
D2RML: Integrating Heterogeneous Data and Web Services
into Custom RDF Graphs

Alexandros Chortaras

National Technical University of Athens

Athens, Greece

achort@cs.ntua.gr

Giorgos Stamou

National Technical University of Athens

Athens, Greece

gstam@cs.ntua.gr

ABSTRACT
In this paper, we present the D2RML Data-to-RDF Mapping Lan-

guage, as an extension of the R2RML mapping language, which

significantly enhances its abilities to collect data from diverse data

sources and transform them into custom RDF graphs. The defini-

tion of D2RML is based on a simple formal abstract data model,

which is needed to clearly define its semantics, given the diverse

types of data representation standards used in practice. D2RML

allows web service-based data transformations, simple data ma-

nipulation and filtering, and conditional maps, so as to improve

the selectivity of RDF mapping rules and facilitate the generation

of higher quality RDF data stores, through a lightweight, easy to

write and modify specification.

CCS CONCEPTS
• Information systems→ Information integration;Webdata
description languages; Query languages; Web services;

KEYWORDS
RDF mapping language, Data integration, Web service integration

ACM Reference Format:
Alexandros Chortaras and Giorgos Stamou. 2018. D2RML: Integrating Het-

erogeneous Data and Web Services into Custom RDF Graphs. In Proceed-
ings of Linked Data on the Web 2018 (LDOW2018). ACM, New York, NY,

USA, 10 pages.

1 INTRODUCTION
In the past years, a considerable amount of work has been done

on developing methodologies for mapping relational databases to

RDF graphs. Several approaches, mapping languages and systems

have been proposed, including two W3C recommendations [1, 8].

This work has mainly been motivated by the need to integrate

the huge amount of information contained in existing relational

databases with the emerging Semantic Web, and make them part

of the Linked Data cloud.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of thisworkmust be honored.

For all other uses, contact the owner/author(s).

LDOW2018, April 2018, Lyon, France
© 2018 Copyright held by the owner/author(s).

Following the Linked Data growth, several research institutions

and companies such as DBpedia
1
, WordNet

2
, OpenStreetmap

3
, of-

fer now access to their huge datastores through SPARQL endpoints

or RESTful web services. Even more recently, the expansion of

cloud computing and the exciting developments in the field of ma-

chine learning and the subsequent revival of interest in artificial

intelligence applications has resulted in the emergence of cloud

platforms and marketplaces that offer intelligent data analysis web

services, often representing their output using Linked Open Data

vocabularies and resources, such as DBedia Spotlight
4
, Google’s

Cloud Natural Language
5
and Microsoft’s Computer Vision API

6
.

These services typically deliver data using some structured data

exchange format (usually JSON or XML documents).

Thus, if until recently the question was how to integrate exist-

ing data with the Semantic Web, now part of the question is also

how to use all these available data and diverse services in a coor-

dinated and integrated manner to selectively pick and aggregate

data into custom data stores to power new intelligent applications.

In this respect, aggregating data into custom RDF data stores is of

particular interest not only because they allow direct integration

with the Linked Data cloud, but also because intelligence can be

added on top of the data by including e.g. axiomatic knowledge in

the form of OWL2 [20] axioms. As a matter of fact, recent work on

efficient algorithms and methods for reasoning with tractable frag-

ments of ontologies (e.g. [3], [21]) has allowed the development of

practical systems that provide inferencing over semantic data.

In this environment, we propose D2RML, a generic Data-to-RDF

Mapping Language, whose aim is to facilitate the generation of

custom RDF data stores by selectively collecting and integrating

data from diverse data sources and web services into as much as

possible high quality RDF data stores. Our purpose is to provide

a formal basis for defining transformation-oriented general Data-

to-RDF mappings, as well as, while staying within the mapping

language approach, to transfer as much as possible of the burden

for generating such data stores in practice from writing code or

using heavyweight data workflow solutions, to writing easy un-

derstandable and modifiable specifications.

The rest of the paper is organized as follows: In Section 2 we

briefly discuss related work with emphasis on R2RML and RML,

which are the starting points for our work. In Section 3 we define

the simple theoretical datamodel that underlies D2RML. In Section

4 we describe how several widely used information sources can

be cast onto our model, and in Section 5 we present the formal

specification of D2RML. Section 6 presents an extensive realistic

1
http://dbpedia.org/sparql/

2
http://wordnet-rdf.princeton.edu/

3
http://api.openstreetmap.org/

4
http://www.dbpedia-spotlight.org/api/

5
https://cloud.google.com/natural-language/

6
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/

LDOW2018, April 2018, Lyon, France Alexandros Chortaras and Giorgos Stamou

use case that showcases the expressivity and practical usefulness

of the proposed language, and Section 7 concludes the paper.

2 RELATEDWORK
Several languages and systems have been proposed to map rela-

tional databases to RDF (RDB-to-RDF mapping languages). A com-

parative analysis is presented in [14], which determines fifteen de-

sirable features (e.g. support for transformation functions, named

graphs, integrity constraints) that such languages should have, and

discusses how they are or are not supported by the several lan-

guages. Existing RDB-to-RDF mapping languages vary consider-

ably in the flexibility they allow in defining mappings, from the

rigid Direct Mapping [1] approach that automatically translates

the data of a relational database into an RDF graph representation

following the database schema, to the R2RML language [8] that al-

lows the user to define custom views andmapping rules (expressed

as RDF graphs), and satisfies most of the fifteen desirable features.

The development of mapping languages and practical systems

for translating data sources other than relational databases to RDF

graphs has also been attempted. Closer to the relational model are

CSV/TSV documents and spreadsheets, which retain the tabular

format. Tools for converting from these data sources include XL-

Wrap [18], TaRQL
7
, Vertere

8
, andM

2
[22]. In all such tools, for each

table row one or more RDF resources are generated, and for each

column one or more RDF triples about the respective resources

are generated. Other formats, such as XML, diverge considerably

from tabular data owing to their hierarchical structure, and the sys-

tems that have been proposed to translate XML to RDF graphs rely

onXSLT transformations (e.g. XML2RDF
9
), XPath (e.g. Tripliser

10
),

XQuery (e.g. XSPARQL [2]) or on embedding within the XML doc-

uments links to transformation algorithms, typically XSLT trans-

formations (GRDDL [6]). All such tools rely on syntactical trans-

formations of parts of the XML structure to RDF triples. Another

framework to assist the transformation of XML and JSON data

sources is xCurator [13] which focus on delivering high-quality

linked data. Apart from the above, there exist also tools, in the

form of web services (e.g. The Datatank
11
) or parts of other infras-

tructures (e.g. Virtuoso Sponger
12
) that provide custom solutions

to work with data from different formats and possibly construct

RDF graphs out of them. These tools, however, are general data

processing and transformation tools and not designed to directly

support semantic mappings of general data to RDF triples.

To resolve the polymorphy of tools and focus on the semantic

aspects of the Data-to-RDF mapping process, several works ex-

tend the W3C recommended R2RML language to support other

data formats. These include KR2RML [23], xR2RML [19] and RML

[9]. These proposals are a considerable advance with respect to

custom system solutions, because they are based on an existing,

clean, mapping-oriented standard, and allow backward compati-

bility, and in most cases extensibility. It should be noted, however,

that simply extending the R2RML standard to support other data

source types, does not necessarily carry on all its features into the

7
https://github.com/tarql/tarql/

8
https://github.com/knudmoeller/Vertere-RDF/

9
http://www.gac-grid.de/project-products/Software/XML2RDF.html

10
http://daverog.github.io/tripliser/

11
http://thedatatank.com/

12
http://vos.openlinksw.com/owiki/wiki/VOS/VirtSponger

other data types. E.g. select conditions and transformation func-

tions are supporting implicitly by R2RML by relying on the expres-

sivity of the SQL query language, but this is not fully portable in a

straightforward extension to the case of XML or JSON documents.

2.1 R2RML and RML
R2RML works with logical tables (rr:LogicalTable), which may

be either base tables or views (rr:BaseTableOrView) defined by

specifying an appropriate table name (rr:tableName), or result
sets (rr:R2RMLView) obtained by executing a query (rr:sqlQuery).
Each logical table is mapped to RDF triples using one or more

triples maps (rr:TriplesMap). A triples map is a complex rule

that maps each row in the underlying logical table to several RDF

triples. The rule has two parts: a subjectmap (rr:SubjectMap) that
generates the subject of all RDF triples that will be generated from

each row of the logical table, and several predicate-object maps

(rr:PredicateObjectMap) that in turn consist of predicate maps

(rr:PredicateMap) and object maps (rr:ObjectMap) or referenc-
ing object maps (rr:RefObjectMap). A predicate map determines

predicates for the to-be generated RDF triples for the given sub-

ject, and the object maps their objects. A subject map may include

several IRIs (rr:class) that will be used as objects to generate

triples with the predicate rdf:type for the particular subjects. A

subject map or predicate-object map may have also one or more

graph maps (rr:GraphMap) associated with it, which specify the

target graph of the resulting RDF triples. Referring object maps al-

low joining two different triples maps. A referring object map spec-

ifies a parent triples map (rr:parentTriplesMap), the subjects of
which will act as objects for the current triples map, and may con-

tain (rr:joinCondition) a join condition (rr:Join) specified by

a reference to a column name of the current and parent triples

map (rr:child and rr:parent, respectively). The IRIs and liter-

als that will be used as RDF triple subjects, predicates, objects, or

RDF graph namesmay be either declared constants (rr:constant),
or obtained from the underlying table, view or result set by speci-

fying the desired column name (rr:column) that will act as value
source, or generated through a string template (rr:template) to
concatenate column values and custom strings. String templates of-

fer only very rudimentary options to manipulate actual database

values and generate custom IRIs and literals.

RML extends R2RML by allowing other sources (e.g. JSON or

XML files) apart from logical tables (rml:LogicalSource), that
may be used in an interlinked manner, by defining data iterators

(rml:iterator) to split the data obtained from such sources into

base elements on which each mapping rule will be applied, and

by allowing particular references (rml:reference), in the form of

subelement selectors within the base element, to define the value

sources to be used for the generation of IRIs and literals. Both the

iterators and the references depend on the underlying data source,

and may be XPath queries, JSONPath queries, CSV column names

or SPARQL return variable names. Their type is declared using the

rml:referenceFormulation predicate.
With respect to the specification of the actual access to the data

sources, R2RML leaves the issue to the implementation. The as-

sumption is that each R2RML document applies to data from a

unique database. In contrast, RML, which allows multiple sources

D2RML: Integrating Heterogeneous Data and Web Services
into Custom RDF Graphs LDOW2018, April 2018, Lyon, France

and cross-references between the retrieved data, must include the

data source descriptions within the RML document. To describe

them, it suggests the use of some recommended or widely-used vo-

cabularies such as DCAT
13
, D2RQ

14
, CSVW

15
, Hydra

16
, SPARQL-

SD
17

to access files, relational databases, CSV/TSV files, web APIs

and SPARQL endpoints, respectively. However, these vocabularies

have been developed mainly for APIs and data sources to inform

clients about their exact properties and services they offer, and not

as a form of formulating requests to them. E.g. to retrieve data from

a web API that paginates the results using next page access keys,

knowledge on how to formulate each time the subsequent HTTP

request is needed; this is not covered for example by Hydra. Sim-

ilarly, a SPARQL-SD specification provides information about the

supported SPARQL version, the default entailment regime, the de-

fault named graph, etc., which are not useful to a client, at the time

of formulating a request.

3 DATA MODEL
In this section, we extend the table-based model underlying the

R2RML language to support complex, non-tabular data, that can be

obtained from various information sources (such as JSON or XML

document returning sources). To do this we consider that instead

of logical tables, RDF triples are generated from set tables. In the

following we represent an RDF triple as a tuple ⟨s,p,o⟩, where s is
the subject, p the property or predicate and o the object.

Definition 3.1. A set row of arityk is a tuple ⟨D1, . . . ,Dk ⟩, where

D1, . . . ,Dk are sets of values over some domains. A name row of

arity k is a tuple ⟨n1, . . . ,nk ⟩, where n1, . . . ,nk are names. A set
table of arity k withm rows is a tuple S = ⟨N ,T⟩, where N is a

name row and T = [D1, . . . ,Dm] a list of set rows, all of arity k ,
such as the i-th elements of D1, . . . ,Dm , for 1 ≤ i ≤ k , share all
the same domain.

The names allow us to refer to particular elements of set rows

and tables. We denote the set of values that corresponds to name

ni (1 ≤ i ≤ k) in a set row D by D[nk]. We also denote the list

[D1[nk], . . . ,Dm [nk]] of value sets that are obtained from the sev-

eral set rows of S by S[nk], which we call a column of S. Let also

dom(n) denote the domain of column n. It should be underlined,

that for a particular set rowD and the different possible names ni ,
the several setsD[ni]may have different numbers of values, there

is no alignment between the individual values among the several

sets, and all individual values are equivalent with respect to their

relation to the values of the other sets in the same set row.

Definition 3.2. A filter F over a set table S of arity k is a tuple

⟨n, f ⟩, where n is a column name and f : dom(n) → dom(n) a
function, such that f (D[n]) ⊆ D[n] for all set rows D of S.

We denote the set value f (D[n]), obtained by applying F on a

set row D by F (D). Clearly, f may be the identity function.

Definition 3.3. A triples rule R over a set table S = ⟨N ,T⟩ is
a triple of filters ⟨Fs ,Fp ,Fo⟩, over S, called the subject, predicate

13
https://www.w3.org/TR/vocab-dcat/

14
http://d2rq.org/d2rq-language

15
https://www.w3.org/TR/tabular-metadata/

16
https://www.hydra-cg.com/spec/latest/core/

17
https://www.w3.org/TR/sparql11-service-description/

and object filter, respectively. The implementation of R is the set of

RDF triples

{(s,p,o) | s ∈ Fs (D), p ∈ Fp (D), o ∈ Fo (D), D ∈ T }.

A set of triples rules over one or more set tables defines a Data-
to-RDFmapping. Using the above simplemodel we can define Data-

to-RDF mappings for any information sources that can give rise to

one or more set tables. The triple store represented by a Data-to-

RDF mapping is then the implementation of all its triples rules.

We consider an information source to be any online software sys-
tem that can deliver structured data upon request. The information

source may be a data repository (e.g. a relational database, an RDF

store, an XML file stored in some directory) or an implementation

of a service or an algorithm (e.g. a RESTful web service) that may

process some input data and deliver some structured output. The

request, in the form of a query (e.g. an SQL or SPARQL SELECT

query) or message (e.g. an HTTP GET or POST request) in a for-

mat supported by the information source, includes all input data

and parameters required by the information source to generate and

deliver the output. The reply, or effective data source, is the output
produced by the information source, upon processing the request.

The reply may be delivered to the client in a native format (e.g. as

an SQL result set), or in a generic document format (e.g. as a JSON

or XML document).

To accommodate the several possible information sources in

our model, we consider, as in RML, that the effective data source

groups some set of autonomous elements (e.g. rows of an SQL re-

sult set, elements of a JSON array). The division of the reply in

these autonomous elements is achieved through an iterator. Hence,
an effective data source together with an iterator specifies a logical
array, through whose items the iterator eventually iterates. Each

item of a logical array may itself be a complex data structure (a

new effective data source), so in order to extract from it lists of val-

ues to construct set rows and use them as subjects, predicates and

objects of RDF triples, we need some selectors. Thus, the role of the
selectors is to transform a logical array into a set table.

Definition 3.4. The triple A = ⟨I, t ,L⟩, where I is a informa-

tion source and request specification, t an iterator specification,

and L a set of selectors, is a data acquisition pipeline.

It follows that each data acquisition pipeline A gives rise to a

unique set table SA . A data acquisition pipeline may be paramet-

ric, in the sense that the information source or request specification

may contain parameters. Given a non-parametric data acquisition

pipelineA, a parametric data acquisition pipelineA ′ that depends

on A is a data acquisition pipeline whose parameters take values

from one or more columns of SA . We call such a parametric data

acquisition pipeline a transformation of A.

Definition 3.5. A series of data acquisition pipelinesA0,A1, . . .,

Al , where eachAi , for i > 1, is a transformation that depends on

one or more Aj for j < i is a set table specification. A0 is the

primary data acquisition pipeline.

A set table specification gives rise to a unique set table, which is

SA0
extended by columns contributed by transformationsA1, . . .,

Al . A trivial set table specification consists only of the primary

data acquisition pipeline A0. Each transformation in a set table

LDOW2018, April 2018, Lyon, France Alexandros Chortaras and Giorgos Stamou

specification is realized as a series of requests to the respective in-

formation source, after binding the parameters to all possible com-

binations of values obtained from the referred to columns of the set

table constructed from the preceding data acquisition pipelines. In

particular, to evaluate a set table specification, wemust evaluate se-

rially the data acquisition pipelines, extending at each step the pre-

viously obtained set table: The primary data acquisition pipeline

A0 gives rise to set table SA0
. Then, for each set row D of SA0

,

evaluating A1 gives rise to a set table SA1
(D). By flattening all

rows of SA1
(D) into a single row (by merging the respective col-

umn values of each row) we obtain a new set row that is appended

to D. Doing this for all set rows D results in SA0A1
. By applying

this process iteratively, eventuallySA0
is extendedwith additional

columns to set table SA0A1 ...Al .

More formally, let n1, . . . ,nk be the names, and [D1, . . . ,Dm]

the rows of
ˆS � SA0 ...Ai . EvaluatingAi+1 on each row of

ˆS pro-

duces set tables SAi+1 (D1), . . ., SAi+1 (Dm). Since all these set ta-

bles are produced by the same data acquisition pipelineAi+1, they

share the same arity, say k ′, and column names, say n̂1, . . . , n̂k ′ .
Thus SA0 ...Ai+1 = ⟨N ,T⟩, where N = ⟨n1, . . . ,nk , n̂1, . . . , n̂k ′⟩,

T = [D ′
1
, . . . ,D ′m], D

′
j = [Dj [n1], . . . ,Dj [nk], ˆDj1, . . . , ˆDjk ′]

for 1 ≤ j ≤ m, and
ˆD ′jl =

⋃
SAi+1 (Dj)[n̂l] for 1 ≤ l ≤ k ′.

The row flattening step is intentional: SA0
provides the origi-

nal data that we want to extend through transformations, ie. by

appending new columns containing new properties of that data.

Since, as mentioned above, all values contained in a particular row

and column of SA are equivalent with respect to the values in

the sets of the other columns of the current row, the flattening be-

haviour maintains this relationship between values, without intro-

ducing non-desired hierarchical dependencies. Finally, the primary

data acquisition pipeline may be itself parametric. In this case, the

evaluation is done exactly as described above, but the set rows

generated by SA0
are not appended to the set table on which it

depends, but initiate a new set table.

4 INFORMATION SOURCES AND REPLIES
We now study how several information and effective data sources

used in real applications can be accommodated by our model. We

discuss relational databases, RESTful web services, JSON, XML,

CSV/TSV documents, and SPARQL endpoints.

4.1 Relational Databases
In relational databases data is organized into one or more tables

(or relations) of columns (or attributes) and rows (or tuples). Each

table column has a name. Data are retrieved by issuing an SQL

SELECT query and the results are packed as a result set, which

is essentially a row-by-row iteratable table along with its meta-

data. Because relational database management systems (RDBMS)

use native formats to implement the data stores and the result for-

mats, communications with RDBMSs’ are done using special pro-

tocols (such as ODBC, JDBC) to implement clients for particular

RDMBSs’. Practical access requires several parameters to be speci-

fied (e.g. server location, database name, user name, password, ac-

cess driver), which are usually grouped in the so-called connec-

tion string and are programming language implementation depen-

dent. There is no standard for representing connection strings in

Table 1: Information sources, requests and replies

Information Source Request Effective Data Source

RDBMS

SQL

SELECT Query

SQL Result Set

SPARQL Endpoint

SPARQL

SELECT Query

and RDF graph IRIs

via HTTP Message

SPARQL Result Set

via HTTP Message

RESTful

Web Service

HTTP

GET/POST Request

JSON/XML/CSV/TSV

Document

JSON/XML/CSV/TSV

Document

HTTP

GET Request

JSON/XML/CSV/TSV

Document

Table 2: Effective Data Sources, iterators and selectors

Effective Data Source Iterator Selector

SQL Result Set Row Iterator Column name

SPARQL Result Set Row Iterator Variable name

JSON Document JSONPath query Flat JSONPath query

XML Document XPath query Flat XPath query

CSV/TSV Document Row Iterator Column name

RDF form. D2RQMapping Language [7] allows a JDBC-dependent

RDF definition of connection strings and is used by RML to specify

RDBMS connectivity.

An implementation provided with a RDBMS connection specifi-

cation can connect to the particular RDBMS, pose an SQL SELECT

query q that specifies attributes n1, . . . ,nk in the SELECT state-

ment for the returned columns, and obtain as result a list of rows

[⟨v11, . . . ,v1k ⟩, . . . , ⟨vn1, . . . ,vnk ⟩]. Using, a trivial row iterator

and column names n1, . . . ,nk as selectors, the results of q can be

converted to the following set table: ⟨⟨n1, . . . ,nk ⟩,
[⟨{v11}, . . . , {v1k }⟩, . . . , ⟨{vn1}, . . . , {vnk }⟩]⟩

4.2 RESTful Web Services
RESTful web services are services based on the REST principles

[11], and are usually implemented using the HTTP protocol. Typ-

ically, a data retrieving RESTful service accepts an HTTP request

and delivers the result in a self-descriptive text message (e.g. an

HTML, XML, JSON, plain text). Here we are interested in struc-

tured reply services, i.e. services whose reply is in one of the XML,

JSON or CSV/TSV formats. To access a RESTful web service, the

elements of the appropriate HTTP request have to be specified.

These include the method (GET or POST), the URI (including the

query string in the case of a GET message), any headers, and the

body (for passing parameters in the case of a POST message). All

these can be specified in RDF using the W3C’s Working Group

Notes ‘HTTP Vocabulary in RDF 1.0’ [16] and ‘Representing Con-

tent in RDF 1.0’ [17]. Thus, we can assume that anHTTP client that

can consume an HTTP Vocabulary and Representing Content in

RDF 1.0 description to create an HTTP request, can use a RESTful

web service and obtain as result a structured document. Although

not strictly qualifying as RESTful web services, we include in this

category also URIs that simply deliver structured documents (e.g.

D2RML: Integrating Heterogeneous Data and Web Services
into Custom RDF Graphs LDOW2018, April 2018, Lyon, France

URIs to static JSON/XML files), since the communication is per-

formed in exactly in the same way through HTTP messages.

A practical consideration usually related with some RESTful

web services, is that the APIs that implement the services, to avoid

extremely long replies, perform pagination of the results and do

not return the full set of results as one document, but as a series

of smaller documents: in most cases, each returned document con-

tains some keys that can be used by the client in the subsequent re-

quest to instruct the server to return the next set of results. The pag-

ination schema may get non-trivial, as in the case of MediaWiki
18
.

4.3 SPARQL Endpoints
SPARQL endpoints are URIs at which a SPARQL Protocol service

listens [10]. SPARQL Protocol is built on top of HTTP and as such

it can be treated as a RESTful web service. However, since special

SPARQL Protocol clients, in the form of APIs, exist (e.g. Apache

Jena
19
) that hide from the user the cumbersome details of building

and decoding the necessary HTTP request and reply messages it

is useful to provide support also for this type of interaction. The

situation is similar to the RDBMS case: The request is a SPARQL

SELECT (possibly along with some default and named RDF graph

IRIs) instead of an SQL SELECT query, and the effective data source

is a result set, whose column names are the return variable names

specified in the SPARQL query. Thus, the translation of the reply

to a set table is done in exactly the same way. The only essential

thing that changes is the specification of the access to the SPARQL

endpoint for which a single URI is enough.

4.4 JSON Documents
A JSON document [15] may be modeled as a JSON tree [4]. A JSON

tree is an edge-labeled tree, whose root represents the entire docu-

ment. A node may have either string- or integer-labeled children,

but not both. A nodewith string-labeled outgoing edges represents

a set of JSON key-value pairs: the edge label is the key and the edge

destination the corresponding value. A node with integer-labeled

outgoing edges represents an array: the edge label is the array in-

dex and the edge destination the corresponding value. Value nodes,

are either leaf nodes having a string or integer label, or JSON trees.

In the absence of an official standard, to select values from a

JSON document that meet specific conditions, in practice the JSON-

Path [12] specification is used, which is inspired by XPath. JSON-

Path queries select nodes of a JSON tree that meet a certain path

condition, and group them into a JSON array, which is the result

of the query. Since a JSON array is a JSON document, the result of

a JSONPath query is always a JSON document. We will say that a

JSONPath query is flat if the result JSON tree has depth 1, ie. is an

array of simple values.

Hence, an iterator for a JSON tree T is any relevant JSONPath

query q, which splits T into a logical array of smaller JSON trees

T1, . . . ,Tn , and the selectors are flat JSONPath queries q1, . . .qk
that are executed over eachT1, . . . ,Tn to deliver a set table from the

underlying logical array. Thus T , after applying iterator q and se-

lectors q1, . . .qk , yields the set table ⟨⟨q1, . . . ,qk ⟩,
[⟨C11, . . . ,C1k ⟩, . . . , ⟨Cn1, . . . ,Cnk ⟩]⟩, where Ci j is the set of val-

ues contained in the array that results from applying qj on Ti .

18
https://www.mediawiki.org/wiki/API:Query

19
https://jena.apache.org/

4.5 XML Documents
An XML document may also be modeled using a tree [5], however

its structure differs from a JSON tree. The core part of an XML

document is represented in the tree by element, attribute and text

nodes. Each element node corresponds to an element of the XML

document and has a name (the element name) and children that

are all the enclosed elements. It may also have as child a text node,

that holds in its string value the characters in the CDATA section

of the element. Each element nodemay have associated with it also

a set of attribute nodes that represent the attributes of the element,

which, however, are not considered to be children of the element

node. Each attribute node has a name (the attribute name) and a

string value that holds the respective attribute value. Relying on

this model, the XPath language allows to select particular nodes

from the tree that meet certain conditions. Unlike in the case of

JSON, the result is not itself an XML document, but a set of the

nodes that match the query criteria. We will say that an XPath

query is flat if the result contains only text or attribute nodes.

Hence, we can consider as iterator for an XML document tree

T any relevant non-flat XPath query q that splits T into a logical

array of nodes N1, . . . ,Nn . Since the query is non-flat, these nodes

are element nodes, and can be treated as smaller XML document

trees T1, . . . ,Tn . The selectors are then flat XPath queries q1, . . .qk
that are executed over each one of these smaller XML documents.

Thus, T after applying iterator q and selectors q1, . . .qk yields

the set table ⟨⟨q1, . . . ,qk ⟩, [⟨C11, . . . ,C1k ⟩, . . . , ⟨Cn1, . . . ,Cnk ⟩]⟩,
where Ci j are the sting values of the text or attribute nodes in the

node set obtained by applying qj on Ti .

4.6 CSV/TSV Documents
CSV/TSV documents are textual representations of tabular data.

Each line represents a data row, expect possibly from the first row

that contains the names of the columns. Hence, the situation is

similar to the RDBMS case, with no need of a query to be specified.

The name tuple consists of the names of the columns in the file (or

of their numbering) and the row sets of the actual rows of the table.

The only thing the needs to be specified are the formatting details

(eg. delimiter, escape separator, quote character).

5 D2RML SPECIFICATION
D2RML draws significantly from R2RML and RML, and follows

the same simple syntactical strategy for definingmappings: Triples

maps, which consist of a subject map and several predicate object

maps. From RML it adopts and appropriately extends the way to

define the interaction with information sources through requests,

iterators and selectors. Moreover, it significantly extends the ex-

pressive capabilities of R2RML and RML by allowing transforma-

tions, conditional statements, and custom IRI generation functions.

For its semantics, D2RML relies on the data model described in

Section 3. Each triples map is essentially a set table specification

of Def. 3.3 and a specification of a set of triple rules of Def. 3.5

with the same subject filter over the common underlying set table.

The information source, request and iterator of the original data

acquisition pipeline is directly provided in the triples map defini-

tion. Any transformations to be added to the set table specification

LDOW2018, April 2018, Lyon, France Alexandros Chortaras and Giorgos Stamou

Table 3: Namespaces used in D2RML documents

Prefix IRI

rr http://www.w3.org/ns/r2rml#
dr http://islab.ntua.gr/ns/d2rml#
op http://islab.ntua.gr/ns/d2rml-op#
is http://islab.ntua.gr/ns/d2rml-is#
http http://www.w3.org/2011/http#
cnt http://www.w3.org/2011/content#

are declared in the order of their application. The selectors are im-

plicitly declared in the subject, predicate, object and graph maps.

Several triples map are allowed to coexist in the a D2RML docu-

ment, in which case several distinct set tables are generated.

We define D2RML using a BNF-like notation. Terminal sym-

bols are written in monospace, and non-terminals in italics. Non-
terminals within angle brackets represent RDF nodes. Parenthesis

specify the scope of alternatives (separated by |) and of the stan-

dard quantifiers ?, *, and +. Terminal symbols not explicitly defined

in the specification are written in smallcaps. The namespaces are

defined in Table 3. D2RML is compatible with R2RML, but not fully

compatible with RML, so it does not directly extend its namespace.

5.1 Triples Maps
A triples map is defined as in R2RML and RML, but tabular data

providing information sources are clearly distinguished from non-

tabular by using rr:logicalTable for tabular data providing in-

formation sources, and dr:logicalSource for the rest.

TriplesMap ← a rr:TriplesMap
rr:logicalTable ⟨LogicalTable⟩ |

dr:logicalSource ⟨LogicalSource⟩
(dr:transformations (⟨Transformation⟩+))?

rr:subjectMap ⟨SubjectMap⟩ | rr:subject iri

(rr:predicateObjectMap ⟨PredObjMap⟩)*

PredObjMap ← a rr:PredicateObjectMap
(rr:predicateMap ⟨PredicateMap⟩ |

rr:predicate iri)+
(rr:objectMap (⟨ObjectMap⟩ | ⟨RefObjectMap⟩) |

rr:object (iri | literal))+

(rr:graphMap ⟨GraphMap⟩ | rr:graph iri)*

5.2 Logical Tables and Logical Sources
The LogicalTable and LogicalSource nodes provide details about the
primary information source used to generate the set table. In the

case of query supporting information sources (such as RDBMSs’

and SPARQL endpoints), for backward compatibility with R2RML,

they contain also the query-relevant details of the request that

should be sent to the information source. The is:parameters pred-
icate may be used to declare parameter names in queries that par-

ticipate in parametric data acquisition pipelines. For other informa-

tion sources (such as RESTful web services), the request, and any

parameters, are included in the InformationSource specification it-

self. For non-tabular data providing information sources, Logical-
Source contains also the definition of the iterator (dr:iterator
and dr:referenceFormulation) that will be used to split the ef-

fective data source into a logical array. Since the effective data

source format is fixed, the object of dr:referenceFormulation

determines also the form of all selectors that will be applied on the

particular effective data source.

LogicalTable ← a rr:LogicalTable
dr:source ⟨InformationSource⟩
SQLTable | SPARQLTable | CSVTable
(is:parameters (⟨DataVariable⟩+))?

LogicalSource ← a dr:LogicalSource
dr:source ⟨InformationSource⟩
dr:iterator literal
dr:referenceFormulation iri

SQLTable ← a rr:BaseTableOrView a rr:R2RMLView
rr:tableName literal rr:sqlQuery literal

(rr:sqlVersion iri)?

SPARQLTable ← a dr:SPARQLTable
dr:sparqlQuery literal
(dr:sparqlVersion iri)?
(dr:defaultGraph iri)*
(dr:namedGraph iri)*

CSVTable ← a dr:TextTable
dr:delimiter literal
dr:headerline boolean
(dr:quoteCharacter literal)?

(dr:commentCharacter literal)?

(dr:escapeCharacter literal)?

(dr:recordSeparator literal)?

5.3 Information Sources
The version of D2RML presented here provides definitions for im-

plementing data acquisition pipelines involving RDBMSs’, REST-

ful web services and SPARQL endpoints. Extensions for additional

sources are expected in subsequent versions.

InformationSource ← RDMSSource | SPARQLService | HTTPSource

RDMSSource ← a is:RDBMSSource
is:rdbms iri

is:location literal

(is:username literal)?

(is:password literal)?

(is:database literal)?

SPARQLService ← a is:SPARQLService
is:uri uri

HTTPSource ← a is:HTTPSource
is:request ⟨HTTPRequest ⟩ | is:uri uri

(is:parameters (⟨Parameter ⟩+))?

Parameter ← DataVariable | SimpleKeyRequestIterator

DataVariable ← a is:DataVariable
is:name literal

SimpleKeyRequestIterator ← a is:SimpleKeyRequestIterator
is:name literal

dr:reference literal
dr:referenceFormulation literal

is:initialValue literal

In an RDBMSSource, is:rdbms determines the specific RBMBS

(eg. MySQL, PostgreSQL). AnHTTPSource is specified in terms of a

HTTPRequest which should be a http:Request and specify the de-
tails of the HTTP message to be sent. An HTTPSourcemay contain

D2RML: Integrating Heterogeneous Data and Web Services
into Custom RDF Graphs LDOW2018, April 2018, Lyon, France

parameters in case the web service is part of a parametric data ac-

quisition pipeline, or it paginates the results. Data parameters are

identified by a name (is:name). For paginated results, the above

specification allows, as an example, iterated requests through a re-

quest iterator that should be part eg. of the web service URI and

whose values, apart from the initial value (is:initialValue) are
extracted each time from the previous reply using a selector. Ex-

tensions are possible to support additional pagination policies.

5.4 Transformations
A triples map definition may include a list of transformations that

should be applied in the declared order to the set table derived from

the primary information source. Since a transformation is itself

a parametric data acquisition pipeline, its definition includes the

specification of an InformationSource through a rr:logicalTable
or dr:logicalSource and one or more ParameterBindings. A Pa-
rameterBinding consists of a reference to a value (ValueRef) or a
constant value, and the parameter name (dr:parameter) in the

corresponding information source the value will be bound to.

Transformation ← a dr:Transformation
rr:logicalTable ⟨LogicalTable⟩ |

dr:logicalSource ⟨LogicalSource⟩
(dr:parameterBinding ⟨ParameterBinding⟩)+

ParameterBinding ← a dr:ParameterBinding
dr:parameter literal
rr:constant literal | ValueRef

5.5 Term Maps and Conditions
The definitions of term maps (i.e. of subject maps, graph maps,

predicate maps and object map) follow the R2RML specification

with the addition of filters.

SubjectMap ← a rr:SubjectMap
IRIRef | BlankNodeRef
(SubjectBody CaseSubjectBody*) | CaseSubjectBody+

PredicateMap ← a rr:PredicateMap
(PredicateBody CasePredBody*) | CasePredBody+

ObjectMap ← a rr:ObjectMap
(ObjectBody CaseObjectBody*) | CaseObjectBody+

GraphMap ← a rr:GraphMap
(GraphBody CaseGraphBody*) | CaseGraphBody+

SubjectBody ← (rr:class IRI)*

(rr:graphMap ⟨GraphMap⟩ | rr:graph IRI)*

(dr:condition ⟨Condition⟩)?

PredicateBody ← IRIRef
(dr:condition ⟨Condition⟩)?

ObjectBody ← IRIRef | BlankNodeRef | LiteralRef
(dr:condition ⟨Condition⟩)?

GraphBody ← IRIRef
(dr:condition ⟨Condition⟩)?

CaseSubjectBody ← dr:cases (⟨SubectBody⟩+)

CasePredBody ← dr:cases (⟨PredicateBody⟩+)

CaseObjectBody ← dr:cases (⟨ObjectBody⟩+)

CaseGraphBody ← dr:cases (⟨GraphBody⟩+)

Condition ← (ValueRef)?
(dr:booleanOperator iri)?

(operator literal | dr:operand ⟨Condition⟩)+

RefObjectMap ← a rr:RefObjectMap
rr:parentTriplesMap ⟨TriplesMap⟩
((rr:joinCondition ⟨JoinCondition⟩)+ |

(dr:parameterBinding ⟨ParameterBinding⟩)+)?

JoinCondition ← a rr:Join
rr:child literal

rr:parent literal

To support filters, a SubjectMap,GraphMap, PredicateMap orOb-
jectMap may contain a condition (dr:condition) and/or a case

statement (dr:cases). If a term map contains a condition state-

ment, this will be evaluated and the corresponding subject, graph,

predicate or object value will be included in the respective value

set only if the condition evaluates to true. Each condition statement

should first specify the actual value on which it will operate (as a

ValueRef), and may include several tests which will be jointly eval-

uated using the boolean operator specified by dr:booleanOperator
(op:and or op:or). Each test is specified either through an opera-

tor and a literal which define a constant value with which the

actual value will be compared using operator, or as a nested con-

dition. An operator is a common operator such as op:eq, op:le,
op:leq, op:ge, op:geq, op:matches, etc. The type of the operation
(eg. number or string comparison) depends on the XSD type of the

literal provided as operand. If a nested condition does not specify

a value reference, it inherits it from the enclosing condition.

The case statement offers alternatives for realizing a term map:

It contains a list of alternative term maps, each along with a con-

dition. If the condition evaluates to true the term map is realized,

otherwise control flows to the next case.

Finally, a referring objectmap (RefObjectMap) may be defined by

a ParameterBinding, instead of by a R2RML JoinCondition. This
is how set table specifications with parametric primary data acqui-

sition pipelines are defined: the parametric set table specification

corresponds to the parent triples map of RefObjectMap, and the

ParameterBinding provides the parameters values.

5.6 IRIs, Literals and Blank Nodes
In R2RML, RDF terms are generated using the rr:constant, the
rr:column and rr:template predicates; to these, RML adds the

rml:reference option. D2RML follows the same strategy, but to

account for values coming from transformations, RDF terms are

generated through value references (ValueRefs), specified by two

distinct components: a compulsory rr:column, rr:template or

dr:reference, and an optional dr:transformationReference to
specify the transformation that provides the logical array for the

respective rr:column, rr:template or dr:reference. If missing,

the primary logical array is assumed.

Although rr:template allows someminimal flexibility in defin-

ing custom IRIs or literals, the overall mechanism is quite restric-

tive, since no simple transformations (e.g. replace particular char-

acters etc.) can be applied on the values obtained from the underly-

ing set tables. D2RML addresses this issue by allowing simple func-

tions to be applied on the raw values obtained from effective data

sources. Thus, a ValueRef may include definitions of one or more

LDOW2018, April 2018, Lyon, France Alexandros Chortaras and Giorgos Stamou

defined columns (dr:definedColumns) that are constructed by ap-
plying a series of functional transformations on particular set table

column values and may be used in a rr:column or rr:template.
A defined column should declare the new column name dr:name it
will be referred by, the function (dr:function) that will generate
the custom values (eg. op:regex, op:replace), and a list of argu-

ments, in the form of one or more dr:parameterBindings. The
parameter names should be provided by the function definition.

IRIRef ← rr:constant iri | ValueRef
(rr:termType rr:IRI)?

LiteralRef ← rr:constant literal | ValueRef
(rr:termType rr:Literal)?
(rr:language literal | rr:datatype iri)?

BlankNodeRef ← ValueRef
(rr:termType rr:BlankNode)?

ValueRef ← rr:column literal | rr:template literal |
dr:reference literal

(dr:transformationReference ⟨Transformation⟩)?
(dr:definedColumns (⟨DefinedColumn⟩+))?

DefinedColumn ← a dr:DefinedColumn
dr:name literal
dr:function iri
(dr:parameterBinding ⟨ParameterBinding⟩)+

6 USE CASE
In this section, we present a realistic use case for D2RML, involving

true data and readily available web services and data repositories.

The aim is to extract an extensive set of textual or URI features for a

set of cultural items, in order to subsequently use them to perform

several tasks such as clustering and similarity ranking. We assume

that we want to extract features in several ways (e.g. directly from

the metadata, from applying named entity extraction, image analy-

sis, etc.), and that we want to keep information about the source of

each feature so that we can use them selectively to test how they

affect the clustering or similarity algorithm performance.

As primary information source of cultural items we use Euro-

peana Collections
20
, in particular the collection provided by Top-

Foto
21
, which consists of 60,882 black and white images of the

1930s, along with their metadata. This collection can be obtained

through the Europeana API. The D2RML specification for getting

the effective data source for this collection is the following:

<#EuropeanaAPI>
a is:HTTPSource ;
is:request [

http:absoluteURI "http://www.europeana.eu/api/v2/search.json?
wskey=A*******W&rows=20&cursor={@@cursor@@}&profile=rich&
query=europeana_collectionName%3A%222024904_Ag_EU_
EuropeanaPhotography_TopFoto_1013%22" ;

http:methodName "GET" ;
] ;
is:parameters ([a is:SimpleKeyRequestIterator ;

is:name "cursor" ;
is:initialValue "*" ;
dr:reference "$.nextCursor" ;
dr:referenceFormulation is:JSONPath ;]) .

The specification includes a is:SimpleKeyRequestIterator as
parameter, because the API returns the results in pages, and each

20
https://www.europeana.eu/portal/en

21
http://www.topfoto.co.uk/

page contains a key to accessing the next page (nextCursor). An
extract from the response obtained from executing the above is the

following JSON document, which contains a list of items modeled

using the Europeana Data Model (EDM):

{
"nextCursor": "AoE/GC8yMDI0OTA0L3Bob3Rv****=",
"items": [
{
"id": "/2024904/photography_ProvidedCHO_TopFoto_co_uk_EU061905",
"dcDescription": [

"Former chief inspector Berrett decorated by the king.\n
Former chief detective inspector James Berrett of
Scotland Yard was decorated by the King at the royal
invesititure at Buckingham Palace. "

],
"edmIsShownBy": [
"http://www.topfoto.co.uk/imageflows/imagepreview/f=EU061905"

],
"edmConcept": [
"http://bib.arts.kuleuven.be/photoVocabulary/12003",
"http://data.europeana.eu/concept/base/1711"

],
"type": "IMAGE"

}, ...
]

}

Most fields are self-explanatory. edmConcept contains a list of

Open LinkedData resources that have been associated to each item

by the provider to characterize the respective item content. To gen-

erate RDF triples for this information, aswell as for the type of each

item, we define the following D2RML document:

<#EuropeanaMapping>
dr:logicalSource [dr:source <#EuropeanaAPI> ;

dr:iterator "$.items" ;
dr:referenceFormulation is:JSONPath ;] ;

rr:subjectMap [
dr:definedColumns ([

dr:name "SID" ;
dr:function op:extractMatch ;
dr:parameterBinding [dr:parameter "input" ;

dr:reference "$.id" ;] ;
dr:parameterBinding [dr:parameter "regex" ;

rr:constant "^.*_(.*)$" ;] ;
]) ;
rr:template "http://islab.ntua.gr/resources/tp/{SID}" ;
dr:cases ([
rr:class <http://islab.ntua.gr/ml/Image> ;
dr:condition [dr:reference "$.type" ;

op:eq "IMAGE"^^xsd:string ;] ;
] [
rr:class <http://islab.ntua.gr/ml/Other> ;

]) ;
] ;
rr:predicateObjectMap [

rr:predicate <http://islab.ntua.gr/ml/edmConcept> ;
rr:objectMap [dr:reference "$.edmConcept" ;

rr:termType rr:IRI ;] ;
] .

Note the use of a defined column to construct custom RDF sub-

ject IRIs. The particular defined column applies the regular expres-

sion ˆ.*_(.*)$ on the id field of each item and uses the value

of the first capturing group, named SID. The above specification

generates the following RDF triples for the first item:

<http://islab.ntua.gr/resources/tp/EU061905>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://islab.ntua.gr/ml/Image> .
<http://islab.ntua.gr/resources/tp/EU061905>

<http://islab.ntua.gr/ml/edmConcept>
<http://bib.arts.kuleuven.be/photoVocabulary/12003> .

<http://islab.ntua.gr/resources/tp/EU061905>
<http://islab.ntua.gr/ml/edmConcept>

https://www.europeana.eu/portal/en
http://www.topfoto.co.uk/

D2RML: Integrating Heterogeneous Data and Web Services
into Custom RDF Graphs LDOW2018, April 2018, Lyon, France

<http://data.europeana.eu/concept/base/1711> .

Since we want to extract several features, we can invoke ser-

vices to the analyze metadata. An option is to use DBpedia Spot-

light to extract named entities from the textual descriptions. To do

this, we need a transformation that takes the description of each

item (dcDescription) and invokes DBpedia Spotlight on it. We

first define the relevant information source:

<#DBpediaSpotlightAPI>
a is:HTTPSource ;
is:request [

http:absoluteURI "http://model.dbpedia-spotlight.org/en/
annotate?text={@@text@@}&confidence=0.5&support=0&
spotter=Default&disambiguator=Default&policy=whitelist&
types=&sparql=" ;

http:methodName "GET" ;
http:headers ([http:fieldName "Accept" ;

http:fieldValue "application/xml" ;]) ;
] ;
is:parameters ([a is:DataVariable ;

is:name "text" ;]) .

The respective effective data source has the following XML format

<Annotation text="Former chief inspector Berrett decorated by the king.
\nFormer chief detective inspector James Berrett of Scotland Yard
was decorated by the King at the royal invesititure at Buckingham
Palace." confidence="0.5" support="0"
types="" sparql="" policy="whitelist">

<Resources>
<Resource URI="http://dbpedia.org/resource/Inspector"

support="972" types="" surfaceForm="detective inspector"
offset="69" similarityScore="1.0"
percentageOfSecondRank="0.0"/>

...
</Resources>

</Annotation>

which includes all detected named entities (Resource) as DBpedia
resources (URI). We next define the transformation

<#SpotlightTransformation>
dr:logicalSource [dr:source <#DBpediaSpotlightAPI> ;

dr:iterator "/Annotation/Resources/Resource" ;
dr:referenceFormulation is:XPath ;] ;

dr:parameterBinding [dr:parameter "text" ;
dr:reference "$.dcDescription" ;] .

and add the transformation and a new predicate object map to the

<#EuropeanaMapping> triples map:

<#EuropeanaMapping>
...
dr:transformations (<#SpotlightTransformation>) ;
rr:predicateObjectMap [

rr:predicate <http://islab.ntua.gr/ml/DBpediaResource> ;
rr:objectMap [

dr:reference "/Resource/@URI" ;
dr:transformationReference <#SpotlightTransformation> ;
rr:termType rr:IRI ;

] ;
] .

When executed, it generates the following additional triples:

<http://islab.ntua.gr/resources/tp/EU061905>
<http://islab.ntua.gr/ml/DBpediaResource>

<http://dbpedia.org/resource/Inspector> .
<http://islab.ntua.gr/resources/tp/EU061905>

<http://islab.ntua.gr/ml/DBpediaResource>
<http://dbpedia.org/resource/James_Berrett> .

We further extend the set of features by using DBpedia ontol-

ogy to get the types of the retrieved DBpedia resources. For this

we need a second transformation, dependent on the first one, that

consults a DBpedia endpoint. The information source definition is

<#DBpediaSPARQLService>
a is:SPARQLService ;
is:uri "http://dbpedia.org/sparql" .

and the transformation

<#DBpediaTransformation>
dr:logicalSource [

dr:source <#DBpediaSPARQLService> ;
dr:query "SELECT ?dbpediatype WHERE

{ <{@@resource@@}> a ?dbpediatype }" ;
is:parameters ([a is:DataVariable;

is:name "resource" ;]) ;
] ;
dr:parameterBinding [

dr:parameter "resource" ;
dr:reference "/Resource/@URI" ;
dr:transformationReference <#SpotlightTransformation> ;

] .

Finally, we modify <#EuropeanaMapping> to add the new trans-

formation and a add new predicate object map:

<#EuropeanaMapping>
...
dr:transformations (<#SpotlightTransformation>

<#DBpediaTransformation>) ;
rr:predicateObjectMap [

rr:predicate <http://islab.ntua.gr/ml/DBpediaConcept> ;
rr:objectMap [

rr:column "dbpediatype" ;
dr:transformationReference <#DBpediaTransformation> ;
rr:termType rr:IRI ;
dr:condition [

op:matches "http://dbpedia\\.org/ontology/.*" ;
] ;

] ;
] .

Note that the mapping includes a conditional statement. It has

been included because the query returns not only DBpedia ontol-

ogy concepts as types, but also FOAF, YAGO, Schema, Wikidata,

and other resources, which we do not want to include in our re-

sults. Eventually, this map generates the following RDF triples:

<http://islab.ntua.gr/resources/tp/EU061905>
<http://islab.ntua.gr/ml/DBpediaConcept>

<http://dbpedia.org/ontology/Athlete> .
<http://islab.ntua.gr/resources/tp/EU061905>

<http://islab.ntua.gr/ml/DBpediaConcept>
<http://dbpedia.org/ontology/Person> .

<http://islab.ntua.gr/resources/tp/EU061905>
<http://islab.ntua.gr/ml/DBpediaConcept>

<http://dbpedia.org/ontology/Agent> .

Finally, we can use computer vision technologies to analyze the

image of each item (the URI is provided by the edmIsShownBy field
in the document returned by the Europeana API) to detect objects

that appear in it. To this end we use Microsoft’s Computer Vision

API, that is offered as a RESTful web service. Thus, we add a new

information source including the required request parameters

<#ComputerVisionAPI>
a is:HTTPSource
is:request [

http:absoluteURI "https://westcentralus.api.cognitive.microsoft.
com/vision/v1.0/analyze?visualFeatures=Categories&
language=en" ;

http:methodName "POST" ;
http:headers ([http:fieldName "Content-Type" ;

http:fieldValue "application/json" ;]
[http:fieldName "Ocp-Apim-Subscription-Key" ;
http:fieldValue "3*************************b" ;]) ;

http:body [a cnt:ContentAsText ;
cnt:chars "{\"url\" : \"{@@imageURL@@}\" }" ;] ;

] ;
is:parameters ([a is:DataVariable ;

is:name "imageURL" ;]) .

which produces the following JSON-formatted effective data source:

LDOW2018, April 2018, Lyon, France Alexandros Chortaras and Giorgos Stamou

{
"categories": [{

"name": "people_group",
"score": 0.578125

}],
"requestId": "3b28df72-abf5-488c-86f4-b2c6a7eb9703"

}

Based on this, we define the transformation

<#ImageTransformation>
dr:logicalSource [dr:source <#ComputerVisionAPI> ;

dr:iterator "$.categories" ;
dr:referenceFormulation is:JSONPath ;] ;

dr:parameterBinding [dr:parameter "imageURL" ;
dr:reference "$.edmIsShownBy" ;] .

to generate a logical array from categories that contains the names

of the detected objects, andmodify <#EuropeanaMapping> by adding
the new transformation and a new predicate object map:

<#EuropeanaMapping>
dr:transformations (<#SpotlightTransformation>

<#DBpediaTransformation> <#ImageTransformation>) ;
rr:predicateObjectMap [

rr:predicate <http://islab.ntua.gr/ml/ComputerVisionTerm> ;
rr:objectMap [

dr:reference "$.name" ;
dr:transformationReference <#ImageTransformation> ;
rr:termType rr:Literal ;
dr:condition [

dr:reference "$.score" ;
dr:transformationReference <#ImageTransformation> ;
op:geq "0.4"^^xsd:decimal ;

] ;
] ;

] ;

The above object map applies a filter in order to keep only objects

that have been detected with relatively high confidence (score).
Eventually, the above map adds the following RDF triple:

<http://islab.ntua.gr/resources/tp/EU061905>
<http://islab.ntua.gr/ml/ComputerVisionTerm>

"people_group" .

The RDF triples generated by all the above predicate-objectmaps

make up the desired RDF graph. In terms of performance, for exe-

cuting the aboveD2RMLdocument, our implementation of D2RML

processor
22

took about 7 minutes per 100 Europeana items.

7 CONCLUSIONS
We presented D2RML, a Data-to-RDF mapping language, which

based on an abstract data model, allows the orchestrated retrieval

of data from several information sources, their transformation and

extension using relevant web services, their filtering and manipu-

lation using simple operations, and finally their mapping to RDF

graphs. It combines the mapping approach of R2RML and RML

with workflow approaches, by allowing the definition of easy to

write and understand, homogenous views of the underlying data

and services in a lightweight document. We developed D2RML on

top of a formal abstract data model, so as to formally define its se-

mantics and allow future extensions. We also presented a realistic

use case, which demonstrates the capabilities of the proposed lan-

guage in real settings, by delivering a unified and coordinated ac-

cess to Linked Data data stores and other services in a clean specifi-

cation without the need of code writing or heavy-weight solutions.

22
Available as a web service at http://apps.islab.ntua.gr/d2rml/

ACKNOWLEDGEMENTS
We acknowledge support of this work by the project ‘APOLLONIS’

(MIS 5002738) which is implemented under the Action ‘Reinforce-

ment of the Research and Innovation Infrastructure’, funded by the

Operational Programme ‘Competitiveness, Entrepreneurship and

Innovation’ (NSRF 2014-2020) and co-financed by Greece and the

European Union (European Regional Development Fund).

REFERENCES
[1] Marcelo Arenas, Alexandre Bertails, Eric Prud’hommeaux, and Juan Sequeda.

2012. A Direct Mapping of Relational Data to RDF. (2012). https://www.w3.

org/TR/rdb-direct-mapping/

[2] Stefan Bischof, Stefan Decker, Thomas Krennwallner, Nuno Lopes, and Axel

Polleres. 2012. Mapping between RDF and XML with XSPARQL. J. Data Se-
mantics 1, 3 (2012), 147–185.

[3] Barry Bishop, Atanas Kiryakov, Damyan Ognyanoff, Ivan Peikov, Zdravko Ta-

shev, and Ruslan Velkov. 2011. OWLIM: A family of scalable semantic reposito-

ries. Semantic Web 2, 1 (2011), 33–42.
[4] Pierre Bourhis, Juan L. Reutter, Fernando Suárez, and Domagoj Vrgoc. 2017.

JSON: Data model, Query languages and Schema specification. In PODS. ACM,

123–135.

[5] James Clark and Steve DeRose. 2016. XML Path Language (XPath) Version 1.0.

(2016). https://www.w3.org/TR/xpath/

[6] DanConnolly. 2007. Gleaning ResourceDescriptions fromDialects of Languages

(GRDDL). (2007). https://www.w3.org/TR/grddl/

[7] Richard Cyganiak, Chris Bizer, Jörg Garbers, Oliver Maresch, and Christian

Becker. 2012. The D2RQ Mapping Language. (2012). http://d2rq.org/

d2rq-language

[8] Souripriya Das, Seema Sundara, and Richard Cyganiak. 2012. R2RML: RDB to

RDF Mapping Language. (2012). https://www.w3.org/TR/r2rml/

[9] Anastasia Dimou, Miel Vander Sande, Pieter Colpaert, Ruben Verborgh, Erik

Mannens, and Rik Van de Walle. 2014. RML: A Generic Language for Integrated

RDF Mappings of Heterogeneous Data. In LDOW (CEURWorkshop Proceedings),
Vol. 1184. CEUR-WS.org.

[10] Lee Feigenbaum, Gregory Todd Williams, Kendall Grant Clark, and Elias Torres.

2013. SPARQL 1.1 Protocol. (2013). https://www.w3.org/TR/sparql11-protocol/

[11] Roy T. Fielding and Richard N. Taylor. 2000. Principled design of the modern

Web architecture. In ICSE. ACM, 407–416.

[12] Stefan Gössner and Stephen Frank. 2007. JSONPath. (2007). http://goessner.

net/articles/JsonPath/

[13] Oktie Hassanzadeh, Soheil Hassas Yeganeh, and Renée J. Miller. 2011. Linking

Semistructured Data on the Web. In WebDB.
[14] Matthias Hert, Gerald Reif, and Harald C. Gall. 2011. A comparison of RDB-to-

RDF mapping languages. In I-SEMANTICS (ACM International Conference Pro-
ceeding Series). ACM, 25–32.

[15] Internet Engineering Task Force (IETF). 2014. The JavaScript Object Notation

(JSON) Data Interchange Format. (2014). https://tools.ietf.org/html/rfc7159

[16] Johannes Koch, Carlos A Velasco, and Philip Ackermann. 2017. HTTP Vocabu-

lary in RDF 1.0. (2017). https://www.w3.org/TR/HTTP-in-RDF10/

[17] Johannes Koch, Carlos A Velasco, and Philip Ackermann. 2017. Representing

Content in RDF 1.0. (2017). https://www.w3.org/TR/Content-in-RDF10/

[18] Andreas Langegger and Wolfram Wöß. 2009. XLWrap - Querying and Integrat-

ing Arbitrary Spreadsheets with SPARQL. In International Semantic Web Confer-
ence (Lecture Notes in Computer Science), Vol. 5823. Springer, 359–374.

[19] Franck Michel, Loïc Djimenou, Catherine Faron Zucker, and Johan Montagnat.

2014. xR2RML: Non-Relational Databases to RDF Mapping Language. (2014).

https://hal.inria.fr/hal-01066663v1/document

[20] Boris Motik, Peter F. Patel-Schneider, and Bijan Parsia. 2012. OWL 2 Web On-

tology Language Structural Specification and Functional-Style Syntax (Second

Edition). (2012). https://www.w3.org/TR/owl2-syntax/

[21] Yavor Nenov, Robert Piro, Boris Motik, Ian Horrocks, Zhe Wu, and Jay Baner-

jee. 2015. RDFox: A Highly-Scalable RDF Store. In International Semantic Web
Conference (2) (Lecture Notes in Computer Science), Vol. 9367. Springer, 3–20.

[22] Martin J. O’Connor, Christian Halaschek-Wiener, andMark A. Musen. 2010. M
2
:

A Language for Mapping Spreadsheets to OWL. In OWLED (CEUR Workshop
Proceedings), Vol. 614. CEUR-WS.org.

[23] Jason Slepicka, Chengye Yin, Pedro A. Szekely, and Craig A. Knoblock. 2015.

KR2RML: An Alternative Interpretation of R2RML for Heterogenous Sources.

In COLD (CEUR Workshop Proceedings), Vol. 1426. CEUR-WS.org.

http://apps.islab.ntua.gr/d2rml/
https://www.w3.org/TR/rdb-direct-mapping/
https://www.w3.org/TR/rdb-direct-mapping/
https://www.w3.org/TR/xpath/
https://www.w3.org/TR/grddl/
http://d2rq.org/d2rq-language
http://d2rq.org/d2rq-language
https://www.w3.org/TR/r2rml/
https://www.w3.org/TR/sparql11-protocol/
http://goessner.net/articles/JsonPath/
http://goessner.net/articles/JsonPath/
https://tools.ietf.org/html/rfc7159
https://www.w3.org/TR/HTTP-in-RDF10/
https://www.w3.org/TR/Content-in-RDF10/
https://hal.inria.fr/hal-01066663v1/document
https://www.w3.org/TR/owl2-syntax/

	Abstract
	1 Introduction
	2 Related Work
	2.1 R2RML and RML

	3 Data Model
	4 Information Sources and Replies
	4.1 Relational Databases
	4.2 RESTful Web Services
	4.3 SPARQL Endpoints
	4.4 JSON Documents
	4.5 XML Documents
	4.6 CSV/TSV Documents

	5 D2RML Specification
	5.1 Triples Maps
	5.2 Logical Tables and Logical Sources
	5.3 Information Sources
	5.4 Transformations
	5.5 Term Maps and Conditions
	5.6 IRIs, Literals and Blank Nodes

	6 Use Case
	7 Conclusions
	References

