017.

Selection process

Each pre-proceedings submission was reviewed by at least three different peers.
All submissions with a conflict of interest with one of the editors (co-authored
by them or their colleagues) were handled by the other editor. We would like to
express our gratitude to the program committee (listed in lexicographic order)
who provided the reviews.

⇧ Anya Helene Bagge
⇧ Alexandre Bergel
⇧ Andrea Caracciolo
⇧ Tommaso Dal Sasso
⇧ Serge Demeyer
⇧ Coen De Roover

⇧ Davide Di Ruscio
⇧ Anne Etien
⇧ Mohammad Ghafari
⇧ Michael W. Godfrey
⇧ André Hora
⇧ Mircea Lungu



⇧ Kim Mens
⇧ Nevena Milojković
⇧ Sebastiano Panichella

⇧ Luca Ponzanelli
⇧ Alexander Serebrenik
⇧ Vadim Zaytsev

The call for post-proceedings contributions was communicated to all par-
ticipants after the event. Only some decided to pursue the finalisation of their
contribution for the post-proceedings where they might have solicited more co-
authors, changed the title, and included more results. As a result, we have re-
ceived 5 submissions of the extended versions of pre-proceedings abstracts.

Each submitted report for the post-proceedings has been assigned a shepherd
to ensure that the authors took the reviews from the pre-proceedings phase into
account. The emphasis was put on clear problem definitions and descriptions
of advanced aspects of the techniques contemplated in the solution, as opposed
to the finality of the obtained results. Thus, most submissions are intermediate
reports on ongoing work or summaries of previously developed tools and papers.

Organisation

⇧ General Chair: Gregorio Robles (Universidad Rey Juan Carlos)
⇧ Program Co-Chairs:

• Haidar Osman (University of Bern)
• Andrei Chis (Feenk GmbH)

⇧ Hackathon Chair: Felienne Hermans (Delft University of Technology)
⇧ Social Media Chair: Vadim Zaytsev (Raincode Labs)
⇧ Steering Committee Chair Kim Mens (Université catholique de Louvain)
⇧ Steering Committee:

• Gregorio Robles (Universidad Rey Juan Carlos, Spain)
• Anya Helene Bagge (University of Bergen, Norway)
• Mircea Lungu (University of Groningen, The Netherlands)
• Davide Di Ruscio (University of L’Aquila, Italy)
• Vadim Zaytsev (Raincode Labs, Belgium)
• Coen De Roover (Vrije Universiteit Brussel, Belgium)
• Oscar Nierstrasz (University of Bern, Switzerland)

⇧ Post-proceedings Editors: Haidar Osman (University of Bern)



Contents of the volume

⇧ Bringing Incremental Builds to Continuous Integration
Incremental builds can considerably speed up the edit-compile-test loop dur-
ing program development. While this technique is commonly used for local
builds, it is seldom enabled during continuous integration. Correctness of
continuous integration builds is usually preferred to compilation speed. With
current tools, it is not trivial to get both properties, but we show that it is
theoretically achievable with a carefully designed system. We first assess
the potential benefits of incremental builds in continuous integration envi-
ronments. We then identify different reasons that prevent that optimisation
in practice. From these, we derive requirements to be met by future build
systems to support incremental continuous integration. These steps are illus-
trated with existing tools, research insight and sample cases from industry.
Ultimately, this paper defines a new research direction at the intersection of
build systems and continuous integration.

⇧ Test Refactoring: a Research Agenda
Research on software testing generally fo- cusses on the effectiveness of test
suites to detect bugs. The quality of the test code in terms of maintainability
remains mostly ignored. However, just like production code, test code can
suffer from code smells that imply refactoring opportunities. In this paper,
we will summerize the state-of-the-art in the field of test refactoring. We
will show that there is a gap in the tool support, and pro- pose future work
which will aim to fill this gap.

⇧ Assessing Test Suite Effectiveness Using Static Metrics
With the increasing amount of automated tests, we need ways to measure
the test effectiveness. The state-of-the-art technique for assessing test effec-
tiveness, mutation testing, is too slow and cumber- some to be used in large
scale evolution studies or code audits by external companies. In this paper
we investigated two alternatives, namely code coverage and assertion count.
We discovered that code coverage outperforms assertion count by showing
a relation with test suite effectiveness for all analysed project. Assertion
count only displays such a relation in only one of the analysed projects. Fur-
ther analysing this relationship between assertion count coverage and test
effectiveness would allow to circumvent some of the problems of mutation
testing.

⇧ The Impact of Automated Code Quality Feedback in Programming Education
While some university-level programming courses focus on software quality,
often in introductory courses code quality is little touched upon due to time
constraints. Students usually get feedback on code quality after the grading
of their assignment, feed- back that cannot be used on that same assignment.
Our aim is to improve students? skills for code quality during the evolution
of a students? programming assignment, while keeping the overhead low for
teaching staff as well as for students. Better Code Hub is a service that checks
code quality according to ten guidelines. We employ Better Code Hub as a
formative assessment and feedback tool enabling students to monitor their



progress on code quality. Our findings indicate that there is an improvement
in the code quality of the students? assignments over the period the tool is
used. Our experiments show that students benefited the most from feedback
on unit length, unit complexity, and code duplication.

⇧ Analysis of a Clone-and-Own Industrial Automation System: An Exploratory
Study
In industry, the development of similar products is often addressed by cloning
and modifying existing artifacts. This so-called clone-and-own approach is of-
ten considered to be a bad practice but is perceived as a favorable and natural
software reuse approach by many practitioners. Unfortunately, current liter-
ature lacks quantitative information about the positive and negative effects
of clone-and-own. In this paper, we present the results of our exploratory
analysis of an industry system developed using the clone-and-own approach.
We found that products from the same product family can vary significantly
in change activity over time, divergence from their origin and synchroniza-
tion activity. We will further investigate these factors to develop quantitative
measures for the assessment of clone-and-own benefits and drawbacks.


