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Abstract— There has been much interest in new deep learning 

approaches for representing and extracting high-level features 

for audio processing. In this paper convolutional deep belief 

network was used to generate new speech features for text-

independent speaker verification. Structure and parameters of a 

convolutional deep belief network were described. New high-level 

speech features were extracted using proposed method. 

Relevance of speaker verification systems for mobile 

authentication was considered. Gaussian mixture model and 

universal background model speaker verification system used for 

experiments was described. Speaker verification accuracy using 

extracted features was evaluated on a 50 speaker set and a result 

is presented. Different layers and combinations of layers of 

convolutional deep belief network were used as a features for a 

text-independent speaker verification. High level features 

extracted by convolutional deep belief network were illustrated 

and analyzed. Reasons of insufficient verification accuracy were 

described. High-level features extracted by the third layer could 

be used for gender recognition.  
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I. INTRODUCTION 

There is an active conversion of practical methods that are 
used in user authentication systems from classical password-
based methods to methods that are based on human biometrics.  
The voice, unlike the retina or fingerprints is considered to be 
less reliable for person identification or verification. However, 
in some cases speaker verification by voice is required. 
Particular attention should be devoted to speaker verification 
via mobile devices, as they have the microphone and 
computing capabilities that are necessary for speaker 
verification. Significantly, speaker verification on mobile 
devices could be combined with other verification methods, 
which allows taking advantage of multifactor authentication. 

The application field of currently developed voice 
authentication systems includes multi-factor (biometric) 
authentication and access restriction systems, banking account 
management systems using voice biometrics in order to give 
speaker access to his banking account, national security and 

anti-terrorism issues. The use of speaker recognition systems 
that have even small possibility of mistake in such a sensitive 
application areas could be very dangerous. 

Equal error rate value (EER) is one of the most common 
speaker verification accuracy measures used nowadays. EER is 
used both for text-dependent and text-independent automatic 
voice authentication systems. By now the best speaker 
recognition systems are characterized by 3-5% EER values. 
This accuracy is insufficient for modern speaker verification 
systems because even small probability of false acceptance is 
critical. If there are many speakers working with such systems, 
then mistakes will occur definitely, and such mistakes are 
unacceptable in systems granting access rights to confidential 
data or banking accounts. 

Generally, low-level speech features are used for speaker 
verification, for example mel-frequency cepstral coefficients 
[1-4], linear prediction cepstral coefficients [5] and others. But 
attempts are made to use higher-level features, for example, 
extracting bottleneck features [6-8], constructing i-vectors 
based on a low-level representation [9-13], etc.  

Based on how the brain processes incoming visual and 
audio signals, it can be assumed that the use of such features 
will improve the accuracy of speaker verification systems. In 
this paper a convolutional deep belief network (CDBN) was 
used to extract higher-level features and Gaussian mixture 
model with universal background model (GMM-UBM) system 
was used for speaker verification. 

II. SPEAKER VERIFICATION MODEL 

A. Gaussian Mixture Model 

A Gaussian Mixture Model (GMM) is a parametric 
probability density function represented as a weighted sum of 
Gaussian component densities [1]. A GMM with M component 
Gaussian densities can be presented by the equation 

 p(x | λ) = Σ{wi, µi, Σi} (1) 

where x is a D-dimensional continuous-valued data vector (i.e. 
measurement or features), wi, i = 1,...,M, are the mixture 
weights, and g(x|µi, Σi), i = 1,...,M, are the component Gaussian 
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densities with mean vector µi and covariance matrix Σi. The 
complete GMM is parameterized by the mean vectors, 
covariance matrices and mixture weights from all component 
densities. Each speaker is represented by his Gaussian mixture 
λ for speaker identification task. Gaussian mixture could be 
represented by the equation, 

 λ = {wi, µi, Σi} (2) 

There are two reasons for using Gaussian mixture densities 
as a representation of speaker identity [1]. The first reason is 
the intuitive notion that the individual component densities of 
the GMM may model some underlying set of acoustic classes, 
reflecting some general speaker-dependent vocal tract 
configurations. The second reason is the empirical observation 
that a linear combination of Gaussian basis functions is capable 
of representing a large class of sample distributions. A GMM 
can form smooth approximations to arbitrarily-shaped 
densities. 

B. Universal Background Model 

Universal Background Model (UBM) is a GMM trained on 
large set of speech samples that was taken from big population 
of speakers expected during recognition. Given the data to train 
a UBM, there are many approaches that can be used to obtain 
the final model. The simplest is to pool all the data to train the 
UBM via the EM algorithm. One should be careful that the 
pooled data are balanced over the subpopulations within the 
data. For example, in using gender-independent data, one 
should be sure there is a balance of male and female speech. 
Otherwise, the final model will be biased toward the dominant 
subpopulation. The same argument can be made for other 
subpopulations such as speech from different microphones. 
Another approach is to train individual UBMs over the 
subpopulations in the data, such as one for male and one for 
female speech, and then pool the subpopulation models 
together [1]. 

In this paper, parameters for the UBM are trained using the 
EM algorithm, and a form of Bayesian adaptation is used for 
training speaker models. Number of mixtures used is 256, as 
EER is not decreasing for small speaker set when larger 
mixture numbers are used. Speaker models are derived by 
MAP adaptation, where only means are adapted with relevance 
factor r = 10. GMM-UBM system described in this section is 
based on MSR Identity Toolbox. 

III. CONVOLUTIONAL DEEP BELIEF NETWORK 

A. Convolutional Deep Belief Network 

The main difference between the convolutional deep belief 
network [14, 15] and the usual deep belief network [16] is the 
use of a convolutional restricted Boltzmann machine (CRBM) 
[14] as a hidden network layer. The CRBM is similar to the 
RBM (restricted Boltzmann machine), but the weights between 
the hidden and visible layers are shared among all locations in 
the hidden layer. CRBM (Fig. 1) is a feature detector consisting 
of three layers - the visible layer V, the detection layer H and 
the pooling layer P. The visible units in case of audio 
processing are real-valued, and the hidden units are binary-
valued. 

B. CDBN Structure 

The input layer is consisting of an NV × Ch dimensional 
array of real-valued units, where NV is the number of windows 
to which the audio signal is divided, and Ch is the number of 
channels of the spectrum. To construct the hidden layer, 
consider K NW × Ch dimensional filter weights WK (also 
referred to as “bases”). The hidden layer consists of K groups 
of NH × Ch dimensional arrays (where NH = NV-NW+1) with 
units in group k sharing the weights Wk. There is also a shared 
bias bk for each group and a shared bias c for the visible units. 
The energy function of the CRBM (3) can then be defined as 
[15]:  

  (3) 

  

The detection and pooling layers both have K groups of 
units, and each group of the pooling layer has NP x NP binary 
units. For each k ϵ {1,…,K}, the pooling layer Pk shrinks the 
representation of the detection layer Hk by a factor of C along 
each dimension, where C is a small integer such as 2 or 3. 

The joint and conditional probability distributions are 
defined as follows (4-6): 

  (4) 

  (5) 

  (6) 

where *v is a “valid” convolution (5), *f is a “full” convolution 
(6) [15]. For m-dimensional feature vector and n-dimensional 
vector “valid” convolution should result in an (m-n+1)-
dimensional vector and a “full” convolution should result in an  
(m+n-1)-dimensional vector.  

Since all units in one layer are conditionally independent 
given the other layer, inference in the network can be 
efficiently performed using block Gibbs sampling [15]. 

Fig. 1. Convolutional Restricted Boltzmann Machine with probabilistic max-

pooling 
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C. Layer-wise Training 

The use of an additional pooling layer makes it possible to 
reduce the amount and detail of the data supplied to the next 
hidden layer, which makes it possible to extract higher-level 
features in the data. This also reduces the computational load 
on following layers and filters out random noise. 

A convolutional deep belief network is a composition of 
simple convolutional restricted Boltzmann machines. This fact 
allows the hidden layer of each CRBM to serve as a visible 
layer for the next CRBM. Thereby, a quick layer-wise training 
technique could be performed to train a CDBN. In order to 
estimate the gradient, the contrastive divergence approximation 
is applied to each sub-network, beginning with the first pair of 
layers. The data from the training set is fed to the visible layer 
of the CRBM, the following hidden layers take their input from 
the output of the next CRBM’s hidden layers. 

IV. EXPERIMENTAL EVALUATION 

A. Speech Corpus 

The experiments were conducted using speech database 
containing collection of speech from 25 male and 25 female 
speakers. This speech database includes speech samples of 
sentences from science fiction stories. The total length of 
speech for each speaker is at least 6 minutes consisting of 50 
speech segments of various lengths. Each speaker was recorded 
using medium-quality microphone, 8000 Hz sampling rate, 16 
Bit sample size. 

All 50 speaker set was divided equally for male and female 
speakers on the UBM training set consisting of 30 speakers and 
speakers’ training set consisting of 20 speakers. For MAP 
adaptation of speakers’ models 40 speech segments was taken. 
Remaining 10 utterances of each speaker was used for testing 
verification system. Overall, 4000 tests were done for each 
feature set, having 10 positive (true speaker) and 190 negative 
(imposter) tests for each speaker. 

B. Experimental Evaluation 

After training phase, that consists of UBM training and 
speakers’ models adapting, starts test phase. For each test 
speech segment verification scores (log-likelihood ratios) are 
calculated using speaker GMM and UBM models (7). Using 
different decision thresholds hypothesized speaker model was 
accepted or rejected. 

 Λ(X) = log p(X|λhyp)-log p(X|λubm) (7) 

Two different verification metrics was used for evaluating 
speaker verification system: EER and minimum detection cost 
function with SRE 2008 parameters (minDCF).  

In order to test speaker verification accuracy using CDBN, 
network structure and parameters should be specified. In this 
paper CDBN consisting of three connected layers was used for 
experimental evaluation. The first and second layers consist of 
300 bases, the third of 60. The input layer consists of 80 

neurons (Ch = 80). Spectrogram of the speech is extracted from 
the audio, PCA whitening is applied. Lower dimension 
spectrogram is fed to the input layer. The data given to the 
visible layer is selected by 20 ms windows with a 10 ms offset. 
For each base in the hidden layers, the filter dimension NW = 6 
and the convolution factor C = 3 was used. Parameters for the 
first and second layers of the network were taken from [15]. 
Parameters for the third layer were selected by the authors 
independently. Using presented parameters CDBN for audio 
processing was trained. 

As a result of training CDBN, three trained layers of the 
network were obtained, the outputs of each of which could be 
used as a features for GMM-UBM speaker verification system. 
To assess the verification system accuracy using obtained 
features, the CDBN layers outputs were fed to the Gaussian 
mixture model, which was used as a classifier. Also, for 
features of each layer separate UBM was trained. 

To test and compare speaker verification system accuracy, 
GMM-UBM speaker verification system with parameters and 
features from [17] was used. This features includes 14 mel-
frequency cepstral coefficients (MFCC) and features obtained 
using greedy Add-del algorithm including 13 MFCC, 10 delta 
MFCC, 2 double delta MFCC, voicing probability, 1 linear 
prediction coefficient (LPC) and 1 line spectral pair (LSP).  

Results of the experimental evaluation are given in Table I. 
Based on the results, it can be concluded that none of the 
feature sets extracted by the CDBN gives an accuracy of 
speaker verification system more than a standard feature set 
consisting of 14 MFCC. A feature set obtained by the greedy 
add-del algorithm shows the best verification accuracy.  

In order to use information of different levels, combinations 
of GMM classifiers using separate CDBN layers were used. 
Combinations of different feature level classifiers did not 
increase the verification accuracy, compared to the classifiers 
using separate feature levels. 

TABLE I.  TEST ACCURACY FOR SPEAKER VERIFICATION USING 

DIFFERENT FEATURES 

№ 
Feature Set Evaluation 

Feature Set % EER 
minDCF*

100 

1 CDBN L1 2,00 0,997 

2 CDBN L2 3,50 1,740 

3 CDBN L3 10,00 5,765 

4 CDBN L1 + CDBN L2 2,00 1,197 

5 CDBN L1 + CDBN L3 2,00 1,121 

6 CDBN L2 + CDBN L3 3,29 1,926 

7 CDBN L1 + CDBN L2 + CDBN L3 2,00 1,327 

8 MFCС 1,00 0,925 

9 Greedy Add-del 0,58 0,623 
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Fig. 2. Spectrogram of the same phrase for male (top) and female (bottom) 

speaker 

Fig. 3. Third layer neurons activations of the same phrase for male (top) and 

female (bottom) speaker 

C. Discussion 

There could be different reasons for low accuracy of 
speaker verification system using CDBN features. Deep 
learning methods work better on a large dataset used for 
training, so a small amount of training speech samples is one of 
the possible reasons for the low accuracy of the verification 
system. Another reason could be the GMM as a classifier, as it 
could not provide an opportunity to show better results.  

Nevertheless, attention should be given to visual 
representation of a speech signal and CDBN neurons 
activations. Fig. 2 shows spectrogram of a same phrase for a 
male and female speaker. There could be seen a significant 
difference between male and female speaker saying the same 
phrase on a third layer of CDBN (Fig. 3). This fact could be 
used for gender recognition, using CDBN outputs as a features. 

V. CONCLUSION 

In this paper convolutional deep belief network was used to 
generate new speech features for text-independent speaker 
verification. New high-level speech features were extracted 
using proposed method. Speaker verification system based on 

GMM-UBM speaker verification system was used to assess 
speaker verification accuracy using extracted CDBN features. 
None of the feature sets extracted by the CDBN gives an 
accuracy of speaker verification system more than a standard 
feature set consisting of 14 MFCC. Nevertheless, speaker 
verification methods using presented features could be 
combined with methods using different speech features to 
obtain better verification accuracy. 
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