
Implicit Plasticity Framework: a Client-Side Generic
Framework for Context-Awareness

Montserrat Sendín

GRIHO: HCI research group
University of Lleida, 69, Jaume II St., 25001- Lleida, SPAIN
Tel: +34 973 70 2 700 Fax: +34 973 702 702

{msendin,jesus}@eup.udl.es

Abstract. In mobile computing scenarios, information should be available
every time; everywhere; everyone. Designing these kinds of systems results in
a very complex task due to the high number of concerns inherent to mobile sys-
tems that must be modeled and automatically processed. Furthermore, due to
the manner in which these concerns interact each other, they are sentenced to
hopelessly get mixed and at the same time crosscut the system core functional-
ity –they are commonly called crosscutting concerns. The combination of As-
pect Oriented Programming with new metadata facilities arises as a powerful
set of tools that makes possible to map the system’s non-core concerns to as-
pects seamlessly. In this paper we present some design strategies to develop a
client-side generic framework for context-aware user interfaces aimed at serv-
ing the mobile software community. We call it Implicit Plasticity Framework.

1 Introduction

With the advent of ubiquitous and mobile computing the design and development
of User Interfaces (henceforth UIs) that really conform to changing user demands has
become increasingly complex. Although much progress has been made in terms of
technological innovation, many mobile interactive systems are difficult to use, lack
robustness and, above all, lack flexibility with dynamically changing contexts of use.
In addition, systems’ design for mobile scenarios covers a wide range of issues; from
mobile networking to mobile devices UI design. Moreover, mobile devices present
significant graphical and interaction differences. Considering all the issues involved
in mobile scenarios can be overwhelming. To master the diversity of contexts of use
in an economical and ergonomic way, the plasticity property has been introduced.

The term plasticity of UIs was introduced by Thevenin and Coutaz from the IIHM
group in 1999 [15], along a framework and research agenda development work. To-
day this framework is being object of continuous revision within the CAMELEON
project. Some of the releases are the Revised Reference Framework [2], the
CAMELEON Reference Framework [3] –a general tool for reasoning about adapta-
tion, covering both recasting and redistribution-, and more recently the work in [4].

mailto:%7Bmsendin,%20jesus%7D@eup.udl.es

This last revises the notion of software plasticity, which is applied at the widget level
in terms of “comets” (COntext of use Mouldable widgETs1).

Despite these advances in plasticity, any definition regarding a clear distinction
between the static (design time) and dynamic (runtime) points of view of plasticity
has been given to definitely isolate plasticity goals into two sub-concepts, as we pro-
pose in our "dichotomic" view2 [12]. This distinction has only been noticed, although
not exploited, in the CAMELEON Reference Framework. Later, in [1], it is recog-
nized but not clearly specified the necessity of an external mechanism when the adap-
tation to the context of use can not be addressed autonomously.

What seems a close approach is the notion of open and close adaptiveness intro-
duced by Oreizy et al. [11]. According to it, when the system includes all of the
mechanisms and data to perform adaptation on its own, it is said to be close-adaptive.
Consequently, open-adaptiveness implies that adaptation is performed externally to
the system –total or partially. On the contrary, the two concepts from our dichotomic
view fit well under a close-adaptiveness perspective; we assume self-adaptiveness.

Under our dychotomic view, each sub-concept -explicit and implicit plasticity- has
a different goal clearly identified and delimited. They need to be studied and dealt
with separately. They require different tools and modeling techniques. In this way we
combine two different infrastructures framed in a client/server architecture to manage
both issues alternative, iterative and complementarily in order to feed a process of
plasticity without discontinuities (close-adaptiveness perspective). The implicit plas-
ticity issue is to be solved in the mobile device (client-side) and the explicit plasticity
in the server. See more details in [12]. Anyway, each one of these issues can also be
exploited autonomously. This is the case when we have an only type of requirement
of plasticity: adapting the UI either statically (design stage) or dynamically (runtime
stage). That corresponds to an open-adaptiveness perspective. We call each of these
frameworks explicit plasticity engine and implicit plasticity engine, respectively. This
paper deals with the implicit plasticity problem, which is associated with a spontane-
ous adaptation to contextual changes on the fly. See more detail in [13]. It is required
an engine capable of dynamically accommodating a specific UI to a continuous vari-
ability of contexts of use. We call it implicit plasticity engine (IPE henceforth).

However, it is clear that each system needs its particular engine. Hence, it is not
too much significant to outline the IPE for a particular system. This would only show
the approach we propose, being able to reuse little or none line of code. We want to
go beyond. What we pursue is to develop a generic framework to easily derive a
suitable IPE for each particular system. This is what we have named Implicit Plastic-
ity Framework (IPF henceforth). This aim requires gathering the experience from
different domains of application. Hence, our research group is involved in different
projects. One of them is focussed on the cultural heritage area. We have developed
different prototypes to assist the visit of an archaeological site called “Els Vilars”. At

1 An introspective interactor mold for adaptation that publishes the quality in use it guarantees

for a set of contexts of use.
2 View from the plasticity process as a dichotomy, that is to say, a separation into two sub-

concepts of plasticity closely associated with the stages of design (static) and runtime (dy-
namic). We have named them explicit plasticity and implicit plasticity. They were defined
and presented as an extension to the Thevenin and Coutaz term in [12].

present, we are working in an upper prototype to offer higher adaptation and extend
its context-aware functionality beyond a naive localization management. We are also
working in a tele-aid system for high-mountain rescue and in a personalization mod-
ule to be implanted in a digital newspaper archive. Taking advantage from all the
experience collected, we are determined to apply the most orthogonal design strate-
gies to solve the most challenging design requirements in order to gain the necessary
reusability. In this paper we outline the approach, general structure, design strategies
and main guidelines to develop it.

2 Initial Design Considerations

2.1 Design Requirements and General Structure

To develop the IPF we pursue, we must guarantee the following properties: trans-
parency in adaptation and reusability to different families of systems, different needs
of context representation and different adaptation mechanisms. It is quite common to
find a set of concerns recurrent in a lot of application domains. To reach these goals,
it is crucial that the adaptive mechanisms and the system core functionality be han-
dled orthogonally, so that they can evolve individually. Adaptive mechanisms should
also be isolated from each other to avoid conflicts and promote reusability. Orthogo-
nality is especially important in mobile software, where a lot of dimensions are pre-
sent.

As it has been exposed in our previous work [14], we conceive an IPE as a soft-
ware architecture divided into three layers. The logical layer contains the application
core functionality. The context-aware layer contains the control and modeling of the
real time constraints: the contextual model. This layer carries out the context detec-
tion, maintaining information regarding the context for further use. Finally, there is an
intermediary layer, responsible for doing the adaptation: the aspectual layer.

As it has been mentioned, the real time constraints constitute crosscutting con-
cerns. According to the approach presented in [10], and as it has been presented in
previous works [13,14], we use Aspect-Oriented Programming (AOP henceforth) [8]
to integrate adaptation mechanisms for real time constraints in the system operation.
We model them as aspects that intercept the operative of the core system to apply the
suitable adjustments to the UI, according to the current state of the context. The as-
pectual layer acts as a transparent link between the other layers, reflecting the contex-
tual state in the UI along the system performance.

2.2 Aspect-Oriented Programming

A crosscutting concern is a concern that is inevitably spread along most of the
modules of a system. AOP [8] is one of a lot of separation of concern technologies
resulting from the effort to modularize crosscutting concerns. It was proposed by

Kiczales et al., (Xerox PARC) in 1990, in an attempt to surpass the increasing com-
plexity of software systems, and was named AOP in 1996. The intuitive notion of
AOP comes from the idea of extracting and encapsulating problematic extra-
functional concerns (crosscutting concerns), providing modularization to their whole
treatment in different program units called aspects. This approach is especially appli-
cable to Mobile Computing, Ubiquitous Computing and Context-Awareness, where
multiple factors, which become tangled each other, should be handled.

AOP includes a set of additional concepts like:
Join Point: An identifiable and well-defined point in the program flow. For in-

stance, a method call.
Pointcut: Programming construct to establish the join points that require some

type of treatment. Pointcuts capture them in the program flow and collect their con-
text.

Advice: The code to execute when join points are reached and captured by the as-
sociated pointcut. We refer to the code responsible for handling crosscutting con-
cerns.

2.3 Why Aspects and Metadata Are a Good Combination?

As stated above, we use aspects to integrate the mechanisms of adaptation for real
time constraints in the system operation. However, a naive use of aspects, i.e. using
pointcuts (see section 2) based on the method signature would turn out a system-
specific aspectual design. This approach would generate strong coupling between the
logical and aspectual layers. We need to capture join points (see section 2) in a ge-
neric manner.

We propose to use a metadata-based signature to capture the required join points.
These join points are the methods in the core application that carry a simple metadata
annotation3 expressly supplied. We propose this combination (aspects and metadata)
as the most suitable to reach two opposed goals: minimizing the impact –need of
recoding- in the core system, and minimizing coupling, promoting that way reusabil-
ity.

At the moment, this combination of programming techniques is currently available
in the Java world, which is the one we have selected in our implementation.

3 Putting Aspects and Metadata to Work

In this section we want to present the approach, general structure and design strate-
gies we propose for a specific IPE, paying special attention to the aspectual layer.
This step will allow us to lay the foundations in order to make an effort of abstraction
towards the final IPF. Is in the next section that we collect the guidelines of abstrac-

3 Metadata are annotations that mark particular fields, methods, and classes as having attributes

that have no direct effect on the execution of the code and should be processed in special
ways by development tools, deployment tools, or runtime libraries.

tion we are considering to build it. To illustrate all that, we will consider an elemental
application that only has a typical context-aware concern: the localization. We will
refer to it as the Localization aspect (a metadata-based aspect). Furthermore, we
assume that this application has adaptive (customization) requirements. Supposing the
underlying core application encapsulated in a unique class: the coreAppl class,
every method needing localization management would be supplied with a Localizable
type annotation. The Localization aspect, thus, would define a metadata-based
pointcut to capture all methods in classes carring this kind of annotation. See figure 1.

Fig. 1. Localization aspect diagram

Listing 1 shows a sketch of the aspect that would define the management and ad-
aptation mechanism related to the localization concern in this simple application.
1 public aspect Localization {
2 boolean LocationChanged() {. . .}
3 – other method definitions
4 public pointcut LocalizedOps():
5 execution(@Localizable * coreAppl.*(..));
6 public pointcut LocalizedWholly(coreAppl c):
7 if (LocationChanged()) && target(c);
8 Object around(): LocalizedOps(){-- associated advice }
9 Object around(coreAppl c)):LocalizedWholly(c){
10 try {
11 loc=EnvironmentModel.getLocation();
12 String st=adaptView(loc); mountView(st);
13 proceed(st);
14 } catch (Exception ex) {. . .} } }

List.1. Localization aspect code

Localization aspect listed above defines two pointcuts. Pointcut Local-
izedOps (lines 4-5) is the one that captures the execution of any method of the core
class carrying the Localizable annotation. Pointcut LocalizedWholly (lines 6-7) is a
conditional check pointcut. It captures any join point occurring after the condition
expressed in LocationChanged()method (line 2) evaluates to true. The aim is to
automatically display the presentation that corresponds to the user’s location every
time the user moves from zone to zone. Thus, the corresponding advice (lines 10-14)
adapts the view before displaying it (line 13). Finally, it leaves the base code to pro-
ceed normally (line 14). Listing 2 shows a sketch for the core class.

public class coreAppl {
 @Localizable
 public void method1() {. . .}

 @Localizable
 public void method2() {. . .} . . .}

List. 2. The coreAppl class with annotations

The impact in classes is limited only to metadata attached to program elements.
However, it is quite common that most of the methods in a class need to carry an
annotation. Further, many systems require various annotations, leading to many anno-
tations per method, a phenomenon known as annotation clutter [9]. That can be im-
proved doing a refactoring step, using a special kind of aspect called annotator aspect
[9]. Its goal is to encapsulate all the annotations to be supplied to a class or system.
Listing 3 shows the annotator aspect for the coreAppl class.

public aspect coreAppAnnotator {
 declare annotation: public
 coreAppl.*(..):@Localizable; }}

List. 3. Localizable annotations for CoreAppl

Figure 2 depicts a sketch of the IPE for our elemental application.

Fig. 2. IPE for an elemental application

With the annotator aspect approach, the only “glue” to attach the adaptation
mechanisms to the base system is reduced to a declarative section, which is encapsu-
lated in an annotator aspect and put in the aspectual layer, as another aspect. Hence,
the logical layer becomes completely free from any annotation and track about as-
pects. Furthermore, the aspectual layer is the only responsible for doing the adapta-
tion, and is who takes the initiative. So, the adaptation is carried out transparently.

The EnvironmentalModel in the context-aware layer stores for further use the en-
vironmental factors. In this case it only stores information about the localization.

The main idea around the customization concern is to make user’s customization
features evolving. We refer to adaptivity. We need a different treatment because the
input, which needs to be incrementally stored, is not received from sensors. It comes
from the execution of the application. That implies that the aspectual layer acts not
only as an adaptive means, but also as a listener from the events and actions occurred
in the core system. It must capture information about the user’s preferences and inter-
ests, providing feedback to the dynamic user model: the EvolutiveProfileModel. This
aim is assigned to the ProfileCatcher aspect. The ProfileAdapter inter-
cepts the core application in order to adapt the UI, according to this user model.

4 Further Guidelines Towards Abstraction

In the design of our IPF, according to the experience extracted from the IPEs built
up to now, we have taken some considerations in order to obtain system-
independence and reusability. As we intend to adapt our IPF to different adaptation
mechanisms, contextual needs and domains of application, let us see them according
to each issue.

Adaptation mechanisms. In the aspect definition in Listing 1, we can note some
system-dependences that considerably limit orthogonality and reusability. To obtain
“universal” adaptation mechanisms, we can appeal to aspect hierarchy.

Thus, for instance, the system dependence in line 5 (coreAppl in the Local-
izedOps pointcut) could be solved simply including the wildcard also in the class
name. Despite of the core application is composed by a set of classes, this pointcut
would only affect classes carrying the Localizable annotation. However, it is not
always so trivial. We might need to be more selective in the weaving stage –e.g. treat-
ing the localization concern only in a specific class, in spite of annotations have been
spread through a set of classes. Another example of specialization could be requiring
another pointcut type, instead of the “execution” one. Both cases would need to rede-
fine the associated pointcut in sub-aspects. In short, using aspect hierarchy, we can
design an abstract aspect, and then choose between the following options: define
abstract pointcuts to be defined by sub-aspects –the case just referred-, leave the sub-
aspect to define new pointcuts, refactor advices, or any combination of them.

Regarding the dependence in lines 6, 7 (coreAppl in the LocalizedWholly
pointcut) and 10 (the corresponding advice), we need the second solution: defining a
new pointcut in the sub-aspect that would also encapsulate the associated advice.

On many situations, it is not necessary to define the complete advice in the sub-
aspect, but only a method that encapsulates some special needs. Then, we can use

advice refactoring. Sub-aspects would only redefine that method. In general, this
strategy is particularly appropriate when the advice contains some variabilities, either
from different applications or, why not, from different localization managements in
the same application. For example, in the second advice from Listing 1 (lines 10-14),
instead of adapting the view (adaptView in line 13), we could require for some
classes to send a remote query to receive the view from a server (e.g. an explicit plas-
ticity server [12]). In this case, we would only need to redefine the adaptView
method. That is a smart way to specialize the code corresponding to the adaptation
mechanisms. In particular, this idea corresponds to the Template advice idiom [6].

Of course, it can be used other types of refactoring, other types of emerging AOP-
specific patterns and idioms to make good designed AspectJ applications [9, 5].

Domains of application. It is possible to deploy libraries of aspects. Thus, each
particular application -even each particular use- is able to establish the set of concerns
it needs to manage. That will determine which aspects need to be charged in memory.
For example, in an archeological site it is required to consider the daylight constraint
to adjust the UI. However, if we want to adapt this framework to an indoors museum
guide, this concern is useless. Incidentally, in a tele-aid system another kind of con-
cerns are required, such as the altitude and ascent speed, in order to assist mountain
rescues. We could build an package of aspects related to mountain conditions.

Contextual needs. Equally, we need to adapt the context-aware layer to the aspec-
tual one, in order to map aspects with data stored in the contextual model. This is the
reason why it is essential to obtain flexibility also in the context-aware layer. Flexi-
bility in the contextual representation can also be obtained by means of classes hier-
archy in the components contained in the context-aware layer.

5 Conclusions

Self-adaptive mobile and ubiquitous applications are exposed to a world where
real time constraints change continuously. The design of these systems becomes
highly complex and prone to mismatching. The integration of an aspectual layer for
the IPE is essential to reach an appropriate separation of concerns for these kinds of
constraints and to manipulate the underlying UI transparently. However, how attach-
ing this layer to the base application is determinant to obtain the decoupling between
layers we pursue. We present a metadata-based aspectual decomposition approach
that causes no impact over the base application and, at the same time, reduces system-
dependence to the minimum, facilitating so greatly its integration with the base sys-
tem. We assert that the adaptation mechanisms act seamless and transparently.

Finally, the great milestone for obtaining a generic IPF, reusable for any system,
consists of removing totally system-dependences in the adaptation mechanisms (as-
pectual layer). This is tackled applying appropriate guidelines of abstraction to give
the final framework the flexibility we pursue. We collect in this paper the considera-
tions extracted up to now from experience. Once we have concluded our IPF, with the
aim of offering it to the mobile community, we consider essential to arrange and
deploy an appropriate hierarchical library of aspects, contributing so to the necessary
flexibility and reusability and to adapt the framework to different domains.

Acknowledgments

Work partially funded by Spanish Ministry of Science and Technology, grants
TIN2004-08000-C03-03.

References

1. Balme, L.: Infrastructure Logicielle pour Interfaces Homme-Machine Plastiques. Proc. of
Secondes Rencontres Jeunes Chercheurs en Interaction Homme-Machine (RJC-IHM’04)
(2004) 27-32

2. Calvary, G. et al.: Plasticity of User Interfaces: A Revised Reference Framework. Proc. of
TAMODIA 2002 (2002)

3. Calvary, G., Coutaz, J., Thevenin, D. , Bouillon, L., Florins, M., Limbourg, Q., Souchon,
N., Vanderdonckt, J., Marucci, L., Paternò, F., Santoro, C.: The CAMELEON Reference
Framework. Deliverable D1.1 (2002) http://giove.cnuce.cnr.it/cameleon.html

4. Calvary, G., Coutaz, J., Dâassi, O., Balme, L., Demeure, A.: Towards a new Generation of
Widgets for Supporting Software Plasticity: the “comet”. Proc. of EHCI-DS-VIS, Ham-
bourg (July, 2004)

5. Hanenberg. S., Costanza, P.: Connecting Aspects in AspectJ: Strategies vs. Patterns. 1rst
Worshop on Aspects, Components, and Patterns for Infrastructure Software (2002)

6. Hanenberg, S., Schmidmeier, A.: Idioms for Building Software Frameworks in AspectJ.
2nd Worshop on Aspects, Components, and Patterns for Infrastructure Software (2003)

7. Herrmannm, S., Mezini, M.: PIROL: A Case Study for Multidimensional Separation of
Concerns in Software Engineering Environments. Proc. of ACM OOPSLA 2000. Vol. 26,
Issue 1, ACM Press (2001) 188-207

8. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M. Irwin, J.:
Aspect-Oriented Programming. In: M. Aksit and S. Matsuoka (eds.): 11th ECOOP’97. Lec-
ture Notes in Computer Science, Vol. 1241 (1997) 220-242

9. Laddad, R.: AspectJ in action. Practical Aspect-Oriented Programming. Manning Publica-
tions (2003)

10. Mesquita, C., Barbosa, S.D. J., De Lucena, C.J.P.: Towards the identification of concerns
in personalization mechanisms via scenarios. Proceedings of the AOSD 2002, Workshop
on Early Aspects (2002)

11. Oreizy, P., Medvodovic, N., Taylor, R.N.: Architecture-Based Runtime Software Evolu-
tion. Proc. of the International Conference on Software Engineering (ICSE’98), Kyoto
(1998) 11-15.

12. Sendín, M., Lorés, J.: Plasticity in Mobile Devices: a Dichotomic and Semantic View.
Workshop on Engineering Adaptive Web, supported by AH 2004, Eindhoven (2004) 58-67

13. Sendín, M., Lorés, J.: Local Support to Plastic User Interfaces: an Orthogonal Approach.
Selection of HCI related papers of Interacción 2004. Springer-Verlag (2005)

14. Sendín, M., Lorés, J.: Towards the Design of a Client-Side Framework for Plastic UIs
using Aspects. Proc. of Internat. Works. on Plastic Services for Mobile Devices (PSMD)
(2005)

15. Thevenin, D., Coutaz, J.: Plasticity of User Interfaces: Framework and Research Agenda.
Proc. of Interact’99, Edinburgh (1999) 110-117

http://giove.cnuce.cnr.it/cameleon.html

