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I.  INTRODUCTION 

IT-based solutions are currently used everywhere, and 
significant problems are represented by both internal software 
errors of the information systems, and malicious source code 
implemented in the information system software. The 
consequences of both problems lead to violation of access, 
integrity and confidentiality of the processed information, 
which can result in financial and reputational losses of the 
business. This is a reason of growing financial losses over the 
last few years. High quality and failure-free operation of the 
source code is a burning issue of the software industry. Ever 
growing complexity of the software complexes, their use in the 
management and control systems of the government and the 
industrial production require continuous upgrading of the 
software testing and control methods [1-11]. 

II. STATIC AND DYNAMIC METHODS OF THE CODE 

ANALYSIS  

Upon the whole, the testing methods used in the audit of the 
software systems security may be divided into two groups: 
static methods (structural testing) and dynamic methods 
(functional testing). Static methods of the code analysis, which 
do not require running of the analysed code for its operation, 
allow for full or partial automation [12, 13]. Such methods are 
most frequently used in case of full access to the software 
system and its source texts, which is called “a white-box 
technique”. It employs source and loading modules of the 
program and its component. The benefit of the static code 
analysis is that it does not require multiple program runs under 
various operational conditions (condition of the environment 
and input data) and possibility to achieve a greater degree of 

automation of the tests for the program defects based on their 
design features. When developing software for special-purpose 
informational systems, these methods are used to search for 
random code defects, and hidden software functionality 
(backdoors) [14, 15]. 

Dynamic software analysis is a method of analysis that 
stipulates program running on real or virtual processor [16]. 
Functional testing is most in demand during the study of the 
programs by black box method, when there is access to only 
external software interfaces without account of their structure, 
back-end interfaces or status. The approach is used to study 
accuracy and stability of the software operation within the 
framework of the key jobs of the test engineers, however, the 
method is not always effective for searching of errors related to 
combinations of rarely used input data, and for identifying 
intentional backdoors there. Static analysis of the software 
source texts is closely related to development of compilation 
systems, and many approaches of static analysis use elements 
of the compiler theory, namely, the code view models [17, 18]. 

III. SIGNATURE ANALYSIS AS THE MAIN METHOD 

The approach that is called signature analysis implies the 
search for software defects in the software code by comparing 
code fragments with the samples from the database of templates 
(signatures) of the security defects. Depending on the method 
for correlating fragments of the code to the template, and the 
intermediate representation in use, there may be algorithms of 
searching for a substring in the string, and query language for 
structured information (for instance, XQuery for XML), or 
specially designed methods of correlation, but in each case each 
of the signatures represents the decision procedure, which 
employs various presence bits of potentially harmful structure. 
[18] provides examples of the rules for generating error 
signatures, which correspond to the CWE standard. We can see 
here that the signature methods are not limited to the types of 
defects and are preferable, when dealing with the backdoors.  

Improvement of the operational qualities of the static code 
analysis is mainly related to minimizing the number of “false 
positives” while preserving maximum fullness of the list of the 
types of potentially harmful structures [19]. Therefore, the 
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instruments describing signatures of the code defects shall 
ensure maximum flexibility in defining a defect with account of 
diversity in the syntax of the programming language under 
study.  

The field for designing means of static analysis is now 
actively developing: new directions of analysis do not force out 
the reputable approaches, on the contrary, they complement 
them by integrating the advantages of the predecessors. For 
instance, such approach as dataflow analysis may compensate 
for the drawbacks of the template-based code defect search, 
which does not allow for high quality of identification of SQL-
, Path-, XSS-injections, and other types of code injections, 
however, it will require large RAM and computing resources of 
the processor [20, 21, 22].  

An interesting manifestation of symbiosis of the analysis 
methods is when potentially harmful structures, which have 
been initially identified by the customary signature method is 
supported by the automated method using highly-specialized, 
costly, but efficient procedures [23-25]. 

IV. DATAFLOW ANALYSIS 

The dataflow analysis can be described as a process of 
gathering information about the use, defining and dependency 
of data in the analysed program [26, 27]. The dataflow analysis 
uses command flow graph generated based on the code tree. 
This graph represents all possible paths for running this 
program: the nodes stand for ‘linear’, consecutive fragments of 
the code without any transitions, and the edges stand for 
potential transfer of control between these fragments. 

Syntactic analysis allows for identifying control structures, 
such as procedure, function or method calls, which, in their 
turn, allow building call graphs, control flow graphs, and 
identifying assignation and the others that allow building 
dataflow graphs [17, 18, 28]. Control and dataflow graphs are 
used for analysis of the local program blocks (mainly, the 
content of the functions, procedures and methods - local 
analysis). Control flow graphs allow analysing program 
behaviour on a more general level (on the level of the file, 
module or the entire program - global analysis). 

The dataflow analysis can be used for proper detection of 
certain types of defects (as a rule, in operation) with a minimum 
number of false positives: SQL-, command-, XSS-injections, 
other types of code injections and setting directly in the code of 
the authentication data. It should be noted that despite the 
differences in these defects, most of them implement the 
following defect use pattern. 

1. Data is received from the user (consequently, 
untrusted data). 

2. Data propagates through the program depending on the 
conditions and cycles. 

3. Data is transformed, or filtered, or remains unchanged.  

4. Finally, untrusted data gets access to the vulnerable 
function (buffer management, SQL query running 
etc.). 

There is a mechanism for dataflow analysis called “taint 
propagation”, which allows for identifying the defect, but also 
shows the data propagation path, starting from the entry point 
(user input), through the program and to the function 
vulnerability [29]. An interesting instance of such mechanism 
of dataflow analysis is “constant propagation” - search for 
authentication data (login, password, IP-address) directly in the 
software source code. Let us review a code fragment:  

String login = "Some Constant"; 

Such code fragment can be sought using signature analysis 
(search as per templates). It only requires representation rule: 

VARIABLE (“login” OR “password”) 

OPERATOR (“=”) CONSTANT(*); 

However, these code fragments can show that such code 
was written for debugging and remained in the final software 
version by accident, or was added intentionally, provided there 
was assurance that the code would not be inspected. If a 
malicious developer wants to hide the imbedded defect from the 
person, who inspects the code, but also from the means of static 
analysis, the code may be written, for instance, this way: 

String label = "somewhere".substring(0,4); 

String summ = 

LogConstant.class().getClassName().toLowerCase()

; 

String upd_time = summ.substring(3, 

summ.lenght()-3); 

Char ascii_conv = 95; 

String login = label + ascii_conv + upd_time; 

If we break down parts of code fragment into various 
modules and files of source texts, it will be next to impossible 
to identify the defect using manual analysis, as well as many 
known automated methods.  

The “constant propagation” mechanism of the dataflow 
analysis may define the values of the variables, their 
concatenation and transfer into other variables, and final values 
of the variables. As a result, the defect may be identified and, 
consequently, unauthorized access to the functional capabilities 
of the software may be prevented.  

V. OPERATING PRINCIPLES AND APPLICATION OF THE 

DATAFLOW ANALYSIS  

Previous sections show the importance of static analysis and 
general issues. Following sections describe the main approach 
for dataflow analysis implementation and results of its 
implementation in static analyzer AppChecker developed by 
NPO Echelon. Let us introduce a set of definitions for a future 
shorter description of the principles and algorithms of this 
method operation: 

• Point — a node in the control flow graph; 

• Touch points (TP) (sink or critical points) — nodes in 
the control flow graph, which are used for calling important 
functionality (in the context of the identified defect); 

• Entry point - nodes in the control flow graph, where 
new data is received from interfaces outside the analysed code; 
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• Untrusted data - data received from interfaces outside 
the analysed code and trusted zone (allied agents, users); 

• Critical flow - flow from the entry point to the touch 
point. 

Let us define the general procedure for the search for 
undocumented features using dataflow analysis: 

1. Prepare source texts and configurations of the analysed 
software. 

2. Use of the static analysis tools (that implement 
dataflow analysis) to sourced texts and configurations 
prepared in step 1.  

3. Processing of the results of analysis: 

• Selecting suspicious dataflow paths, 

• Analysing entry points and points of untrusted data 
propagation, 

• Filtering false positives. 

4. Drawing up the final report. 

Dataflow analysis is divided into two stages. The first stage 
of analysis requires engineering of critical control and 
dataflows in the analysed software. Below is the sequence of 
the algorithm actions. 

1. Search for the entry points of the untrusted data in the 
analyzed software (template-based search). This step 
requires a base of entry points templates formed by 
inspections of standard libraries and popular 
frameworks.  

2. Search for the points that contain potentially 
vulnerable functions (template-based search as well). 

3. For each entry point of the untrusted data, add 
function, method and procedure calls that are 
happening in this point to the control flow tree. 

4. Repeat clause 3 until you reach one of the final points 
specified in clause 2, or until you reach a point that 
does not transition into other functions, procedures or 
methods.  

5. Once control flow trees are built, identify flows that 
have reached potentially vulnerable functions. 
Consider these flows critical. 

At the second stage, analyse critical control flows, their 
separate points (functions, procedures and methods) and 
identify the fact of untrusted data propagation from the entry 
point to the potentially vulnerable function. Below is the 
sequence of the algorithm actions: 

1. Obtain entry point (function, procedure or method), 
engineer all dataflows that affect the data received 
from untrusted source.  

2. If untrusted data after interaction with other dataflows 
has not changed its status, proceed to clause 3. 
Otherwise, complete analysis of the current critical 
control flow.  

3. If untrusted data were transmitted at the following 
point of the critical control flow, proceed to clause 4. 
Otherwise, complete analysis of the current critical 
control flow. 

4. If the current point is the endpoint, proceed to clause 
5. Otherwise, proceed to clause 2 with a new point and 
new input data. Continue, until analysis of all points in 
the critical control flow is complete.  

5. If the current point is the endpoint, and untrusted data 
were transmitted to the potentially vulnerable function 
from the first point, enter the critical control flow on 
the positive triggering list. Otherwise, finalize analysis 
of the current critical control flow.  

The list obtained at the entry to the second stage of analysis 
is transferred to the entry of the report generator, which control 
interface is also present within the graphical user interface; after 
that the report generator based on the transferred list and 
database of the defect types draws up a report on the performed 
static analysis. 

VI. LOCAL ANALYSIS 

The following description refers to dataflow 
implementation in static analyzer AppChecker developed by 
NPO Echelon. The local analysis is normally performed for a 
certain block of the code (which coincides with the visibility 
scope depending on the programming language). The local 
analysis assumes obtaining information about the conditions of 
the program in all points of the program, i.e.: 

• On creating data; 

• On saving data; 

• On destruction of data. 

The diagram of the local analysis algorithm can be seen in 
Figure 1. 

You can optionally store, for instance, data on the value 
constancy (for the “constant propagation” tool), data assurance 
flag (for “taint propagation”), and information about the 
condition of the variable. 

Information can be obtained from the local block in two 
opposite ways listed below:  

1. From bottom to top: from the point susceptible to the 
defect make assumptions about the properties of the 
data transmitted into it, go up the code to the point of 
entry in the local area (function, procedure or method). 
The approach requires consideration of all options of 
the program run (for each branch and iteration of the 
cycles), which leads to “combinatorial explosion” of 
the information quantity, which shall be stored during 
analysis.  

2. From top to bottom — from the point of entry of 
untrusted data into the program, down along the code, 
with available information about all of the above 
points of the program. This approach allows making 
assumptions about running separate branches of the 
program and engineer sequential analysis. The 
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drawback of this approach is difficulty in obtaining the 
path from the entry point to the exit point, because the 
only known fact is that the path exists.  

 

Fig. 1. Diagram of the Local Analysis Algorithm. 

VII. GLOBAL ANALYSIS 

Information that is available within one function 
(procedure, method), as a rule, is insufficient for high quality 
search for the defects, because many defects propagate 
throughout the project, or, at least one file. Global analysis is 
used to link data received from different functions. The global 
analysis engages call graphs. To ensure operation of this 
analysis it is sufficient to obtain certain confirmation or 
assumption about the properties of input and output data of 
separate functions in the call graph. It is important to obtain 
such data in the context of the functions, which are outside of 
the path from the point of the data entry to the point susceptible 
to the defects, and which analysis is necessary because the call 
of such functions may change the arguments or return values, 
which properties may depend on the properties of the input data 
(for instance, the substring get function, which accepts data 
input by the user returns taint data, although formally it is not 
included in the call graph).  

The diagram of the global analysis algorithm can be seen in 
Figure 2.  

 

Fig. 2. Diagram of the Global Analysis Algorithm. 

VIII. MATHEMATICAL DESCRIPTION OF THE DATAFLOW 

ANALYSIS  

The ideal solution of the dataflow analysis task from the 
theoretical point of view consists in the search for all possible 
paths. Let us introduce certain symbols: B — data block for 
analysis, which consists from elementary subblocks B1, …, Bn. 
It is a known fact, that the dataflow values before the statement 
and after it are limited by the semantics of the instruction. The 
correlation between the dataflow values before and after the 
assignment statement is characterized by the transfer function. 
fi shall stand for a transfer function of block Bi, which 
characterizes transformation of data in this block. The values of 
the dataflow before and after subblock Bi shall be represented 
as IN[Bi] (OUT[Bi] accordingly). 

Suppose P is a possible execution path in the flow graph: 

P= Input → B1 → … → Bk. 

In this case, the transfer function fP for path P will be 
represented by a composition of the transfer functions fk−1•…•f1. 
However, it should be noted that fk is not a part of the 
composition, which shows that the path reached the start of 
subblock Bk, but not its end. Let us consider that any flow graph 
consists of two empty subblocks - input block, which is a start 
point of the graph, and output block, which is passed by all exits 
from the graph. The transfer functions of input and output 
blocks are represented by constant values.  

Thus, taking into account the foregoing, the ideal solution is 
the array: 

𝐼𝐷𝐸𝐴𝐿(𝐵) = ⋃ 𝑓𝑃(𝑣𝑖𝑛𝑝𝑢𝑡)𝑃 , 
where 𝑣𝑖𝑛𝑝𝑢𝑡 is the result of the constant transfer function, 

which is represented by the starting input node.  

It may seem that the task of the search for the ideal solution 
is reduced to analysis of the transfer functions fP for all paths P 
in the flow graph. However, it was noted by Ullmann [17, page 
724], the task of the search for the ideal solution is generally 
unsolvable. If block B has branches, cycles and recursions, 
array IDEAL[B] maybe unlimited. The assistance comes from 
the solution of path-based gathering [17, page 757], which is 
similar to the path search algorithm in the graph, so called 
‘breadth first search’. This algorithm allows achieving such 
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final number of P, that an array of all fP covers all unique 
transformations of fB. 

Let us write down an iterative solution to the generalized 
task for the dataflow. There are two versions of such 
algorithm - direct and reverse. The first version proceeds from 
input blocks to the output, the second - goes in the reverse. The 
basis is Ullmann’s algorithm [17, page 754]. 

Direct version of the algorithm: 

OUT[INPUT] = 𝑣𝑖𝑛𝑝𝑢𝑡; 

For (each base block B, which differs from input) 

    OUT[B] = InitDataConst; 

while (changes are entered in OUT) 

    for (each basic block B, which differs from input) 

{ 

 IN[B] = ⋃ OUT[P]P-predecessor  ; 

    OUT[B] = fB (IN[B]); 

    } 

Reverse version of the algorithm: 

IN[INPUT] = voutput; 

for(each basic block B, which differs from output)  

    IN[B] = InitDataConst; 

while (changes are entered in IN) 

    for(each basic block B, which differs from output) 

{ 

    OUT[B] = ⋃ IN[P]P-predecessor B  ; 

 

    IN[B] = fB (OUT[B]); 

    } 

 

Subject to [17], if algorithm converges, its result is the 
solution to the dataflow problem. The obtained solution turns 
out to be a so called maximum fixed point, which has the 
property that in any other solution IN[B] and OUT[B] are 
already present in this solution. If in this case the analysed block 
is final, the convergence of the algorithm is guaranteed. These 
statements are proved by Jeffrey Ullmann in [17, pages 754-
755]. 

It should be noted that in practice it is inadvisable to analyse 
all data used by the program. For example, if we consider 
unfiltered user input as input data vinput, we are going to be 
interested in B, where OUT[B] are entered in the database or 
output in HTML-context. Block B may also be represented by 
the function of the input information filtering, thus finalizing 
the path and marking it as safe.  

IX. EXAMPLES AND RESULTS 

Dataflow analysis is widely spread in compilers and some 
sort of program analysis tools in order to find mistakes, typos 
and other accidentally inserted source code errors or 
weaknesses. This paper is dedicated to the implementation and 
usage of well-known analysis approach for detecting potentially 
harmful code areas deliberately inserted into source code. The 
paper subject novelty is in joint usage dataflow and signature 
template-based analysis for detection both embedded malicious 
code (backdoors, trapdoors, hard-code credentials) and 
weaknesses caused by accidental developer's mistakes.  

Below are the examples of potentially harmful structures 
detected by the method described here using AppChecker 
software. These examples are real but quite simple because we 
think it is unacceptable to provide big and complex examples in 
this article. 

1. Potential SQL-injection is identified in Dolibarr 
project, in htdocs/admin/menus/edit.php file: 

B284 = «$sql = "SELECT m.rowid, m.mainmenu, m.level, 
m.langs FROM ".MAIN_DB_PREFIX."menu as m WHERE 

m.rowid = ".$_GET[’menuId’];» 

B285 = «$res = $db->query($sql);» 

Data received from the user is entered in $sql variable, and 
the value of the variable without filtration is entered in SQL-
request, which may lead to running of random SQL code. The 
critical point is string B285; constant string is concatenated with 
taint data, and as a result the part of the string to the right of 
concatenation becomes taint.  

2. The use of passwords set directly in the software code 
is identified in AWCM project, in connect.php file: 

B3 = «$db_hostname = "localhost";» 

B4 = «$db_username = "root";» 

B5 = «$db_userpass = "123456";» 

B6 = «$db_database = "awcm";» 

B24 = «@mysql_connect($db_hostname, $db_username, 
$db_userpass);» 

Parameters, including the password, set directly in the code, 
are used to connect to the database. The critical point is string 
B24; in string B5 the right part of the expression is a constant; in 
practice, the string is allocation of constant value to the variable 
used further to set the password. Nowadays AppChecker, which 
implements algorithms of signature analysis using flow 
analysis, contains the total of 253 rules for the search of defects 
in the software code in four programming languages: С/С++, 
Java, PHP, C#; the rules allow identifying 113 types of defects 
[28, 30]. AppChecker was tested in 90 projects with open 
source codes. 

X. CONCLUSION 

The following conclusions can came from the results of the 
study: 

1. Based on well-reputed signature analysis approach, 
the suggested method of the dataflow analysis can minimize the 
number of false positives and simplify the development of 
signatures for an analyser production model.  

2. The suggested method and tools will be useful for the 
accredited testing laboratories as well as developers of safe 
software tools. Secure software development practices (we 
would, first of all, like to mention a recently approved national 
standard in this field [31-33]), are being implemented at a 
growing rate nowadays, therefore integration of the structured 
testing procedure in the process of the automated system 
development based on static signature analysis is a high-priority 
task. 
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