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Abstract—This paper is dedicated to ROCA-vulnerability that 

was detected by scientists from Masaryk University, Czech. Their 

investigation offers low-cost algorithm of factorization of RSA 

module for special type of keys generated by some widely used 

cryptographic library. They proposed a practical factorization 

method for various key lengths including 1024 and 2048 bits. 

This attack requires no additional information except for the 

value of the public key and does not depend on a weak or a faulty 

random number generator. We examine the possibility of 

modification of type of keys to embed the trapdoor with universal 

protection into key generator. In some cases we can design 

Secretly Embedded Trapdoor with Universal Protection in the 

generator of RSA key. This problem is serious and relevant for 

all closed (so-called black-box) implementations of cryptographic 

algorithm in user’s library or device. The first section of this 

article (“Introduction”) is devoted to the history of the issue. It 

also describes the damage caused by vulnerability ROCA. The 

second section (“Fingerprint of weak keys”) describes the 

criterion that the key pair is vulnerable to ROCA. The third 

section (“Factorization”) is dedicated to the attack ROCA. It also 

estimates the running time of the algorithm. In the fourth section 

(“The trapdoor with universal protection”) we will consider the 

possibility of using SETUP mechanism in the implementation of 

RSA. 
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I. INTRODUCTION 

On November, 2017 Estonian government made a 
statement about blocking 760 000 certificate of ID cards issued 
after October 16, 2014. The reason for this statement was the 
vulnerability ROCA (Return of Coppersmith's Attack) 
discovered by scientists from Masaryk University, Czech [1]. 

Toomas Ilves, the former president of Estonia, said that he 
believed millions of people in countries had been affected by 
the ROCA flaw, but their authorities were remaining "silent". 
In particular, according to the researchers of the Enigma 
Bridge, similar problems are possible with ID card of Spain. 

There is a fast detection algorithm to verify whether a 
particular key is vulnerable to attack. This verification is based 
on the properties of the public moduli. 

Vulnerable keys were also found in some authentication 
tokens, in the TPM (Trusted Platform Modules), in PGP. 

Google, HP, Lenovo and Fujitsu released updates for their 
software products susceptible to this attack. 

Recall that the public key of the RSA algorithm is a pair 
(n, e), where n is the product of two large primes and gcd(e, 

(n))=1. Private key is number d such that ed=1(mod (n)). 
Some implementations also store prime divisors of n as part of 
the private key. 

Thus, RSA requires two large random primes p and q, that 
can be obtained by generating a random candidate number 
(usually with half of the bits of n) and then testing it for 
primality. If the candidate is found to be composite, the 
process is repeated with a different candidate.  

Since the RSA algorithm is very popular, many researches 
are devoted to its reliability [2, 3, 4, 5, 6, 7]. 

RSA security is based on the integer factorization problem.  

The most effective modern factorization algorithms (such 
as quadratic sieve [8], number field sieve [9], special number 
field sieve [10, 11]) have subexponential complexity [12] and 
in the general case do not allow hacking RSA with large key 
lengths. 

However, if the numbers p and q are a special type, then the 
time of factorization of the number n = pq can be reduced. 

II. FINGERPRINT OF WEAK KEYS 

There is no common practice for developers of 
cryptographic library how to generate RSA key pair. But there 
are many recommendations regarding how to select suitable 
primes p and q [13, 14, 15, 16] to be later used to compute the 
private key and public moduli.  

In 2016, scientists from Masaryk University analyzed 
implementations of RSA algorithm and key pairs from 22 
open- and closed- source libraries and from 16 different smart 
cards [17]. In particular, the library RSALib used in Estonian 
ID cards was investigated. This library utilizes an acceleration 
algorithm called “Fast Prime”. 

The foundations of “Fast Prime” date back to the year 
2000. According to its developers, its use started around ten 
years later after thorough reviews. As a sub-part of one 
cryptographic software library which is supplied to customers 
as a basis for their own development, this software function 
was certified by the BSI (Federal Office for Information 
Security) in Germany. 
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When compared to other implementations and theoretical 
expectations on distribution of prime numbers, the keys from 
RSALib exhibited a non-uniform distribution of (p mod x) and 
(n mod x) for small primes x. 

Further studies have shown that all RSA primes generated 
by the RSALib have the following form [1]: 

 p=k*M + (65537
a
 mod M) (1) 

The integers k and a are unknown, and RSA primes differ 
only in their values of a and k for keys of the same size. The 
integer M is fixed for each key size (table I) and equal to the 
product of the first successive primes: 

 M = Pm =  pi = 2*3*5*7*…*pm (2)

TABLE I.   

Key size M 

512 P39#=167# 

1024 P71#=353# 

2048 P126#=701# 

3072 P126#=701# 

4096 P225#=1427# 

 

In this case the following comparison takes place: 

 n = 65537
c
 mod M (3) 

The existence of the discrete logarithm c = log65537n mod 
M is used as the fingerprint of weakness of the key pair. In 
general, verification of solvability of the comparison (3) can 
be difficult [18]. But if M is of the form (2) then the problem 
is easily solved. 

The number of residues modulo M for which there exists a 
logarithm at base 65537 is equal to ordM65537. For randomly 
generated prime numbers, the remainders from dividing their 
product by M are distributed uniformly in the multiplicative 
group of residues modulo M. Therefore, the probability for the 

number n to satisfy the comparison (3) is ordM65537/(M). 

For the M used, the value of ordM65537 is much less than 

(M). For example, ordM65537=262,09, (M)=2215,98 for RSA-
512. Thus, the probability of the false positive result does not 
exceed 262–216=2–154. This probability is even smaller for larger 
keys (table II). 

So the existence of the discrete logarithm is the strong 
fingerprint of the weak keys.  

TABLE II.   

Key size Size of M ordM65537  

512 2219,19 262,09 

1024 2474,92 2134,73 

2048 2970,96 2255,78 

3072 2970,96 2255,78 

4096 21962,19 2434,69 

 

Online and offline versions of this test are already 
developed. They are freely available on the Internet. 

III. FACTORIZATION 

Algorithm ROCA iterates over values of a in (1) and use 
Coppersmith’s algorithm [19] to attempt to find k. To reduce 
the search, the modulus M is replaced by its divisor M', for 
which ordM'65537 is small and log2M'>log2n/4. The number M' 
is selected once for each RSA key size (table III). 

TABLE III.   

Key size Size of M'  ordM'65537 /2 

512 2140,77 219,20 

1024 2474,92 229,04 

2048 2970,96 234,29 

3072 2552,50 299,29 

4096 21098,42 255,05 

 

The size of M' (condition log2M'>log2n/4) is chosen to 
apply the modification of the Coppersmith’s attack [19], which 
is successful in case of knowing l/4 the least significant bits of 
the number p, where l is the key size. 

Coppersmith’s attack was repeatedly modified. Now there 
are various attacks on RSA based on Coppersmith’s algorithm. 
For example, factorization algorithms have been developed for 
cases when the lowest bits of the number p are known or when 
primes p and q share bits in the middle ([20, 21, 22, 23]). 

 In attacks of this class, we choose a polynomial f(x) 
having a small root x0 in the residue field: 

 f(x0) = 0 mod p (4) 

 |x0|<X (5) 

Then we construct a polynomial g(x) satisfying the 
following conditions: 

 g(x) =  aifi(x), (6) 
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ai is integer, 

 fi(x) and f(x) have the same roots modulo p, (7) 

 |g(x0)|<p. (8) 

The coefficients ai are chosen by the LLL-lattice method 
[24]. It follows from (6) and (7) that g(x) has the same roots 
modulo p as f(x). Well then g(x0)=0 mod p. Taking into 
account (8), we see that g(x0)=0. Thus x0 can be found by 
standard methods for finding the roots of a polynomial (e.g., 
the Berlekamp-Zassenhaus algorithm [25, 26]). 

We denote the process of finding x0 as Coppersmith(f(x), n, 

, m, t, X), where n is RSA-modulus,  is the upper bound for 
the ratio of log2p and log2n, m and t are optimization 
parameters of Coppersmith algorithm, X is from (5). 

Algorithm ROCA works as follows: 

1. c'= log65537n mod M' 

2. =0.5, X=2*n/M' 

3. For all a' in [c'/2; (c'+ ordM'65537)/2]: 

   

 3.1 f(x) = x + (M'–1 mod n)*(65537a' mod M')(mod n) 

 3.2. k' = Coppersmith(f(x), n, , m, t, X) 

 3.3. p=k'*M' + (65537
a' mod M') 

 3.4 If p is a nontrivial divisor of n, then finish. 

 

The running time of this algorithm is shown in tables IV 
and V. Two time values were explicitly checked by the 
scientists from Masaryk University on the university cluster.  

TABLE IV.   

Key size Factorization on Intel Xeon E5-

2650 v3 @3GHz Q2/2014 

512 1,93 hours (verified) 

1024 97,1 days (verified) 

2048 140,8 years 

3072 2,84*1025 years 

4096 1,28*109 years 

 

Others were extrapolated based on known algorithm 
properties and processing power. 

The algorithm is well suited for parallel computations, 
since the approbation of different values of a' can pass 
independently of each other.  

For example, you can rent 1000 cores on Amazon AWS. 
In this case it will take 45 minutes to find the 1024-bit key. It 

will take about 17 days to find the 2048-bit key. At the same 
time the cost of the attack will not increase, because it is 
calculated based on the price of one processor hour. 

TABLE V.   

Key size Factorization on 2x Intel E5-2666 

v3@2.90GHz (Amazon AWS, c4 

instance) and resource rental cost 

512 0,63 hours, $0,063 

1024 31,71 days, $76 

2048 45,98 years, $40 305 

3072 9,28*1024 years, $8,13*1027 

4096 4,18*108 years, $3,66*1011 

 

Note that 4096-bit RSA key is not practically factorizable 
now, but may become so, if the attack is improved. 

This is very possible, since the Coppersmith’s algorithm 
and the lattice-based method are constantly improving [27] 

IV. THE TRAPDOOR WITH UNIVERSAL 

PROTECTION 

Did the developers of the RSALib library know about the 
vulnerability of their key generator? If they knew, then such 
an implementation could be considered as an implementation 
with a trapdoor (or a backdoor). But in this case the special 
form (2) of the number M makes it possible for any observer to 
restore the prime numbers (1). Because of this, an access to the 
backdoor is provided not only for developers or authorized 
special agency, but also for attacker. 

The difference between a trapdoor and a backdoor is the 
degree of protection from a third-party offender [28]. The 
science of trapdoors is called "kleptography" [29]. It was 
shown that a cryptosystem, when implemented as a black-box 
(i.e., when the user has only input/output access to the 
hardware or software cryptographic facility), can be designed 
such that it gives a unique advantage to the attacker. This is 
accomplished using SETUP (Secretly Embedded Trapdoor 
with Universal Protection) mechanisms. SETUP is a system, 
hacking which will be available only to the developer. 

This topic was examined in detail by Young A. and Yung 
M. [30]. In particular, they considered a number of 
kleptographic attacks on the RSA algorithm [30, 31, 32]. 

Issues of the implementation of SETUP-mechanisms are 
an actual direction of modern cryptography. Bellare, Paterson, 
and Rogaway initiated a formal study of such attacks on 
symmetric key encryption algorithms, demonstrating that 
kleptographic attacks can be mounted in broad generality 
against randomized components of cryptographic systems 
[33]. Russell, Tang, Yung and Zhou enlarged the scope of 
work on the problem by permitting adversarial subversion of 
(randomized) key generation; in particular, they initiated the 
study of cryptography in the complete subversion model, 
where all relevant cryptographic primitives are subject to 
kleptographic attacks [34].  
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Obviously, the most effective attack for the intruder and 
the greatest danger to the user are backdoors and trapdoors 
into the key pair generator. The simplest attack on RSA key 
generator is using a fixed prime number p [30]. But this attack 
is detectable and it is breakable without reverse engineering. 

The problem of detectability in the attack can be avoided 
by using pseudorandom values instead of random values and 
having the initial seed known only to the device and the 
attacker. This type of the backdoor is similar to the 
implementation of the key generator in the RSALib library. 

The fundamental weakness in the pseudorandom number 
generator backdoor attack is that once an intermediate seed is 
exposed, the future operation of the device is compromised 
[30]. Modern methods of protection against backdoor in 
pseudorandom generators assume randomness checking at any 
time without any notification, so the device is forced to behave 
honest [35]. 

Degabriele, Paterson, Schuldt and Woodage conducted a 
full-scale study of pseudorandom number generators [36] and 
give efficient constructions of BPRGs (backdoored 
pseudorandom number generators) for which, given a single 
generator output, Big Brother can recover the initial state and, 
therefore, all outputs of the BPRG. They give an impossibility 
result: they provide a bound on the number of previous phases 
that Big Brother can compromise as a function of the state-size 
of the generator: smaller states provide more limited 
backdooring opportunities for Big Brother. 

Leaving aside the moral and legal aspects of the issue, we 
will consider whether it is possible to construct a trapdoor 
with universal protection based on the same idea as the 
vulnerability of ROCA. 

Let’s choose numbers M and w satisfying the following 
conditions: 

1) the decomposition of the number M into prime factors is 
known 

2) (M) is decomposed into small primes: 

 pi | (M): pi < C 

3) value ordMw is small: 

 ordMw 

4) the size of M approximately equal to optimal 
Coppersmith’s algorithm parameters: 

 l = log2M ~ log2n / 4 (11) 

5) there are many primes of the form 

 p=k*M + (w
a
 mod M) (12)

The last condition ensures that the generator will construct 
many different prime numbers. 

The set (C, , l) specifies the parameters for selecting the 
numbers M and w. If you know this set, M and w then you can 
restore the user’s private key from the public key applying the 
ROCA analog. 

If M has a large prime divisor, then it is not possible to 
estimate the distribution (p mod x) and (n mod x) for all 
numbers x of this size. Then an attacker will not receive any 
additional information about the key. 

V. CONCLUSIONS 

The vulnerability of ROCA once again recalled the 
importance of analyzing the used cryptographic libraries. In 
some cases, problems can be identified by evaluating the 
specificity of the generated keys.  

However, the RSA algorithm allows you to build in the 
key generator secretly embedded trapdoor with universal 
protection. The feature of this trapdoor is that it is not 
detectable for the analyst (it is impossible even to prove its 
presence in the implementation), but it allows the developer to 
calculate the user's private keys. 
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