
Two Applications of Concept Refinement

Roberto Confalonieri, Nicolas Troquard, Pietro Galliani,
Oliver Kutz, Rafael Peñaloza, and Daniele Porello

Free University of Bozen-Bolzano, Italy
{Firstname.Lastname}@unibz.it

Abstract. We describe two applications of refinement operators that
can generalise and specialise concepts expressed in the ALC description
logic language. The first application addresses the problem of analysing
the joint coherence of some given concepts w.r.t. a background ontology.
To this end, we apply Thagard’s computational theory of coherence, in
combination with semantic similarity between concepts defined by means
of the generalisation operator. The second application focuses on repair-
ing an inconsistent collective ontology that may result from the vote on
axioms of multiple experts based on principles from social choice theory
and judgment aggregation. We use the refinement operators, together
with a reference ontology, to weaken some axioms and to repair the col-
lective ontology.

1 Introduction

Consistency checking, concept subsumption, or instance checking, are typical
reasoning problems in Description Logic (DL). They allow one to verify critical
properties of ontologies before publication. A published ontology will then form
one more brick of semantic knowledge on the web. Typical inference problems
thus help knowledge experts at developing good ontologies in the same way that
model checking is helping hardware engineers at making hardware without design
flaws. But reasoning in DL may also have a more active role in the creation of
ontologies. Non-standard inference problems [12] can indeed help the knowledge
experts in taking sensible decisions during the building and the maintenance of
an ontology, or can be used to discover new knowledge altogether. Examples of
non-standard problems are least common subsumer and most specific concept [6],
matching [1], and axiom pinpointing [18, 15].

Whilst in the DL literature these problems are essentially approached as rea-
soning tasks [4], concept learning and refinement in Machine Learning is achieved
by means of concept refinement operators [13]. Refinement operators, which are
used to generalise or specialise concept descriptions, have been transposed to
deal with DL concepts [7, 14], with the aim of measuring concept similarity [9],
coherence [8], dissimilarity[10], and repairing an inconsistent ontology [17].

In this paper, we extend and amend the definitions of our refinement opera-
tor for ALC concepts as presented in [8, 17], and then describe two application
scenarios for concept refinement. The first application addresses the problem of

Copyright © 2018 for this paper by its authors. Copying permitted for private and academic purposes.

analysing the joint coherence of some given concepts w.r.t. a background on-
tology. To this end, we apply Thagard’s computational theory of coherence, in
combination with semantic similarity between concepts defined by means of the
generalisation operator.

The second application is related to the problem of obtaining useful informa-
tion from possibly inconsistent opinions on the collaborative web. We consider
possibly inconsistent collective ontologies that may result when multiple experts
are asked to vote on a set of axioms in a domain of interest. We then use the
refinement operators, together with a reference ontology, to weaken some axioms
and to repair the collective ontology.

2 Ontologies and Description logics

We take an ontology to be a set of formulas in an appropriate logical language,
describing our domain of interest. Which logic we use precisely is not crucial for
illustrating the proposed approach, but as much formal work on ontologies makes
use of description logics (DLs), we will use these logics for all of our examples.
A significant widely used basic description logic is ALC, which is the logic we
shall be working with here.

We present the basics of ALC. For full details we refer to the literature [3].
The language of ALC is based on an alphabet consisting of atomic concept names
NC and role names NR. The set of concept descriptions (or concept for short)
is generated by the following grammar (where A represents an atomic concept
name and R a role names):

C ::= A | ¬C | C u C | C t C | ∀R.C | ∃R.C .

We collect all ALC concepts over NC and NR in L(ALC, NC , NR).

A TBox is a finite set of concept inclusions of the form C v D (where
C and D are concept descriptions). It is used to store terminological knowledge
regarding the relationships between concepts. An ABox is a finite set of formulas
of the form A(a) (“object a is an instance of concept A”) and R(a, b) (“objects
a and b stand to each other in the R-relation”). It is used to store assertional
knowledge regarding specific objects. The semantics of ALC is defined in terms
of interpretations I = (∆I , ·I) that map each object name to an element of its
domain ∆I , each atomic concept to a subset of the domain, and each role name
to a binary relation on the domain. An interpretation I is a model of a TBox T
iff it satisfies all the axioms in T . Given a TBox T and two concept descriptions
C and D, we say that C is subsumed by D w.r.t. T , denoted as C vT D, iff
CI ⊆ DI for every model I of T . Given a TBox T and two concept descriptions
C and D, we say that C is strictly subsumed by D w.r.t. T , denoted as C @T D,
iff C vT D and it is not the case that D vT C. Finally, we write C ≡T D when
C vT D and D vT C.

2

3 Refinement operators of ALC concepts

Refinement operators are a well-known notion in Inductive Logic Programming
where they are used to structure a search process for learning concepts from
examples. In this setting, two types of refinement operators exist: specialisa-
tion refinement operators and generalisation refinement operators. While the
former constructs specialisations of hypotheses, the latter constructs generalisa-
tions [13].

Given the quasi-ordered set 〈L(ALC, Nc, NR),v〉, a generalisation refinement
operator is defined as follows:

γT (C) ⊆ {C ′ ∈ L(ALC, Nc, NR) | C vT C ′} .

Whereas a specialisation refinement operator is defined as follows:

ρT (C) ⊆ {C ′ ∈ L(ALC, Nc, NR) | C ′ vT C} .

Generally speaking, a generalisation refinement operator takes a concept C as
input and returns a set of descriptions that are more general than C by taking
a TBox T into account. A specialisation operator, instead, returns a set of de-
scriptions that are more specific. Whilst specialisation operators for ALC (and
other description logics) have been studied in the literature [14], few proposals
have been made for generalisation operators in less expressive logics due to the
complexity of dealing with concept generalisations [7, 6, 20].

In order to define the refinement operators for ALC, we need some auxiliary
definitions. In the following, we assume that complex concepts C are rewritten
into negation normal form, and thus negation only appears in front of atomic
concepts. We will use = and 6= between ALC concepts to denote syntactic iden-
tity and difference, respectively.

Definition 1. Let T be an ALC TBox with concept names from NC . The set
of subconcepts of T is given by

sub(T) = {>,⊥} ∪
⋃

CvD∈T

sub(C) ∪ sub(D) ,

where sub is defined over the structure of concept descriptions as follows:

sub(A) = {A}
sub(⊥) = {⊥}
sub(>) = {>}

sub(¬A) = {¬A,A}
sub(C uD) = {C uD} ∪ sub(C) ∪ sub(D)

sub(C tD) = {C tD} ∪ sub(C) ∪ sub(D)

sub(∀R.C) = {∀R.C} ∪ sub(C)

sub(∃R.C) = {∃R.C} ∪ sub(C) .

3

Based on sub(T), we define the upward and downward cover sets of atomic
concepts.1 Intuitively, the upward set of the concept C collects the most specific
subconcepts found in the Tbox T that are more general (subsume) C; conversely,
the downward set of C collects the most general subconcepts from T that are
subsumed by C. The concepts in sub(T) are some concepts that are relevant in
the context of TBox T , and that are used as building blocks for generalisations
and specialisations. It is readily seen that given a finite TBox T the set sub(T)
is also finite. The properties of sub(T) guarantee that the upward and downward
cover sets are finite.

Definition 2. Let T be an ALC TBox over NC . The upward cover set of the
concept C with respect to T is:

UpCovT (C) := {D ∈ sub(T) | C vT D (1)

and there is no D′ ∈ sub(T) with C @T D
′ @T D} .

The downward cover set of the concept C with respect to T is:

DownCovT (C) := {D ∈ sub(T) | D vT C (2)

and there is no D′ ∈ sub(T) with D @T D
′ @T C} .

In the following, we note nnf the function that for every concept C, returns its
negative normal form nnf(C). We can now define our generalisation refinement
operator for ALC as follows.

Definition 3. Let T be an ALC TBox. We define γT , the generalisation refine-
ment operator w.r.t. T , inductively over the structure of concept descriptions
as:

γT (A) = UpCovT (A)

γT (¬A) = {nnf(¬C) | C ∈ DownCovT (A)} ∪ UpCovT (¬A)

γT (>) = UpCovT (>)

γT (⊥) = UpCovT (⊥)

γT (C uD) = {C′ uD | C′ ∈ γT (C)}∪{C uD′ | D′ ∈ γT (D)}∪UpCovT (C uD)

γT (C tD) = {C′ tD | C′ ∈ γT (C)} ∪ {C tD′ | D′ ∈ γT (D)}∪UpCovT (C tD)

γT (∀R.C) = {∀R.C′ | C′ ∈ γT (C)} ∪ UpCovT (∀R.C)

γT (∃R.C) = {∃R.C′ | C′ ∈ γT (C)} ∪ UpCovT (∃R.C)

When there is no ambiguity, or to refer to an arbitrary TBox, we can omit the
subscript T from the operator γT .

Given a generalisation refinement operator γ, ALC concepts are related by
refinement paths as described next.

Definition 4. For every concept C, we note γi(C) the i-th iteration of its gen-
eralisation. It is inductively defined as follows:

1 Downward and upward cover sets were similarly defined in [8], but only for atomic
concepts. The generalisation operator γ is also a variant from the one defined in [8].

4

– γ0(C) = {C};
– γj+1(C) = γj(C) ∪

⋃
C′∈γj(C) γ(C ′) , j ≥ 0.

Definition 5. The minimal number of generalisations to be applied in order to

generalise C to D is called the distance between C and D, noted λ(C
γ−→ D).

Formally, λ(C
γ−→ D) = min{j | j ≥ 0 and D ∈ γj(C)}.

λ(
γ−→) is a partial function that is defined only when the concept passed

as first argument can eventually be refined into the concept passed as second
argument.

Definition 6. The set of all concepts that can be reached from C by means of
γ in a finite number of steps is

γ∗(C) =
⋃
i≥0

γi(C) .

Some basic properties follow.

Lemma 1. For every TBox T and for every concept C:

1. generalisation: if X ∈ γT (C) then C vT X
2. reflexivity: if C ∈ sub(T) then C ∈ UpCovT (C)

3. relevant completeness: UpCovT (C) ⊆ γT (C)

4. trivial generalisability: > ∈ γ∗T (C)

5. generalisation finiteness: γT (C) is finite

Although generalisation finiteness holds, it is not the case that γ∗(C) is finite for
every concept C. Indeed, the iterated application of γ can produce an infinite
chain of generalisations. The following example illustrates that.

Example 1. Let T := {A v ∃r.A}. At the first iteration we have γ(A) =
{A,∃r.A}. Then we have γ(∃r.A) = {∃r.A, ∃r.∃r.A} ∪ {>}. (Notice that > is
reached: > ∈ γ2(A).) Continuing the iteration of the generalisation of the con-
cept description A, we have (∃r.)kA ∈ γk(A) for every k ≥ 0.

This is not a feature that is caused by the existential quantification alone. Similar
examples exist that involve universal quantification, disjunction and conjunction.
To address this issue, one can make some assumptions over the structure of the
TBox, for instance, by restricting to no-cyclic TBoxes. Alternatively, we can
take into account the syntactic depth of concepts, by restricting the number of
nested quantifiers, conjunctions, and disjunctions in a concept description to a
fixed constant k [7, 2]. To this end, we introduce the definition of syntactic depth
of a concept as follows.

5

Definition 7. The syntactic depth of an ALC concept description C is defined
as:

depth(>) = 0

depth(⊥) = 0

depth(A) = 0

depth(¬A) = 1

depth(C uD) = max{depth(C), depth(D)}+ 1

depth(C tD) = max{depth(C), depth(D)}+ 1

depth(∃r.C) = depth(C) + 1

depth(∀r.C) = depth(C) + 1 .

Based on the syntactic depth of a concept we modify the definition of the gen-
eralisation refinement operator γ to take a fixed constant k ∈ N>0 of nested
quantifiers into account. More precisely, let γk be defined as:

γT ,k(C) :=

{
γT (C) if depth(C) ≤ k
UpCovT (>) otherwise.

We can define a specialisation operator in an analogous way.

Definition 8. Let T be an ALC TBox. We define ρT , the specialisation refine-
ment operator w.r.t. T , inductively over the structure of concept descriptions
as:

ρT (A) = DownCovT (A)

ρT (¬A) = {nnf(¬C) | C ∈ UpCovT (A)} ∪ DownCovT (¬A)

ρT (>) = DownCovT (>)

ρT (⊥) = DownCovT (⊥)

ρT (C uD) = {C′ uD | C′ ∈ ρT (C)}∪{C uD′ | D′ ∈ ρT (D)}∪DownCovT (C uD)

ρT (C tD) = {C′ tD | C′ ∈ ρT (C)} ∪ {C tD′ | D′ ∈ ρT (D)}∪DownCovT (C tD)

ρT (∀R.C) = {∀R.C′ | C′ ∈ ρT (C)} ∪ DownCovT (∀R.C)

ρT (∃R.C) = {∃R.C′ | C′ ∈ ρT (C)} ∪ DownCovT (∃R.C)

Naturally, properties analogous to the ones of Lemma 1 hold for the specialisation
operator as well. Since ρ can yield an infinite specialisation chain, its definition
can be extended by taking into account the depth of a concept description as
done for the generalisation operator.

ρT ,k(C) :=

{
ρT (C) if depth(C) ≤ k
DownCovT (⊥) otherwise.

When there is no ambiguity, or to refer to an arbitrary TBox, we can omit
the subscript T from the operator ρT . Just as we did for the generalisation
operator γ, we denote ρi (resp. ρ∗) to be the i-th iteration (resp. the unbounded
finite iteration) of the specialisation operator ρ. The distance between concepts

λ(
ρ−→) w.r.t. the specialisation ρ is also defined as expected.

6

4 Deciding concept coherence

Given a body of knowlegde, Thagard [19] addresses the problem of determining
which pieces of information to accept and which to reject based on how they
cohere and incohere among them. These pieces of information can be hypotheses,
beliefs, propositions or concepts. It is assumed that when two pieces cohere, they
tend to be accepted together or rejected together; and when two pieces incohere,
one tends to be accepted while the other tends to be rejected.

Thagard provides a clear technical description of the coherence problem as a
constraint satisfaction problem, but he does not clarify the nature of the coher-
ence and incoherence relations that arise between pieces of information. In this
section, we show how coherence and incoherence relations between concepts can
be determined according to a similarity based on the generalisation operator γ.
Secondly, we show how conceptual coherence, one of the types of coherence pro-
posed by Thagard, can be used to decide the coherence between ALC concepts.

4.1 Common generalisations and similarity

We are interested in common generalisations that have minimal distance from
the concepts, or in case their distance is equal, the ones that are far from >.

Definition 9. An ALC concept description G is a common generalisation of C1

and C2 if G ∈ γ∗(C1) ∩ γ∗(C2) and, furthermore, G is such that for any other
G′ ∈ γ∗(C1) ∩ γ∗(C2) with (G′ 6= G) we have:

– λ(C1
γ−→ G) + λ(C2

γ−→ G) < λ(C1
γ−→ G′) + λ(C2

γ−→ G′), or

– λ(C1
γ−→ G) + λ(C2

γ−→ G) = λ(C1
γ−→ G′) + λ(C2

γ−→ G′) and

λ(G
γ−→ >) ≥ λ(G′

γ−→ >).

Notice that common generalisations, as per the above definition, are not unique.

However, for any two common generalisations G and G′ of C1 and C2, λ(C1
γ−→

G) + λ(C2
γ−→ G) = λ(C1

γ−→ G′) + λ(C2
γ−→ G′) and λ(G

γ−→ >) = λ(G′
γ−→ >).

Thus, any one of them will result in the same value for our generalisation-based
similarity measure between concepts, and therefore in the same coherence or
incoherence judgements. In the following, we denote C1NC2 a common general-
isation of C1 and C2; C1NC2 is a concept that always exists.

The common generalisation of two concepts C and D can be used to measure
the similarity between concepts in a quantitative way. To estimate the quantity of
information of any description C we take into account the length of the minimal
generalisation path that leads from C to the most general term >.

In order to define a similarity measure, we need to compare what is common

to C and D with what is not common. The length λ(CND
γ−→ >) estimates the

informational content that is common to C andD, and the lengths λ(C
γ−→ CND)

and λ(D
γ−→ CND) measures how much C andD are different. Then, the common

generalisation-based similarity measure can be defined as follows [16].

7

Definition 10. The similarity between two concepts C and D, denoted by Sλ(C,D),
is defined as:

Sλ(C,D) =

λ(CND

γ−→ >)

λ(CND
γ−→ >) + λ(C

γ−→ CND) + λ(D
γ−→ CND)

if C 6= > or D 6= >

1 otherwise .

The measure Sλ estimates the ratio between the amount of information that is
shared and the total information content. The range of the similarity function
is the interval [0, 1], where 0 represents the minimal similarity between concepts
(when their common generalisation is equal to >), and 1 represents maximal
similarity (when the concepts are equivalent).

4.2 Coherence

We shall assume coherence between two concept descriptions when they are
sufficiently similar so that “there are objects to which both apply;” and we shall
assume incoherence when they are not sufficiently similar so that “an object
falling under one concept tends not to fall under the other concept.”

In this formalisation of conceptual coherence, we associate this ‘sufficiently
similar’ condition with a value δ. The intuition behind the following definition is
that similar concepts whose common generalisation is far from > should cohere,
and incohere otherwise.

Definition 11 (Coherence Relations). Given a set {C1, . . . , Cn} of ALC
concepts, concept descriptions C,D 6∈ {>,⊥}, we will say for each pair of con-
cepts 〈Ci, Cj〉 (1 ≤ i, j ≤ n, i 6= j):

– Ci coheres with Cj, if Sλ(Ci, Cj) > 1− δ
– Ci incoheres with Cj, if Sλ(Ci, Cj) ≤ 1− δ

where

δ =
λ(CiNCj

γ−→ >)

max{λ(Ci
γ−→ >), λ(Cj

γ−→ >)}
.

In this definition, λ(CiNCj
γ−→ >) is normalised to the interval [0, 1] in order to

make it comparable with the similarity measure.
Based on the previous definition we can determine the coherence graph as follows.

Definition 12 (Thagardian Coherence Graph). The coherence graph for
the set of ALC concepts {C1, . . . , Cn} is the edge-weighted and undirected graph
G = 〈V,E,w〉 whose vertices are C1, . . . , Cn, whose edges link concepts that ei-
ther cohere or incohere according to Definition 11, and whose edge-weight func-
tion w is given as follows:

w({C,D}) =

{
1 if C and D cohere

−1 if C and D incohere .

8

This definition creates a concept graph in the sense of Thagard where only
binary values ‘coheres’ or ‘incoheres’ are recorded, represented by ‘+1’ and ‘-1’,
respectively, but our Def. 11 can give rise also to graded versions of coherence
and incoherence relations.

Then, given a coherence graph, one is interested in finding a partition that
maximises the number of satisfied constraints, where constraints are coherence
and incoherence relations. Roughly speaking, a constraint is satisfied if when
two concepts cohere, they fall in the same partition; and when two concepts
incohere, each of them falls in a different partition [8].

4.3 Analysing the joint coherence of ALC concepts

Given an ALC TBox representing a background ontology, and a set of ALC con-
cepts {C1, . . . , Cn} as input, we analyse their joint coherence as follows. First,
we compute the coherence graph and the maximising partitions for the input
concepts, and use them to decide which concepts to keep and which ones to dis-
card. The pairwise comparison and the maximising coherence degree partitions
will give us the biggest subsets of coherent input concepts. Then, we compute
the nearest common generalisations of the accepted concepts, to convey a justi-
fication of why certain concepts were partitioned together.

It is worth noticing that according to our definition of coherence relation,
inconsistent concepts can cohere provided that they are sufficiently similar and
their common generalisation is far from the > concept.

5 Repairing collective ontologies

For this application, we restrict our attention to TBox axioms. As usual, a TBox
T is consistent if it has a model, and inconsistent otherwise. The relation |=O

denotes the consequence relation w.r.t. an ontology O.
This section follows the presentation of [17].

5.1 Aggregating individual ontologies

Consider an arbitrary but fixed finite set Φ of ALC TBox statements over this
alphabet. We call Φ the agenda and any set O ⊆ Φ an ontology. We denote the
set of all those ontologies that are consistent by On(Φ).

Let N = {1, . . . , n} be a finite set of agents (or individuals). Each agent
i ∈ N provides a consistent ontology Oi ∈ On(Φ). An ontology profile is a vector
O = (O1, . . . , On) ∈ On(Φ)N of consistent ontologies, one for each agent. We
write NO

φ := {i ∈ N | φ ∈ Oi} for the set of agents that include φ in their
ontology under profile O. Our object of study are ontology aggregators.

Definition 13 (Ontology aggregators). An ontology aggregator is a function
F : On(Φ)N → 2Φ mapping any profile of consistent ontologies to an ontology.

9

Observe that, according to this definition, the ontology we obtain as the outcome
of an aggregation process needs not be consistent. With no surprise, this is the
case of the majority rule, which is nonetheless widely applied in any political
scenarios. In our setting, the majority rule is defined as follows.

Definition 14 (Absolute majority rule). The absolute majority rule is the
ontology aggregator Fm mapping any given profile O ∈ On(Φ)N to the ontology

Fm(O) :=
{
φ ∈ Φ | #NO

φ >
n

2

}
.

In the remainder of this section we propose to repair inconsistent collective
ontologies obtained from the aggregation of experts’ individual ontologies.

5.2 Axiom Weakening

Roughly speaking, weakening an axiom C v D amounts to enlarging the set
of interpretations that satisfy the axiom. This could be done in different ways:
Either by substituting C v D with C v D′, where D′ is a more general concept
than D (i.e., its interpretation is larger); or, by modifying the axiom C v D to
C ′ v D, where C ′ is a more specific concept than C; or even by generalising and
specialising simultaneously to obtain C ′ v D′.

Given an ontology O, we denote the set of its concept names of O by NO
C . We

want to define a procedure to change axioms gradually by replacing them with
less restrictive axioms. Recall that γO denotes the generalisation of a concept
and ρO denotes its specialisation with respect to a given ontology O.

Definition 15 (Axiom weakening). Given an axiom C v D of O, the set
of weakenings of C v D in O, denoted by gO(C v D) is the set of all axioms
C ′ v D′ such that

C ′ = ρ∗O(C) and D′ = γ∗O(D) .

If the ontology O is consistent, the weakening of an axiom in O is always satisfied
by a super set of the interpretations that satisfy the axiom. Let I = (∆I , ·I) be
an interpretation. Then by definition the class of all entities that fulfil the axiom
C v D is (∆I \CI) ∪DI . A weakening of C v D either specialises C, therefore
restricting CI , and accordingly extending ∆I \ CI , or generalises D, therefore,
extending DI . Hence, the set of entities for which C v D holds is a subset of
the set of entities for which any axiom in gO(C v D) holds. The following result
holds.

Lemma 2. For every axiom φ, if φ ∈ gO(ψ), then ψ |=O φ.

Moreover, note that⊥ v > always belongs to gO(C v D). We want to model how
to repair any inconsistent set of axioms Y of ALC, by appealing to a consistent
reference ontology R. Notice that, even though it is not desirable, R can be
dissociated from the axioms in the collective ontology. If the ontology R does
not refer to some of the atomic concepts in C or D, then their generalisation is

10

the most general concept > and their specialisation is the most specific concept
⊥.2

Any inconsistent set of axioms Y can in principle be repaired by means of a
sequence of weakenings of the axioms in Y with respect to R.

Lemma 3. Let R be a consistent reference ontology and Y a minimally incon-
sistent set of axioms. There exists a subset {ψ1, . . . , ψn} ⊆ Y and weakenings
ψ′i ∈ gR(ψi) for i, 1 ≤ i ≤ n such that (Y \ {ψ1, . . . , ψn}) ∪ {ψ′1, . . . , ψ′n} ∪ R is
consistent.

The lemma ensures that a minimally inconsistent set of axioms can be adequately
weakened to be integrated consistently into another consistent ontology. In the
worst case these axioms are weakened to become a tautology. However, we are
interested in weakening axioms as little as possible to remain close to the original
axioms. Notice that every axiom in gO(C v D) is obtained by applying γ and
ρ a finite number of times. Hence, we can define λO to be a refinement distance
in an ontology O, such that for every C ′ v D′ ∈ gO(C v D),

λO(C v D,C ′ v D′) = λ(C
ρO−−→ C ′) + λ(D

γO−−→ D′) .

Repair strategies can exploit this distance to guide the weakening of axioms
that are the least stringent. Indeed, by minimising λO, we are trying to find the
weakening of the axiom that is as close as possible to the original axiom in the
context of O. Moreover, by trying to minimise the distance, we are trying to
prevent non-informative axioms to be selected as weakenings. In other words,
axioms like ⊥ v >, ⊥ v D, or C v > should only be selected if no other
options are available. In principle, we can also provide refined constraints on
the generalisation and specialisation paths, e.g. by fixing an ordering of the
concepts of the ontology O that determines which concepts are to be generalised
or specialised first.

5.3 Fixing Collective Ontologies via Axiom Weakenings

When F (O) is inconsistent, we can adopt the general strategy described in
Algorithm 1 to repair it w.r.t. a given (fixed) reference ontology R. The algorithm
finds all the minimally inconsistent subsets Y1, . . . , Yn of F (O) (e.g., using the
methods from [18, 5]) and repairs each of them by weakening one of its axioms
to regain consistency. From all the possible choices made to achieve this goal,
the algorithm selects one that minimizes the distance λO (line 4). This process
corrects all original causes for inconsistency, but may still produce an inconsistent
ontology due to masking [11]. Hence, the process is repeated until a consistent
ontology is found.

2 Notice that γT and ρT are defined on arbitrary ALC formulas.

11

Algorithm 1 Fixing ontologies through weakening.

Procedure fix-ontology(O,R) . O inconsistent ontology, R reference ontology

1: while O is inconsistent do
2: Y ← mis(O) . find all minimally inconsistent subsets of O
3: for Y ∈ Y do
4: choose ψ ∈ Y, ψ′ ∈ gR(ψ) with Y \{ψ}∪{ψ′} consistent, λO(ψ,ψ′) minimal
5: O ← (O \ {ψ}) ∪ {ψ′}
6: return O

6 Conclusions and Future Work

We have illustrated the usefulness of our generalisation and specialisation oper-
ators in two use cases: the first, involving defining a similarity measure for ALC
concepts and employing this in Thagard’s coherence framework, and the second
involving inconsistency debugging in socially aggregated ontologies.

Future work includes a more systematic development of the introduced gen-
eralisation and specialisation operators employing a variety of semantics-driven
definitions. Furthermore, the duality between generalisaton and specialisation
needs to be further studied.

On the tool side, we are currently working towards a full implementation of
our refinement operators in order to evaluate their usefulness in larger scale real
world examples.

References

1. Baader, F., Küsters, R., Borgida, A., McGuinness, D.: Matching in description
logics. Journal of Logic and Computation 9(3), 411–447 (1999)

2. Baader, F.: Computing the Least Common Subsumer in the Description Logic EL
w.r.t. Terminological Cycles with Descriptive Semantics. In: Ganter, B., de Moor,
A., Lex, W. (eds.) Conceptual Structures for Knowledge Creation and Communi-
cation, Lecture Notes in Computer Science, vol. 2746, pp. 117–130. Springer Berlin
Heidelberg (2003)

3. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, New York, NY, USA (2003)

4. Baader, F., Küsters, R.: Non-standard Inferences in Description Logics: The Story
So Far. In: Mathematical Problems from Applied Logic I, International Mathemat-
ical Series, vol. 4, pp. 1–75. Springer New York (2006)

5. Baader, F., Peñaloza, R.: Axiom pinpointing in general tableaux. Journal of Logic
and Computation 20(1), 5–34 (February 2010), special Issue: Tableaux and Ana-
lytic Proof Methods

6. Baader, F., Sertkaya, B., Turhan, A.Y.: Computing the least common subsumer
w.r.t. a background terminology. Journal of Applied Logic 5(3), 392 – 420 (2007)

7. Confalonieri, R., Eppe, M., Schorlemmer, M., Kutz, O., Peñaloza, R., Plaza, E.:
Upward Refinement Operators for Conceptual Blending in EL++. Annals of Math-
ematics and Artificial Intelligence (2016), doi:10.1007/s10472-016-9524-8

12

8. Confalonieri, R., Kutz, O., Galliani, P., Porello, D., Peñaloza, R., Schorlemmer,
M., Troquard, N.: Coherence, Similarity, and Concept Generalisation. In: Proceed-
ings of the 30th International Workshop on Description Logics. CEUR Workshop
Proceedings, vol. 1879. CEUR-WS.org (2017)

9. d’Amato, C., Fanizzi, N., Esposito, F.: A semantic similarity measure for expressive
description logics. In: Pettorossi, A. (ed.) Proceedings of Convegno Italiano di
Logica Computazionale (CILC-05). Rome, Italy (2005)

10. d’Amato, C., Fanizzi, N., Esposito, F.: A dissimilarity measure for alc concept
descriptions. In: Proceedings of the 2006 ACM symposium on Applied computing.
pp. 1695–1699. ACM (2006)

11. Horridge, M., Parsia, B., Sattler, U.: Justification masking in ontologies. In: KR
2012. AAAI Press (2012)

12. Küsters, R.: Non-Standard Inferences in Description Logics, Lecture Notes in Ar-
tificial Intelligence, vol. 2100. Springer (2001)

13. van der Laag, P.R., Nienhuys-Cheng, S.H.: Completeness and properness of refine-
ment operators in inductive logic programming. The Journal of Logic Programming
34(3), 201 – 225 (1998)

14. Lehmann, J., Hitzler, P.: Concept learning in description logics using refinement
operators. Machine Learning 78(1-2), 203–250 (2010)

15. Meyer, T., Lee, K., Booth, R., Pan, J.Z.: Finding maximally satisfiable terminolo-
gies for the description logic ALC. In: Proceedings of the 21st National Conference
on Artificial Intelligence - Volume 1. pp. 269–274. AAAI’06, AAAI Press (2006)

16. Ontañón, S., Plaza, E.: Similarity measures over refinement graphs. Machine Learn-
ing 87(1), 57–92 (Apr 2012)

17. Porello, D., Troquard, N., Confalonieri, R., Galliani, P., Kutz, O., Peñaloza, R.:
Repairing Socially Aggregated Ontologies Using Axiom Weakening. In: 20th Inter-
national Conference on Principles and Practice of Multi-Agent Systems (PRIMA
2017). LNCS, Springer (2017)

18. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of de-
scription logic terminologies. In: Proc. IJCAI-03. pp. 355–362. Morgan Kaufmann
(2003)

19. Thagard, P.: Coherence in thought and action. The MIT Press (2000)
20. Zarrieß, B., Turhan, A.Y.: Most Specific Generalizations w.r.t. General EL-TBoxes.

In: Proceedings of the 23th International Joint Conference on Artificial Intelligence.
pp. 1191–1197. IJCAI ’13, AAAI Press (2013)

13

