
74

Vulnerability of RSA Algorithm

Aleksandra V. Markelova

Information Security Department

Bauman Moscow State Technical University

Moscow, Russia

markelova_bmstu@mail.ru

Abstract—This paper is dedicated to ROCA-vulnerability that

was detected by scientists from Masaryk University, Czech. Their

investigation offers low-cost algorithm of factorization of RSA

module for special type of keys generated by some widely used

cryptographic library. They proposed a practical factorization

method for various key lengths including 1024 and 2048 bits.

This attack requires no additional information except for the

value of the public key and does not depend on a weak or a faulty

random number generator. We examine the possibility of

modification of type of keys to embed the trapdoor with universal

protection into key generator. In some cases we can design

Secretly Embedded Trapdoor with Universal Protection in the

generator of RSA key. This problem is serious and relevant for

all closed (so-called black-box) implementations of cryptographic

algorithm in user’s library or device. The first section of this

article (“Introduction”) is devoted to the history of the issue. It

also describes the damage caused by vulnerability ROCA. The

second section (“Fingerprint of weak keys”) describes the

criterion that the key pair is vulnerable to ROCA. The third

section (“Factorization”) is dedicated to the attack ROCA. It also

estimates the running time of the algorithm. In the fourth section

(“The trapdoor with universal protection”) we will consider the

possibility of using SETUP mechanism in the implementation of

RSA.

Keywords— information security, cryptanalysis, vulnerability,

ROCA, RSA, Coppersmith’s algorithm, factorization, weak keys,

kleptography, trapdoor with protection, backdoor, SETUP

I. INTRODUCTION

On November, 2017 Estonian government made a
statement about blocking 760 000 certificate of ID cards issued
after October 16, 2014. The reason for this statement was the
vulnerability ROCA (Return of Coppersmith's Attack)
discovered by scientists from Masaryk University, Czech [1].

Toomas Ilves, the former president of Estonia, said that he
believed millions of people in countries had been affected by
the ROCA flaw, but their authorities were remaining "silent".
In particular, according to the researchers of the Enigma
Bridge, similar problems are possible with ID card of Spain.

There is a fast detection algorithm to verify whether a
particular key is vulnerable to attack. This verification is based
on the properties of the public moduli.

Vulnerable keys were also found in some authentication
tokens, in the TPM (Trusted Platform Modules), in PGP.

Google, HP, Lenovo and Fujitsu released updates for their
software products susceptible to this attack.

Recall that the public key of the RSA algorithm is a pair
(n, e), where n is the product of two large primes and gcd(e,

(n))=1. Private key is number d such that ed=1(mod (n)).
Some implementations also store prime divisors of n as part of
the private key.

Thus, RSA requires two large random primes p and q, that
can be obtained by generating a random candidate number
(usually with half of the bits of n) and then testing it for
primality. If the candidate is found to be composite, the
process is repeated with a different candidate.

Since the RSA algorithm is very popular, many researches
are devoted to its reliability [2, 3, 4, 5, 6, 7].

RSA security is based on the integer factorization problem.

The most effective modern factorization algorithms (such
as quadratic sieve [8], number field sieve [9], special number
field sieve [10, 11]) have subexponential complexity [12] and
in the general case do not allow hacking RSA with large key
lengths.

However, if the numbers p and q are a special type, then the
time of factorization of the number n = pq can be reduced.

II. FINGERPRINT OF WEAK KEYS

There is no common practice for developers of
cryptographic library how to generate RSA key pair. But there
are many recommendations regarding how to select suitable
primes p and q [13, 14, 15, 16] to be later used to compute the
private key and public moduli.

In 2016, scientists from Masaryk University analyzed
implementations of RSA algorithm and key pairs from 22
open- and closed- source libraries and from 16 different smart
cards [17]. In particular, the library RSALib used in Estonian
ID cards was investigated. This library utilizes an acceleration
algorithm called “Fast Prime”.

The foundations of “Fast Prime” date back to the year
2000. According to its developers, its use started around ten
years later after thorough reviews. As a sub-part of one
cryptographic software library which is supplied to customers
as a basis for their own development, this software function
was certified by the BSI (Federal Office for Information
Security) in Germany.

75

When compared to other implementations and theoretical
expectations on distribution of prime numbers, the keys from
RSALib exhibited a non-uniform distribution of (p mod x) and
(n mod x) for small primes x.

Further studies have shown that all RSA primes generated
by the RSALib have the following form [1]:

 p=k*M + (65537
a
 mod M) (1)

The integers k and a are unknown, and RSA primes differ
only in their values of a and k for keys of the same size. The
integer M is fixed for each key size (table I) and equal to the
product of the first successive primes:

 M = Pm =  pi = 2*3*5*7*…*pm (2)

TABLE I.

Key size M

512 P39#=167#

1024 P71#=353#

2048 P126#=701#

3072 P126#=701#

4096 P225#=1427#

In this case the following comparison takes place:

 n = 65537
c
 mod M (3)

The existence of the discrete logarithm c = log65537n mod
M is used as the fingerprint of weakness of the key pair. In
general, verification of solvability of the comparison (3) can
be difficult [18]. But if M is of the form (2) then the problem
is easily solved.

The number of residues modulo M for which there exists a
logarithm at base 65537 is equal to ordM65537. For randomly
generated prime numbers, the remainders from dividing their
product by M are distributed uniformly in the multiplicative
group of residues modulo M. Therefore, the probability for the

number n to satisfy the comparison (3) is ordM65537/(M).

For the M used, the value of ordM65537 is much less than

(M). For example, ordM65537=262,09, (M)=2215,98 for RSA-
512. Thus, the probability of the false positive result does not
exceed 262–216=2–154. This probability is even smaller for larger
keys (table II).

So the existence of the discrete logarithm is the strong
fingerprint of the weak keys.

TABLE II.

Key size Size of M ordM65537

512 2219,19 262,09

1024 2474,92 2134,73

2048 2970,96 2255,78

3072 2970,96 2255,78

4096 21962,19 2434,69

Online and offline versions of this test are already
developed. They are freely available on the Internet.

III. FACTORIZATION

Algorithm ROCA iterates over values of a in (1) and use
Coppersmith’s algorithm [19] to attempt to find k. To reduce
the search, the modulus M is replaced by its divisor M', for
which ordM'65537 is small and log2M'>log2n/4. The number M'
is selected once for each RSA key size (table III).

TABLE III.

Key size Size of M' ordM'65537 /2

512 2140,77 219,20

1024 2474,92 229,04

2048 2970,96 234,29

3072 2552,50 299,29

4096 21098,42 255,05

The size of M' (condition log2M'>log2n/4) is chosen to
apply the modification of the Coppersmith’s attack [19], which
is successful in case of knowing l/4 the least significant bits of
the number p, where l is the key size.

Coppersmith’s attack was repeatedly modified. Now there
are various attacks on RSA based on Coppersmith’s algorithm.
For example, factorization algorithms have been developed for
cases when the lowest bits of the number p are known or when
primes p and q share bits in the middle ([20, 21, 22, 23]).

 In attacks of this class, we choose a polynomial f(x)
having a small root x0 in the residue field:

 f(x0) = 0 mod p (4)

 |x0|<X (5)

Then we construct a polynomial g(x) satisfying the
following conditions:

 g(x) =  aifi(x), (6)

76

ai is integer,

 fi(x) and f(x) have the same roots modulo p, (7)

 |g(x0)|<p. (8)

The coefficients ai are chosen by the LLL-lattice method
[24]. It follows from (6) and (7) that g(x) has the same roots
modulo p as f(x). Well then g(x0)=0 mod p. Taking into
account (8), we see that g(x0)=0. Thus x0 can be found by
standard methods for finding the roots of a polynomial (e.g.,
the Berlekamp-Zassenhaus algorithm [25, 26]).

We denote the process of finding x0 as Coppersmith(f(x), n,

, m, t, X), where n is RSA-modulus,  is the upper bound for
the ratio of log2p and log2n, m and t are optimization
parameters of Coppersmith algorithm, X is from (5).

Algorithm ROCA works as follows:

1. c'= log65537n mod M'

2. =0.5, X=2*n/M'

3. For all a' in [c'/2; (c'+ ordM'65537)/2]:

 3.1 f(x) = x + (M'–1 mod n)*(65537a' mod M')(mod n)

 3.2. k' = Coppersmith(f(x), n, , m, t, X)

 3.3. p=k'*M' + (65537
a' mod M')

 3.4 If p is a nontrivial divisor of n, then finish.

The running time of this algorithm is shown in tables IV
and V. Two time values were explicitly checked by the
scientists from Masaryk University on the university cluster.

TABLE IV.

Key size Factorization on Intel Xeon E5-

2650 v3 @3GHz Q2/2014

512 1,93 hours (verified)

1024 97,1 days (verified)

2048 140,8 years

3072 2,84*1025 years

4096 1,28*109 years

Others were extrapolated based on known algorithm
properties and processing power.

The algorithm is well suited for parallel computations,
since the approbation of different values of a' can pass
independently of each other.

For example, you can rent 1000 cores on Amazon AWS.
In this case it will take 45 minutes to find the 1024-bit key. It

will take about 17 days to find the 2048-bit key. At the same
time the cost of the attack will not increase, because it is
calculated based on the price of one processor hour.

TABLE V.

Key size Factorization on 2x Intel E5-2666

v3@2.90GHz (Amazon AWS, c4

instance) and resource rental cost

512 0,63 hours, $0,063

1024 31,71 days, $76

2048 45,98 years, $40 305

3072 9,28*1024 years, $8,13*1027

4096 4,18*108 years, $3,66*1011

Note that 4096-bit RSA key is not practically factorizable
now, but may become so, if the attack is improved.

This is very possible, since the Coppersmith’s algorithm
and the lattice-based method are constantly improving [27]

IV. THE TRAPDOOR WITH UNIVERSAL

PROTECTION

Did the developers of the RSALib library know about the
vulnerability of their key generator? If they knew, then such
an implementation could be considered as an implementation
with a trapdoor (or a backdoor). But in this case the special
form (2) of the number M makes it possible for any observer to
restore the prime numbers (1). Because of this, an access to the
backdoor is provided not only for developers or authorized
special agency, but also for attacker.

The difference between a trapdoor and a backdoor is the
degree of protection from a third-party offender [28]. The
science of trapdoors is called "kleptography" [29]. It was
shown that a cryptosystem, when implemented as a black-box
(i.e., when the user has only input/output access to the
hardware or software cryptographic facility), can be designed
such that it gives a unique advantage to the attacker. This is
accomplished using SETUP (Secretly Embedded Trapdoor
with Universal Protection) mechanisms. SETUP is a system,
hacking which will be available only to the developer.

This topic was examined in detail by Young A. and Yung
M. [30]. In particular, they considered a number of
kleptographic attacks on the RSA algorithm [30, 31, 32].

Issues of the implementation of SETUP-mechanisms are
an actual direction of modern cryptography. Bellare, Paterson,
and Rogaway initiated a formal study of such attacks on
symmetric key encryption algorithms, demonstrating that
kleptographic attacks can be mounted in broad generality
against randomized components of cryptographic systems
[33]. Russell, Tang, Yung and Zhou enlarged the scope of
work on the problem by permitting adversarial subversion of
(randomized) key generation; in particular, they initiated the
study of cryptography in the complete subversion model,
where all relevant cryptographic primitives are subject to
kleptographic attacks [34].

77

Obviously, the most effective attack for the intruder and
the greatest danger to the user are backdoors and trapdoors
into the key pair generator. The simplest attack on RSA key
generator is using a fixed prime number p [30]. But this attack
is detectable and it is breakable without reverse engineering.

The problem of detectability in the attack can be avoided
by using pseudorandom values instead of random values and
having the initial seed known only to the device and the
attacker. This type of the backdoor is similar to the
implementation of the key generator in the RSALib library.

The fundamental weakness in the pseudorandom number
generator backdoor attack is that once an intermediate seed is
exposed, the future operation of the device is compromised
[30]. Modern methods of protection against backdoor in
pseudorandom generators assume randomness checking at any
time without any notification, so the device is forced to behave
honest [35].

Degabriele, Paterson, Schuldt and Woodage conducted a
full-scale study of pseudorandom number generators [36] and
give efficient constructions of BPRGs (backdoored
pseudorandom number generators) for which, given a single
generator output, Big Brother can recover the initial state and,
therefore, all outputs of the BPRG. They give an impossibility
result: they provide a bound on the number of previous phases
that Big Brother can compromise as a function of the state-size
of the generator: smaller states provide more limited
backdooring opportunities for Big Brother.

Leaving aside the moral and legal aspects of the issue, we
will consider whether it is possible to construct a trapdoor
with universal protection based on the same idea as the
vulnerability of ROCA.

Let’s choose numbers M and w satisfying the following
conditions:

1) the decomposition of the number M into prime factors is
known

2) (M) is decomposed into small primes:

 pi | (M): pi < C 

3) value ordMw is small:

 ordMw 

4) the size of M approximately equal to optimal
Coppersmith’s algorithm parameters:

 l = log2M ~ log2n / 4 (11)

5) there are many primes of the form

 p=k*M + (w
a
 mod M) (12)

The last condition ensures that the generator will construct
many different prime numbers.

The set (C, , l) specifies the parameters for selecting the
numbers M and w. If you know this set, M and w then you can
restore the user’s private key from the public key applying the
ROCA analog.

If M has a large prime divisor, then it is not possible to
estimate the distribution (p mod x) and (n mod x) for all
numbers x of this size. Then an attacker will not receive any
additional information about the key.

V. CONCLUSIONS

The vulnerability of ROCA once again recalled the
importance of analyzing the used cryptographic libraries. In
some cases, problems can be identified by evaluating the
specificity of the generated keys.

However, the RSA algorithm allows you to build in the
key generator secretly embedded trapdoor with universal
protection. The feature of this trapdoor is that it is not
detectable for the analyst (it is impossible even to prove its
presence in the implementation), but it allows the developer to
calculate the user's private keys.

 REFERENCES

[1] Nemec M., Sys M., Svenda P., Klinec D., Matyas V. The Return of
Coppersmith's Attack: Practical Factorization of Widely Used RSA
Moduli. 2017. CCS'17 Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, p. 1631-1648.
DOI: 10.1145/3133956.3133969.

[2] Nitaj A. (2012) A New Attack on RSA and CRT-RSA. In: Mitrokotsa
A., Vaudenay S. (eds) Progress in Cryptology – AFRICACRYPT 2012.
AFRICACRYPT 2012. Lecture Notes in Computer Science, vol 7374, p.
221-233. Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-642-31410-
0_14.

[3] Nitaj A. A new attack on RSA with two or three decryption exponents.
Journal of Applied Mathematics and Computing (2013) Vol. 42, Issue 1-
2, p. 309–319. DOI: 10.1007/s12190-012-0618-0.

[4] Peng L., Hu L., Lu Y., Xu J., Huang Z.. Cryptanalysis of Dual RSA
Designs, Codes and Cryptography. (2017) Vol. 83, Issue 1, p. 1-21.
DOI: 10.1007/s10623-016-0196-5.

[5] Barbu G. et al. (2013) Combined Attack on CRT-RSA. In: Kurosawa K.,
Hanaoka G. (eds) Public-Key Cryptography – PKC 2013. Lecture Notes
in Computer Science, vol 7778, p. 198-215. Springer, Berlin,
Heidelberg. DOI: 10.1007/978-3-642-36362-7_13.

[6] Bunder M., Nitaj A., Susilo W., Tonien J. (2016) A New Attack on
Three Variants of the RSA Cryptosystem. In: Liu J., Steinfeld R. (eds)
Information Security and Privacy. ACISP 2016. Lecture Notes in
Computer Science, vol 9723, p. 258-268. Springer, Cham. DOI: 978-3-
319-40367-0_16.

[7] Bauer A., Jaulmes E., Lomné V., Prouff E., Roche T. (2014) Side-
Channel Attack against RSA Key Generation Algorithms. In: Batina L.,
Robshaw M. (eds) Cryptographic Hardware and Embedded Systems –
CHES 2014. CHES 2014. Lecture Notes in Computer Science, vol 8731,
p. 223-241. Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-662-
44709-3_13.

[8] Pomerance C., Analysis and Comparison of Some Integer Factoring
Algorithms, in Computational Methods in Number Theory, Part I, H.W.
Lenstra, Jr. and R. Tijdeman, eds., Math. Centre Tract 154, Amsterdam,
1982, p. 89-139.

[9] Lenstra A.K., Lenstra H.W., Jr., Manasse M.S., Pollard J.M. (1990). The
number field sieve. STOC '90 Proceedings of the twenty-second annual
ACM symposium on Theory of computing, p. 564-572, ISBN 0-89791-
361-2. DOI: 10.1145/100216.100295.

[10] Lenstra A.K., Lenstra H.W., Jr., Manasse M.S., Pollard J.M. (1993).
The Factorization of the Ninth Fermat Number. Mathematics of

78

Computation Т. 61 (1993): p. 319–349, DOI: 10.1090/S0025-5718-
1993-1182953-4.

[11] Buhler J.P., Lenstra H.W., Pomerance C. (1993) Factoring integers with
the number field sieve. In: Lenstra A.K., Lenstra H.W. (eds) The
development of the number field sieve. Lecture Notes in Mathematics,
vol 1554, p. 50-94. Springer, Berlin, Heidelberg. DOI:
10.1007/BFb0091539.

[12] Pomerance C. A tale of two sieves. Notices Amer. Math. Soc. 43 (1996),
p. 1473-1485.

[13] Gordon J.(1985) Strong Primes are Easy to Find. In: Beth T., Cot N.,
Ingemarsson I. (eds) Advances in Cryptology. EUROCRYPT 1984.
Lecture Notes in Computer Science, vol 209, p. 216-223. Springer,
Berlin, Heidelberg. DOI: 10.1007/3-540-39757-4_19.

[14] Loebenberger D., Nusken M.. Notions for RSA Integers. In International
Journal of Applied Cryptography, Vol. 3, No. 2 (2014), p. 116–138.
DOI: 10.1504/IJACT.2014.062723.

[15] Maurer U.M.. Fast generation of prime numbers and secure public-key
cryptographic parameters. Journal of Cryptology, Vol. 8, Issue 3 (1995),
p. 123–155. DOI: 10.1007/BF00202269.

[16] Benhamouda F., Ferradi H., Géraud R., Naccache D. (2017) Non-
interactive Provably Secure Attestations for Arbitrary RSA Prime
Generation Algorithms. In: Foley S., Gollmann D., Snekkenes E. (eds)
Computer Security – ESORICS 2017. ESORICS 2017. Lecture Notes in
Computer Science, vol 10492, p. 206-223. Springer, Cham. DOI: 978-3-
319-66402-6_13.

[17] Svenda P., Nemec M., Sekan P., Kvasnovskyy R., Formanek D.,
Komarek D., Matyas V.. 2016. The Million-Key Question –
Investigating the Origins of RSA Public Keys. In The 25th USENIX
Security Symposium (USENIX Security’16). USENIX, p. 893–910.
DOI: 10.13140/rg.2.1.3759.3848.

[18] Markelova A.V. Solvability of the problem of taking the discrete
logarithm. Moscow University Mathematics Bulletin, Vol. 63, Issue 6
(2008), p. 225-228. DOI: 10.3103/S0027132208060016.

[19] Coppersmith D. (1996) Finding a Small Root of a Bivariate Integer
Equation; Factoring with High Bits Known. In: Maurer U. (eds)
Advances in Cryptology — EUROCRYPT ’96. EUROCRYPT 1996.
Lecture Notes in Computer Science, vol 1070, p. 178–189. Springer,
Berlin, Heidelberg. DOI: 10.1007/3-540-68339-9_16.

[20] Lu Y., Zhang R., Lin D. (2013) Factoring RSA Modulus with Known
Bits from Both p and q: A Lattice Method. In: Lopez J., Huang X.,
Sandhu R. (eds) Network and System Security. NSS 2013. Lecture
Notes in Computer Science, vol 7873, p. 393-404. Springer, Berlin,
Heidelberg. DOI: 10.1007/978-3-642-38631-2_29.

[21] Akchiche O., Khadir O.. Factoring RSA moduli with primes sharing bits
in the middle. AAECC (2017), p. 1–15. DOI: 10.1007/s00200-017-
0340-0.

[22] Nitaj A. (2013) An Attack on RSA Using LSBs of Multiples of the
Prime Factors. In: Youssef A., Nitaj A., Hassanien A.E. (eds) Progress
in Cryptology – AFRICACRYPT 2013. AFRICACRYPT 2013. Lecture
Notes in Computer Science, vol 7918, p. 297-310. Springer, Berlin,
Heidelberg. DOI: 10.1007/978-3-642-38553-7_17.

[23] May A. (2009) Using LLL-Reduction for Solving RSA and
Factorization Problems. In: Nguyen P., Vallée B. (eds) The LLL
Algorithm. Information Security and Cryptography, p. 315–348.
Springer, Berlin, Heidelberg. DOI: 0.1007/978-3-642-02295-1_10.

[24] Lenstra A.K., Lenstra H.W., Lovász L. Factoring polynomials with
rational coefficients. Math. Ann. 261, 4 (1982), p. 515–534. DOI:
10.1007/BF01457454.

[25] Berlekamp E.R. Factoring Polynomials Over Large Finite Fields. Math.
Comp. 24 (1970), p. 713-735. DOI: 10.1090/S0025-5718-1970-
0276200-X.

[26] Cantor D.G. and Zassenhaus H. A New Algorithm for Factoring
Polynomials Over Finite Fields. Math. Comp. 36, 154 (1981), p. 587–
592. DOI: 10.2307/2007663.

[27] Lu Y., Peng L., Kunihiro N. (2018) Recent Progress on Coppersmith’s
Lattice-Based Method: A Survey. In: Takagi T., Wakayama M., Tanaka
K., Kunihiro N., Kimoto K., Duong D. (eds) Mathematical Modelling
for Next-Generation Cryptography. Mathematics for Industry, vol 29, p.
297-312. Springer, Singapore. DOI: 10.1007/978-981-10-5065-7_16

[28] Zhukov A.E. Cryptosystems with embedded trapdoors. BYTE Russia,
2007 (№101), p.45-51.

[29] Young A., Yung M. (1997) Kleptography: Using Cryptography Against
Cryptography. In: Fumy W. (eds) Advances in Cryptology —
EUROCRYPT ’97. EUROCRYPT 1997. Lecture Notes in Computer
Science, vol 1233, p. 62-74. Springer, Berlin, Heidelberg. DOI:
10.1007/3-540-69053-0_6.

[30] Young A., Yung M. Malicious Cryptography. Exposing Cryptovirology.
Wiley Publishing, Inc. 2004.

[31] Young A., Yung M. (2006) A Space Efficient Backdoor in RSA and Its
Applications. In: Preneel B., Tavares S. (eds) Selected Areas in
Cryptography. SAC 2005. Lecture Notes in Computer Science, vol
3897, p .128-143. Springer, Berlin, Heidelberg. DOI:
10.1007/11693383_9.

[32] Young A., Yung M. (2016) Cryptography as an Attack Technology:
Proving the RSA/Factoring Kleptographic Attack. In: Ryan P., Naccache
D., Quisquater JJ. (eds) The New Codebreakers. Lecture Notes in
Computer Science, vol 9100, p. 243-255. Springer, Berlin, Heidelberg.
DOI: 978-3-662-49301-4_16.

[33] Bellare M., Paterson K.G., Rogaway P. (2014) Security of Symmetric
Encryption against Mass Surveillance. In: Garay J.A., Gennaro R. (eds)
Advances in Cryptology – CRYPTO 2014. Lecture Notes in Computer
Science, vol 8616, p. 1-19. Springer, Berlin, Heidelberg. DOI:
10.1007/978-3-662-44371-2_1.

[34] Russell A., Tang Q., Yung M., Zhou HS. (2016) Cliptography: Clipping
the Power of Kleptographic Attacks. In: Cheon J., Takagi T. (eds)
Advances in Cryptology – ASIACRYPT 2016. Lecture Notes in
Computer Science, vol 10032, p. 34-64. Springer, Berlin, Heidelberg.
DOI: 10.1007/978-3-662-53890-6_2.

[35] Hanzlik L., Kluczniak K., Kutyłowski M. (2017) Controlled
Randomness – A Defense Against Backdoors in Cryptographic Devices.
In: Phan RW., Yung M. (eds) Paradigms in Cryptology – Mycrypt 2016.
Malicious and Exploratory Cryptology. Mycrypt 2016. Lecture Notes in
Computer Science, vol 10311, p 215-232. Springer, Cham. DOI:
10.1007/978-3-319-61273-7_11.

[36] Degabriele J.P., Paterson K.G., Schuldt J.C.N., Woodage J. (2016)
Backdoors in Pseudorandom Number Generators: Possibility and
Impossibility Results. In: Robshaw M., Katz J. (eds) Advances in
Cryptology – CRYPTO 2016. Lecture Notes in Computer Science, vol
9814, p. 403-432. Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-
662-53018-4_15.

