
Mutation Testing for Microservices

Stefan Winzinger

Distributed System Group, University of Bamberg, Germany
stefan.winzinger@uni-bamberg.de

Abstract. The microservice architectural style is currently of great
interest both to research and industry. Since applications built by this
style consist of many loosely coupled services, it is necessary to test their
interactions by test suites. A crucial question is to decide which test cases
are necessary and able to detect errors. A method to assure the quality of
test cases is mutation testing. However, there are no mutation operators
available yet which would enable the application of mutation testing
specifically for microservices. This paper presents preliminary ideas for
the creation of possible mutation operator whose application could help
assure the quality of test cases by using mutation testing and therefore
improve the quality of microservice systems.

Keywords: microservices, mutation testing, mutation operator

1 Motivation

Microservices have emerged as a trend over the last years and can be defined
as small, autonomous services that work together [9]. The independence of the
components in a microservice architecture makes it possible to test them in
isolation. But testing on a higher level can become very difficult, especially for
larger systems with many connections between the services [7]. Therefore, test
cases are needed that detect faults, which only emerge while using several services
in combination, as these faults are not detected while testing a single service.

A method to evaluate the potential of a test case suite is mutation testing.
In general, mutation testing is a fault-based testing technique which creates a
faulty set of programs by seeding faults, which are often done by programmers,
into the program. A faulty program is called a mutant. By running the test suite
against each of the mutants, a mutant is “killed” as soon as its fault is detected.
The ’mutation score’ is the ratio of the detected faults over the total number of
seeded faults [8]. It improves with every mutant killed.

By mutating the program many faults can be produced at low cost [6]. However,
mutation operators providing the rules to create faults are required in order to
create faulty programs. Using mutation operators can produce programs whose
faults are similar to those of real programs [2]. Therefore, mutation operators for
microservices could help to create mutants automatically which would facilitate
the assessment of the test case quality. Thus, quality and speed of test execution
could be improved resulting in a faster delivery for the customer.

N. Herzberg, C. Hochreiner, O. Kopp, J. Lenhard (Eds.): 10th ZEUS Workshop, ZEUS 2018,
Dresden, Germany, 8-9 February 2018, published at http://ceur-ws.org/Vol-2072

http://ceur-ws.org/Vol-2072


Mutation testing can be applied at unit level, integration level and specification
level [8]. Since there are no mutation operators focusing on the microservice
architecture identified yet, we want to identify some mutation operators being
useful for microservices and evaluate them by applying them on a running system.

2 Research Outline

For our future work, we plan to investigate several generic mutation operators
on unit, integration and specification level. We will consider existing mutation
operators and their suitability for microservices and define new mutation operators
adapted to the microservice architectural style to apply them to a technology
used in practice:

Unit level
There are already many mutation operators defined for specific programming
languages (e.g. C, Java or C# [9]). E.g. considering C, these mutation
operators change a statement, an operator, a variable or a constant [1].
These mutation operators will probably be applicable for testing single
microservices depending on the language used. However, faults introduced by
using these mutation operators are not characteristic for microservices and
can be detected by testing services in isolation. Therefore, no microservice-
specific mutation operators can be introduced at unit level but established
mutation operators can be used to assess test suites for isolated microservices.

Integration level
Mutation operators at the integration level are more interesting since mi-
croservices can be interpreted as independent units which communicate by
using interfaces. Therefore, the integration level is a more promising area to
define characteristic mutation operators. As described in [4] or [5], interfaces
can be changed by removing or modifying parameters. This is a promising
approach, especially since a potential failure of a service can be simulated by
using this approach. Additionally, it would be possible to add a delay to the
delivery of messages in order to simulate a network congestion which would
force an alternative service to handle this message.

Specification level
In [3] Estelle Specifications are used to specify a system. Estelle Specifications
are a Formal Description Technique which describes a system hierarchically.
Some mutation operators are introduced which focus on the structure of the
system. Especially mutation operators modifying the control flow among
components could be transferred to microservices by considering the network
of services. By changing the control flow of services (e.g. parallel instead
of sequential execution of services and vice versa) faults might occur which
should be covered by test cases.

Finally, the most promising mutation operators shall be applied to several
test case suites on a running system and be evaluated regarding their suitability
to assess the quality of test cases.

18 Stefan Winzinger



References

1. Agrawal, H., DeMillo, R., Hathaway, R., Hsu, W., Hsu, W., Krauser, E., Martin, R.J.,
Mathur, A., Spafford, E.: Design of mutant operators for the c programming language.
Tech. rep., Technical Report SERC-TR-41-P, Software Engineering Research Center,
Department of Computer Science, Purdue University, Indiana (1989)

2. Andrews, J.H., Briand, L.C., Labiche, Y.: Is mutation an appropriate tool for
testing experiments? In: Proceedings of the 27th international conference on Software
engineering. pp. 402–411. ACM (2005)

3. De Souza, S.D.R.S., Maldonado, J.C., Fabbri, S.C.P.F., De Souza, W.L.: Mutation
testing applied to estelle specifications. In: System Sciences, 2000. Proceedings of the
33rd Annual Hawaii International Conference on. pp. 10–pp. IEEE (2000)

4. Delamaro, M.E., Maldonado, J.C., Mathur, A.P.: Integration testing using interface
mutation. In: Software Reliability Engineering, 1996. Proceedings., Seventh International
Symposium on. pp. 112–121. IEEE (1996)

5. Delamaro, M.E., Maldonado, J.C., Pasquini, A., Mathur, A.P.: Interface mutation test
adequacy criterion: An empirical evaluation. Empirical Software Engineering 6(2),
111–142 (2001)

6. Do, H., Elbaum, S., Rothermel, G.: Supporting controlled experimentation with testing
techniques: An infrastructure and its potential impact. Empirical Software Engineering
10(4), 405–435 (2005)

7. Dragoni, N., Giallorenzo, S., Lafuente, A.L., Mazzara, M., Montesi, F., Mustafin, R.,
Safina, L.: Microservices: yesterday, today, and tomorrow. In: Present and Ulterior
Software Engineering, pp. 195–216. Springer (2017)

8. Jia, Y., Harman, M.: An analysis and survey of the development of mutation testing.
IEEE Transactions on Software Engineering 37(5), 649–678 (2010)

9. Newman, S.: Building microservices: designing fine-grained systems. O’Reilly Media,
Inc. (2015)

Mutation Testing for Microservices 19


	Mutation Testing for Microservices

