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Abstract

In this report we describe the previous research done by our institute
in the field of requirement analysis using different natural language
processing methods. To represent the different degrees of similarity
between words we implemented different methods that make use of
synonyms and hyperonyms. We present the strengths of our methods
and identify their weaknesses. For our future research we want to
incorporate Word Embeddings as they solve most of the difficulties we
faced with synonyms and hyperonyms.

1 Team Overview

In our interdisciplinary research team at the Fraunhofer FKIE, we combine practical expertise in requirement
engineering of large-scale commercial projects as well as knowledge in the field of Natural Language Processing
(NLP), Data Science and Machine Learning, Software Architecture, Systems Engineering and Linguistics. It
is our goal to provide novel approaches, algorithms and prototypical implementations to our customers to help
them with their daily businesses, such as large commercial requirement engineering projects.

2 Past Research on NLP for RE

Over the past year our team at Fraunhofer FKIE conducted research in clustering and analysing requirements.
This research was started because of the challenges that requirements engineers and managers faced at our
institute, which include finding duplicate requirements as well as requirements formulated with different words
for the same semantic context. This leads to requirements stocks that are hard to maintain.

One way to address these challenges is to introduce a grouping for requirements, providing requirements
engineers and managers a better overview over the data. Since this is an extensive and time consuming task,
especially when looking at hundreds of requirements, an automatic system would improve the work flow of those
people significantly. Thus a combination of approaches and algorithms is desired to maximize the gain for the
people working on those requirement sets.

2.1 General Setup

To identify such a combination we implemented multiple algoriths to improve the clustering of their methods (such
as k-Means [Llo82], ClusterART [Mas03] and Neural Gas [MS+91]) and distance functions (such as euclidean
distance and manhattan distance). Following the common Bag of Words approach, the requirements were
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translated into vectors that represented how often certain words appeared. This resulted in over a thousand of
dimensions and thus leaving us vulnerable for the curse of dimensionality. This ”curse” describes problems that
arise when trying to calculate the distance between objects high dimensionality. With higher dimensionality
distances grow more alike and thus it is hard to differentiate between similar and not similar objects [SEK04].

We tried to reduce the number of dimensions by using stopwords filtering and lemmatization of words. Ad-
ditionally we used tf-idf as suggested by the literature [SM86].

2.2 Using Synonyms for Requirements Clustering

We tried to mitigate the effects that using different words for similar semantic intentions (e.g. using broadcast
instead of send) had on the distances of requirements by using synonym lists. The idea is to replace each word
with a specific synonym, such that words like transfer and broadcast would be replaced by the word send. This
reduced the number of dimensions by a small amount, as well as putting requirements with those similar words
closer together. However, this makes words that are similar into the same word, thus having no distance between
them. But since those words are not the same, a more nuanced method, in which words can be similar without
being the same word, would be preferred.

2.3 Using Ontologies for Requirements Clustering

In a next step we enriched the text by using an ontology. This allowed us to determine hyperonyms of a word
and then enrich the text with this information. The hyperonym of a word is a word describing the more general
concept. For example, the hyperonym of car would be vehicle and the hyperonym of red would be color. It is
noteworthy that words can have multiple hyperonyms. For instance, the word watch is a clock as well as an
accessoire. For our method we enriched the text by adding all hyperonym information available to this word
(meaning the different hyperonyms as well as the hypernyms of those words and so on) to the sentence. This
information can contain more then ten or twenty words and thus increases the size of the sentences, as well as
more than double the dimension size. However, similar words like car and truck will then share some words
in this tree, increasing the similarity between both sentences, while also describing the differences between the
words with another subtree. For our tests we made use of the GermaNet ontology.1

2.4 Difficulties with Synonyms and Hyperonyms

Even though both approaches have theoretical advantages, in our experience they proved to be not perfect.
While our synonyms approach reduced the dimensionality, it provided only a binary similarity between words,
either they are the same or not. In contrast, the hyperonym approach with an ontology was able to provide
more differentiated information on words, but in doing more than doubled the number of different words in our
corpus.

Additionally, we faced another problem with those approaches. In general, words can have multiple meanings,
for example homonyms, like the word bear, which can describe a mammal, as well as tolerating or enduring
something. But other words can also have slightly different meanings. The word group can describe multiple
things, for example a criminal group (gang) or a musical group (band). In both cases a collective of persons is
described, but both would have different synonyms and hyperonyms. Currently we designed an algorithm that
tries to solve this problem by previously determining the context of the requirements (is the text about criminals
or musicians?) and then chooses the appropriate meaning of the word.

2.5 First Evaluation

In a first evaluation we tried to determine the impacts of different parts on the clustering quality. We decided to
use external metrics to determine the quality of our algorithms. As we wanted to measure the potential support
our software could have on requirements engineers, we measured the algorithms against a grouping provided by
our own experts. They grouped the technical requirements by their topic, meaning which technical subparts
were specified. The grouping was done to get a better overview about the current status of the requirement
stock.

This means that we had to use a fixed number of clusters to compare against the hand crafted grouping.
Additionally this meant that we judged the quality of the algorithm on how well it was able to recreate a human
made grouping, while dismissing potentially good results that were specific to the algorithm. Thus we wanted
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requirements to be treated as similar, when the specified technical concept of the requirements was similar.
Despite these restrictions on our evaluation, we were not able to determine a better way of measuring the quality
of our algorithms, as we did not think that for our case internal metrics were suitable. How to improve the
evaluation of our requirement analysis framework is thus an open question for our team.

We tested multiple combinations of algorithms, distance functions, modifiers (such as lemmatization and
stop words filter), as well as our synonyms and ontology approaches. We calculated the F1 scores for all those
combinations and found small indications showing good combinations. Multiple of those good combinations
contained our synonyms as well as our ontology approach. We published our results2 as well as parts of our
algorithmic framework3 on GitHub.

3 Research Plans on NLP for RE

Today sophisticated word embedding algorithms, like word2vec [MCCD13], GloVe [PSM14] and fasttext
[BGJM16], are able to place words in a vector space that contains semantic information about the words.
Thus similar words will be placed close to each other and form groups of words. This means, that the distance
between two words in this space can describe how semantically similar they are. Meaning that synonyms as
well as hyperonyms of a certain word will be placed close to each other, while non related words will have a
higher distance. Additionally, the words have a fixed dimensionality (generally orders of magnitude lower than
the number of different words in the corpus). Previous work in requirement analysis discusses the possibility of
integrating Word Embeddings [FDE+17] or integrates them in classification approaches [WV16]. Additionally,
Lucassen et. al also use the approach for clustering requirements [LDvdWB16].

Looking closer at word2vec and fasttext, these models are generated by reading lage sources of human text,
such as Wikipedia, and trying to determine the word positions of word x by looking at words used around x.
In short, the model is trained by looking at n words before and after x and is then encouraged to guess x using
only the surrounding words (other methods like the Skip-Gramm Model [MSC+13], GloVe [PSM14] or fasttext
[BGJM16] prove to be more precise, but would be too extensive in this report). Thus the position of x in the
vector space is determined by the words often used with x. The assumption is (and proves to be correct), that
similar words are used with the same surrounding words. Because of this training, we assume that the model
trained with an appropriate dataset contains finer nuances of words like group, as the surrounding words will
catch the different meanings and contexts (see the example in 2.4 the word can be used with).

Looking back again at the difficulties explained in section 2.4, word embeddings seem to solve exactly those
problems. The fixed dimension size of the vectors around 200 to 500 dimensions (as recommended by Mikolov
et. al [MCCD13]) is significantly less than our datasets containing thousands of requirements, with more than
1800 unique words, not counting the number of words that occur when using our ontology approach. This means
that the number of dimensions in each vector is reduced significantly and thus the calculation of the distances is
more meaningful [SEK04]. Words which are synonyms to each other will be placed close in the vector space and
thus result in a low distance between those words, while still maintaining their identity. Further, the different
meanings of the words are taken into consideration in the vector space due to the nature of the training. Thus,
we hope to improve our clustering results even further when using this approach. Additionally, we want to try
to use them together and evaluate these results.

Another open question we face is the training of the model. The fasttext framework provides pre trained
models on 294 languages, using Wikipedia as training data4, but requirements are mostly specific to a certain
domain and so the words may not be presented well or at all in Wikipedia. Thus, using a model trained on a
domain specific model may also improve the results.

Another research question is how to define similarity between requirements when using word embeddings.
Previously, we defined a requirement by adding all words together into one vector which represented the words
and their number of occurrences in this requirement. However the number of words in a requirement is now
effecting the result in a more meaningful way [KDR15]. Averaging the resulting vector over the number of words
could be one solution, but is not feasible, since the average of two sentences can be the same even though they
do not share common words with each other. This is due to the fact that the position of words and the spaces
between them carries semantic meaning.

2https://github.com/fkie/requirement-clustering-evaluation-2017
3https://github.com/fkie/requirement-clustering
4https://github.com/facebookresearch/fastText#enriching-word-vectors-with-subword-information



Because of these problems Kenter et. al suggest a different formula called semantic text similarity (sts)
[KDR15]. The idea in short is that for the distance of two sentences (requirements) each word of sentence s1
will be matched to the best corresponding word of sentence s2. The distance of those words will be calculated
and added together. The exact formula is:

fsts(sl, ss) =
∑
w∈sl

IDF (w) ∗ sem(w, ss) ∗ (k1+)

sem(w, ss) + k1 ∗ (1 − b + b ∗ |ss|
avgsl

Here sl is the longer of the two sentences, while ss is the shorter one. The parameter avgsl describes the
average sentence length of the data set, while b as well as k1 smooth the results and are set to b = 0.75 and
k1 = 1.2 on default. The function sem(w, s) describes the semantic similarity of the word w w.r.t sentence s:

sem(w, s) = max
w′∈s

fsem(w,w′)

where fsem(w,w) describes the similarity of both words. For this, the cosine similarity is suggested.
In the next step of our research we will use pre trained fasttext models for clustering requirements and the

fsts formula to determine the similarity between requirements.
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