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ABSTRACT
As data collection grows more common in various domains, there
is a call for adapted or newer methods of visualization to tackle
magnitudes exceeding the number of available pixels on screens
and challenging interactivity. Exploratory visualization of large
data present two major challenges: perceptual scalability and
processing scalability. The first is concerned with overcoming
the fundamental limitation of screens and human perception.
The second deals with efficiently processing large volumes of
data to achieve responsive interactions. Multiscale visualizations
are an effective technique for solving the first challenge that
builds on several levels of data abstraction to provide the user
with an initial overview and subsequent incremental detail. The
focus of this paper is on multidimensional data, a ubiquitous form
of data among large-scale data sets, and parallel coordinates, a
representation largely used for this type of data. For this represen-
tation, defining abstractions and interactively generating levels is
not straightforward. Building upon several previous aggregated
parallel coordinates representations, we propose a unifying and
thinking model for conceiving and describing multiscale par-
allel coordinates and their interactions. Using this formalism,
we present a focus+context representation which bounds the
number of visual items with a fixed resolution parameter while
supporting exploration up to the item-level. Processing scala-
bility is addressed by carrying out computation in a distributed
manner on a remote data-intensive infrastructure. Bounding the
visual items ensures perceptual scalability but also bounds the
data transfer between this infrastructure and the rendering client.
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1 INTRODUCTION
Multidimensional data, a form of data common in many domains,
encompasses all lists of individuals composed of several attributes
(possibly temporal). Multidimensional items are studied from sev-
eral aspects: the particular behavior of individual items relative
to the whole, the relationship between values from two dimen-
sions and the distribution of values along each dimension [7].
Parallel coordinates, introduced by Inselberg and Dimsdale [19],
is a well-known technique of visualization for such data. Each
item is represented by a polyline which anchors on axes are
positioned at the corresponding attribute value of the item (see
Fig 1b). Axes are traditionally aligned in parallel forming a se-
quence of two-dimensional subplots sharing one axis with their
predecessor. Usual interactions are axis reordering to analyze
relationships between all dimension pairs and selection to trace
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(a) Toy data (b) Line-based (c) Abstract

Figure 1: Examples of (b) line-based and (c) abstract paral-
lel coordinate plots for the same dataset (a). On the line-
based plot, colors match those of tuples on (a). On the
abstract plot, the height of aggregates corresponds to the
number of tuples they cover.

subsets of items across axes. Selection relates to interactive means
of choosing subsets of items and enhancing them such that they
can be discriminated from the rest.

In this paper, we are interested in supporting the interactive
exploration of multidimensional datasets with a large number
of items and a moderate number of dimensions. We built upon
the assumption that large datasets, scaling to billions of records,
lead to major overplot when displayed using the traditional line-
based parallel coordinate representation. Indeed, as the number
of records increases, the plot becomes cluttered and analyses
may be hindered as specific patterns are concealed [10]. Heinrich
and Weiskopf [18] listed several clutter reduction approaches for
parallel coordinates. One solution lies in the display of aggregates
computed per-dimension as in [20, 29, 32] instead of single items
(see Fig 1c). Despite the aggregation, these abstract plots success-
fully provide overview information similar to a traditional plot
and perceptually scale for any size of input data. Rendering time
and transfer time in client-server architectures are also reduced
since they are bounded by the number of aggregates. Sansen
et al. [32] leveraged this bound by precomputing the result of
several interactions and thus clear the dependency of linear scans
of the data upon interaction. Indeed, past a certain number of
records, data cannot fit in a desktop computer memory and linear
scans over the data affect performance more negatively since
they either involve reads on disk or network transfer between
several computing units.

As for any abstract visualization, deeper analyses are limited
by the amount of information conveyed by the visual aggregates.
Two types of interactions can alleviate this limitation: changing
the level of detail (show more details) and adjusting the aggre-
gation (show different details). Supporting these interactions is
essential but strongly increases the number of states of the visu-
alization and reasonable precomputing and storing of all these
states as performed by Sansen et al. [32] is challenging. The
processing scalability challenge here has been addressed by Rü-
bel et al. [31] on a modern high-performance computing (HPC)
platform. HPC platforms are large and expensive computing sys-
tems suited for highly complex and real-time computation. They
are composed of multiple processors connected through a fast
network and use fast memory. As such, they are particularly
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adapted to tightly coupled tasks where several processors work
on the same task and exchange data. Distributed systems, on the
contrary, are networks of computing units, usually commodity
hardware, connected in a shared-nothing architecture (memory
and storage are independent to each unit). On these systems,
data transfer between computing units uses a slower network
connection and thus is critical for performances. Consequently,
they are most adapted to loosely coupled data-parallel tasks on
large amounts of data. In addition to being cheaper alternatives
for data-intensive computing, they offer easier horizontal scalabil-
ity (allocation of additional computing units) as their hardware
and architecture are less sophisticated. The filtration and ag-
gregation problems at stake in abstract parallel coordinates are
data-parallel tasks. We focus on these less expensive and more
accessible infrastructures to address them.

Our aim is to enable interactive exploration down to the item-
level over large-scale multidimensional data with an abstract
parallel coordinate plot. The main contributions of this paper
are summarized as follows: (i) a unifying model for abstract
parallel coordinate plots based on hierarchical aggregation, (ii)
formalization of multiscale and regular interactions in this model,
(iii) a focus+context representation with bounded visual items
and drill-down/roll-up interactions, extension of the work of [32],
(iv) an example implementation using a distributed infrastructure
with components that benefits from horizontal scalability.

The paper is organized as follows: we first present previous
work on perceptual scalability in parallel coordinate plots and
their interactions with a focus on multiscale approaches (Sec.
2). Then, we describe the proposed graph-based formalism for
abstract parallel coordinates based on hierarchical aggregation
(Sec. 3). In Sec. 4, we study how different interactions are ex-
pressed in this model. This yields a prototype implementation
and design of a scalable parallel coordinate plot based on hierar-
chical aggregation, using a so-called big data infrastructure. This
visualization is described and its scalability evaluated in Sec. 5.
Finally, in Sec. 6 we draw conclusions and present directions for
future work.

2 RELATED WORK
Recent works have focused on the scalability of visualization ap-
plications for large-scale data with different techniques, among
which are: data reduction, multi-threading, GPU-acceleration,
and incremental or approximate data processing. In the case of
visualization, the scalability of a system often refers to its ca-
pacity to accommodate and handle growing amounts of data.
Handling massive datasets brings about two main challenges for
exploratory visualization: perceptual scalability and processing
scalability as noted by [12, 16, 24]. The first is concerned with the
legibility of visualizations representing numerous items relative
to the space available on a screen (so-called screen real-estate
problem) and human capabilities to apprehend them. The sec-
ond relates to the computational cost of processing numerous
items on each user input, that can create latencies responsible for
decreasing user performances [23]. A taxonomy of different tech-
niques regarding the perceptual scalability aspect was established
by Ellis and Dix [10]. A general solution is data reduction, which
can be categorized into two approaches: either representing a
subset of the data items (sampling, filtering) or meta-items (aggre-
gation, mathematical models). Several work proposed methods
(called multiresolution, multiscale, hierarchical or even stratified)
for navigating through multiple levels of detail supported by

precomputation (e.g. [15, 24, 30]). This work is related to general
techniques addressing perceptual and processing scalability for
interactive parallel coordinates.

2.1 Perceptual Scalability in Parallel
Coordinates

Various approaches have been proposed to improve the legibility
of parallel coordinate plots by either reducing the clutter pro-
duced by the multiplicity of overlapping and crossing lines or
enhancing their patterns. Approaches can be categorized into
geometry-based relying on computer graphics techniques and
data reduction approaches that use approximation or summary of
the data. Geometry-based approaches display all items with shape
or position modifications to alleviate the overdraw in-between
axes, for instance by bundling lines (e.g. [33]). These techniques
have the advantage of producing no or few loss of information
but have the drawback of still being prone to over-plot since no
reduction of the number of displayed items is performed. Data
reduction approaches limit the number of visual items either by
sampling items [9] or using meta-items. Model-based approaches
mathematically reduce the data to a continuous function, and
meta-items usually represents the density of the underlying data
(e.g. [27]). Aggregation approaches have been presented for paral-
lel coordinates through different schemes: aggregation of dimen-
sions (e.g. [2]), aggregation of items or values (e.g. [13, 28, 29])
or combinations of both (e.g. [21, 26]).

In this paper, we are interested in scalability relative to the
number of items, not dimensions, hence we focus on aggregation
over items and their values. Previous work using aggregation
have used kernel density estimation, independently applied to
dimension [29], different hierarchical clustering algorithms over
multidimensional items or dimension (e.g. [13]) but also binning
on two-dimensional sub-spaces (e.g. [14, 28]). Aggregates have
been represented by their statistical properties: extrema (e.g. [3]),
cardinality (e.g. [20]), mean (e.g. [13]), and/or other metrics [29].

As reflected by previous work, multiple dimensions allow for
different levels of grouping: the item level (multidimensional), the
value level (per-dimension), the line level (two-dimensional). For
aggregation-based methods, the value level has the advantages
of losing less information, preserving continuity on axes (poten-
tially broken by two-dimensional aggregation) as well as an idea
of the relationship between dimensions (broken by item-level
aggregation).

2.2 Multiscale Parallel Coordinates
Abstract representations are usually conditioned by a parameter
that controls the resolution of the display. Multiscale visualiza-
tions allow navigation between multiple levels of abstraction,
using a drill-dow/roll-up interaction (respectively for increas-
ing and decreasing levels of detail). Elmqvist and Fekete [11]
provided general guidelines for multiscale representations and
interactions, based on such hierarchical aggregation. Bikakis et al.
[4] presented a framework for hierarchical aggregation oriented
towards the computational aspects of hierarchical navigation.
Interactively changing the level of detail can be integrated in dif-
ferent ways (see [8] for a general review). A first approach, similar
to geometry zooming, either (1) filters part of the representation
to maintain a fixed number of visual items on screen or instead
(2) purposely displays increasing number of items (e.g. [6, 29]).
Filtering has the advantage of being scalable when the amount of
displayed items is controlled; however, the overview and context
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are lost along the way. One drawback of displaying an uncon-
trolled number of items is that the screen pixel limitation could
always be reached for a sufficiently massive dataset and infor-
mation would be lost. Additionally, from a certain point it may
overwhelm human capacities. Consequently, zooming without
filtering does not allow interactive exploration to the item-level
complying with perceptual scalability. For zooming with filter-
ing, an alternative to the loss of context is the overview+detail
approach which displays both the filtered zoomed view and an
overview (e.g. dimension zooming of [13]).

A second approach, called focus+context, consists in displaying
heterogeneous levels of detail: a selected portion of the data is
shown with greater details to the detriment of the rest. This ap-
proach allows to gain detail locally while preserving the overview.
Fisheye lenses used in the work of [25] are an example applied in
screen space. In data space, [13] and [28], although using differ-
ent aggregation strategies, presented techniques where a subset
of items can be enhanced and displayed with fine-scale details
layered over the rest of the data, abstracted to some level.

To the best of our knowledge, none of these solutions pro-
pose to interactively change the level of detail locally, in a fo-
cus+context fashion, while bounding the number of visual items.

2.3 Processing Scalability of Multiscale
Parallel Coordinates

For the past ten years, large-scale or massive has been used to
qualify increasingly big data, now up to tera or petabytes in
size [12]. For multidimensional data, above about 107 items, with
a dozen of dimensions, perceptual scalability and processing
scalability becomes problematic for interactive analysis. Abstract
representation and precomputation of interactions are solutions
respectively addressing perceptual and processing scalability,
as [32] presented. In addition to the enhancement of subsets of
items and the reordering of axes, abstract representations require
a drilling interaction to allow fine data analysis.

Processing scalability can be tackled by parallelism, distributed
processing and precomputing of complete or partial results for in-
stance. For parallel coordinates, most interactions can be applied
to two-dimensional subplots independently and on separate por-
tions of the dataset without needing any communication (they
are pleasantly parallel). This property has been exploited by Rübel
et al. [31] on a HPC platform, and [32] on a distributed platform.
Rübel et al. [31] addressed both scalability challenges with an
histogram-based representation adapted from [28]. Histograms
are two-dimensional aggregations of the data, precomputed in
parallel, potentially for different resolutions. On more affordable
hardware, Sansen et al. [32] addressed the same challenges with a
parallel sets representation for an Hadoop+Elasticsearch ecosys-
tem that also relies on full precomputation of certain types of
interactions. Both works presented good scalability evaluations
relative to the number of computing units used. However, these
techniques only support the display of balanced levels of detail i.e.
drill-down is global and necessarily increases the number of dis-
played items. With this approach, gaining detail at the item-level
does not scale to large datasets.
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Figure 2: Rationale behind the graph model. (a) Example
data. (b) Opacity-based parallel coordinates. (c) Parallel co-
ordinates matrix where all 2-dimensional subspaces are
represented. (d) Many-to-many plot. (e) Graph-based rep-
resentation G (X ). Shadowed areas cover identical values
from the same dimension and form the partition R. (f)
Quotient graph G/R (X ) (cardinality mapped to size).

3 A GRAPH-BASED FORMALISM FOR
ABSTRACT PARALLEL COORDINATES

Consider X ∈ Rn,d , a set of multidimensional quantitative data
with n items and d dimensions. On a traditional parallel coor-
dinate plot, only a fraction of the input data subspaces is rep-
resented. Fig. 2c and 2d show two examples of representations
that display all subspaces at once: respectively the parallel coor-
dinate matrix [17] and the many-to-many plot [22]. The model
we propose integrates all subspaces without assumption on the
layout of axes and supports abstraction. A value in the matrix
inherently belongs to a tuple (or item), and a dimension. We
focus on abstraction based on aggregation of tuples and do not
directly address aggregation of dimensions. The rationale behind
this approach is that dimensions hold semantic meaning not em-
bedded in their numerical content. Therefore, automatically and
meaningfully aggregate them is not straightforward: some types
of values may not make sense aggregated together. Consequently,
we target datasets that challenge scalability by their size in tuples
(more than millions of items) and hold moderate amounts of
well-chosen dimensions.

3.1 Abstraction in Parallel Coordinates
In parallel coordinates, the values of the input matrix are con-
nected to each other by lines to materialize the tuple or tuples
they belong to. Extending this metaphor, an n × d matrix can be
seen a graph linking its values based on the relation induced by
tuples. This undirected graph is composed of n separate cliques
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Figure 3: Aggregation of dimension values. (a) Exam-
ple data (b) Parallel coordinate plot augmented by
per-dimension partitions. (c) Quotient graph. (d) Value-
oriented abstract representation using extrema values and
cardinality (with link opacity).

of d vertices, that is, n complete graphs (see Fig. 2e). We note this
graph G = (V ,E,w ), where V denotes the vertices, E the edges,
w is the weighting function:w : V → R that stores vertex values.
We note D = {Vi , i ∈ ⟦1,d⟧} the partition of V that groups ver-
tices along their origin dimension. Given a dimension sequence,
a parallel coordinate plot is built by taking the subgraph of G
composed of only the edges joining vertices of consecutive dimen-
sions in the sequence. Vertices of this subgraph are positioned
on their corresponding axis along a vertical position given by
the weighting function. Shadowed regions on Fig. 2e represent a
vertex partition R that groups identical values of the same dimen-
sion. Such partition is a refinement of the partition D. Merging
vertices of G belonging to the same subset of a partition R corre-
sponds to taking the quotient graph of G relative to R, noted G/R .
Two subsets S, S ′ in the partition R are represented by adjacent
vertices in G/R if, and only if, some vertex in S is adjacent to a
vertex in S ′ in G. Further, two aggregation functions are defined
to compute the properties of the meta-nodes and meta-edges, i.e.
vertices and edges of the quotient graph. Aggregation functions
return a tuple of weights given a set of edges or vertices as input.
Weights (cardinality, extrema, mean, etc) provided by such func-
tions are subsequently used for assigning visual properties to
meta-edges and meta-nodes. For instance, on Fig. 2b, the opacity
of lines on the parallel coordinate plot depends on the cardinal-
ity of meta-edges. On this example, the aggregation of identical
values allows to find the optimal number of lines to draw. In-
deed, the aggregation done here in data-space relates to the one
done in screen-space when rendering the polylines with alpha
composing.

Given some aggregation functions, the same process is applied
to obtain an abstract representation from any valid partition R
of V , that is, refinement of D. Fig. 3 presents an example of parti-
tion obtained with per-dimension clustering and another type of
representation based on extrema values. Tuple-based approaches
are incorporated into the model by refining the input tuple par-
tition into a refinement of D. Each subset of the tuple partition
can be decomposed into d groups along their membership in
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Figure 4: Aggregation of tuples. (a) Translation of the
tuple partition (color) into a vertex partition refining D
(shadowed regions). (b) Tuple-oriented abstract represen-
tation using mean and extrema values.

D. Fig. 4 shows an example of tuple partition refinement and a
tuple-oriented representation. Using our model and the intro-
duced notations, the abstract representation is fully defined by:
(i) a valid partition of the matrix values, (ii) two aggregate func-
tions assigning weights to meta-nodes and meta-edges, (iii) an
axis layout and visual encodings for meta-node and meta-edge
weights (vertical position, color, etc).

3.2 Hierarchical Abstraction in Parallel
Coordinates

Hierarchical aggregations are precomputation of different lev-
els of abstraction that naturally support multiscale representa-
tions. Such precomputation outputs a rooted tree structure whose
leaves are the data objects to aggregate. Every node of a rooted
tree is said to cover the leaves of the subtree it is the root of.
An antichain (also called tree cut) in a tree is a set of nodes S ,
such that no node of S is an ancestor of another node of S . An
antichain is maximal if it cannot be expanded by any other node
without violating the antichain property. The subsets covered
by the nodes of a maximal antichain form a partition of the tree
leaves: the antichain property makes them pairwise disjoint, the
maximal property ensures that their union is the set of leaves.

In our model, an abstraction is directed by a partition refining
the partition D which is equivalent to d partitions, one for each
Vi of D. By augmenting each subsetVi with a tree, such partition
can be defined by one maximal antichain for each tree. This is
equivalent to defining a single maximal and non-trivial antichain
in the unified tree where the root’s children are the roots of all
dimension trees. We note this unified treeT (V ), and call its direct
subtrees dimension hierarchies.

Overall, for some input data modeled by the clique graph
G = (V ,E,w ) and its associated hierarchy T (V ), an abstraction
is defined as previously described with the valid partition of V
induced by a maximal antichain inT (V ). This unifying approach
accommodates multiple layouts of parallel coordinates (see Fig. 2)
and several abstract parallel coordinates representations. We pre-
sented two abstract representations: per-dimension aggregation
on Fig. 3d that corresponds to the technique presented by Palmas
et al. [29] and on Fig. 4 tuple aggregation like presented by Fua
et al. [13]. For tuple aggregation, the hierarchy defined on tu-
ples is used to form all dimension hierarchies. Additionally, to
represent the same tuple aggregates on all subplots, dimension
hierarchies should all be cut at the same level.

4 COMMON INTERACTIONS
We take advantage of the hierarchical graph model described in
the previous section to explore several hierarchical operations
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and usual operations for parallel coordinates and investigate the
incremental computation they require.

4.1 Level-of-Detail Operations
The drill-down and roll-up operations correspond to changes in
the displayed level of detail. They respectively mean moving
deeper in the hierarchical aggregation to show finer details, and
upper to present a coarser display of the data. Since the model
rests upon precomputed hierarchies of dimension values, the
weights (cardinality, extrema, etc) of all possible meta-nodes, i.e.
nodes of the hierarchies, can be precomputed as well. The number
of edges of a quotient graph with respect to a maximal antichain
is always less than those of the original graph and generally
greatly depends on the properties of the hierarchies (arity, depth).
In general, the number of maximal antichains is exponential. For
example, complete binary trees, that are rooted binary trees with
every level full except the last, have Ω(2n ) maximal antichains
wheren is their number of leaves. This makes the precomputation
of all possible quotient graphs, i.e. all meta-edge weights, with
respect to every possible maximal antichain for given dimension
hierarchies not possible for the scale of data we aim to tackle.

In traditional parallel coordinates plots, and in many derived
techniques, each two-dimensional subplot is independent of the
others and can be computed and displayed separately. When
axes hold visual elements, like frequency plots, the correspond-
ing visual items are usually mirrored and the two composing
parts conceptually included in both sides subplots. If no edge
is precomputed, the cost of an abstraction can be decomposed
into independent substeps corresponding to all subplots, each
requiring aggregation over n edges, one for each tuple.

In the context of hierarchical aggregation, gaining detail can
be defined locally as the substitution of a visual aggregate for its
children. In our model, the displayed level of detail is given by
a maximal antichain of the hierarchy. Drilling-down on a meta-
node replaces it in the current antichain by all of its children
which still forms a maximal antichain of the tree. This entails
computing the outgoing edges of these children since they are not
precomputed. It corresponds to aggregating the tuples covered
by the drilled meta-node. The opposite operation, rolling up or
collapsing, is the replacement of sibling nodes with their parent
in the antichain.

Globally increasing detail may result in an uncontrolled num-
ber of elements on display, independently of the arity and depth
of hierarchies. We detail three drilling approaches that tackle this
issue by trading context detail for scalability.

Detail & Filter. One approach is to define drilling on a meta-
node as a filtering operation. This corresponds to computing the
expansion of the meta-node over a filtered clique-graph, induced
solely by vertices adjacent to the leaves it covers in the original
clique-graph. This method effectively bounds the number of
aggregates on an axis by the arity of the dimension hierarchy, i.e.
the maximal number of siblings in the tree. This also bounds the
number of edges in an abstract plot. The limit of this approach is
that all subplots are modified since the weights of all meta-nodes
and meta-edges from the quotient graph are to be updated to
account for the filtering. Thus for each subplot, it costs a pass
over as many bottom-level edges as the drilled meta-node covers
items.

Budgeted Detail. A second approach lies in constraining the
definition of maximal antichains such that their size comply with

a predefined budget. In this setting, drilling potentially implies
modifying the current maximal antichain in multiple points such
that previously acquired detail collapses to allow drilling-down
when the budget would have been exceeded otherwise. If these
changes are restricted to a single dimension hierarchy, the incre-
mental changes only involve one or two subplots. Computing
these subplots costs a pass over n bottom-level edges for each, in
addition to the cost of finding a suitable maximal antichain.

For a budget defined in number of visual items, the minimal
budget allowing to define a maximal antichain that does contain
a leaf node depends on the arity and depth of the tree. In a treeT
with n leaves and arity a, a maximal antichain containing at least
one leaf and minimal in size can be expected to have between
depth(T ) and a · depth(T ) nodes. Considering the toy example
of binary trees which nodes all have either 0 or 2 children, the
minimum depth is ⌈loд2 (n)⌉ + 1 and the maximal depth is n. Con-
sequently, a visual budget allowing gaining detail up to the leaf
level has to be chosen with respect to the depth of the hierarchy.
In our context, since this depth can reach orders of magnitude
same as the number of tuples, this method does not scale without
strong constraints on the properties of hierarchies.

Dynamic Context Aggregation. An alternative solution to col-
lapsing nodes when focusing on deeper nodes is to aggregate
them dynamically. The meta-nodes from the chosen antichain
that are not in focus (i.e. not the deepest in the hierarchy) are rep-
resented aggregated which lowers their impact on the visual item
budget. In general, these dynamically-computed aggregates, do
not correspond to existing nodes in the precomputed hierarchy.
This approach limits the visual items on an axis to the siblings
of each focus and the aggregates of the rest of the meta-nodes
that forms the context. Thus, for a dimension hierarchy of arity
k , an axis with f foci corresponds to at most k · f + ( f + 1) visual
nodes, whatever the depth of these foci in the hierarchy is. Form-
ing these aggregates induces an aggregation of their outgoing
edges, therefore it similarly reduces the number of meta-edges.
Consequently, with additional constraints on the arity of dimen-
sion hierarchies and the number of concurrent foci on an axis,
this approach enables drill-down up to the deepest level while
complying with a visual budget. Contrary to the previously de-
scribed approaches, dynamic context aggregation matches the
requirement of our system and thus is the one implemented (see
Sec. 5.1 and 5.2).

4.2 Other Operations
Axis Reordering can be conceived either as the computation of a
full plot or, incrementally, as an edition of one or more subplots
which requires one or two passes over n bottom-level edges, for
n the number of tuples. Subset Selection relates to the emphasis
of a subset of tuples in a given representation. In an aggregate
visualization setting, an abstraction can be computed over the
subset of tuples and the resulting weights displayed over the
complete abstraction using a discriminating encoding. Using this
approach, a subset selection ofm tuples requires going through
m bottom-level edges per subplot, one per tuple, to compute their
contribution to the current meta-edge weights. The process is
the same for meta-node weights.

80



5 FOCUS+CONTEXT REPRESENTATION &
SCALABLE IMPLEMENTATION

Our goal is to enable hierarchical exploration in abstract parallel
coordinates while complying with the following scaling proper-
ties. On the representation-side, exploration should be possible
down to the item level, in a top-down manner, while the num-
ber of visual items on display should be bounded for any size
of input data. On the processing-side, network transfer latency
between the displaying unit and the computing unit should be
bounded and traditional operations (axis reordering, subset selec-
tion) should be supported. In the following, we present first the
cornerstone of our method: the budgeted number of visual items.
Then, we detail a novel focus+context display with intuitive drill-
down capabilities using the dynamic context aggregation. And
finally, we describe technical details and performance evaluation
of the proposed system.

5.1 Bounded Number of Visual Items
Bounding visual items is essential for perceptual scalability but
also ensures that data transfer between our rendering client and
back-end unit remains bounded in size thus predictable in time.
To this end, the properties of dimension hierarchies are con-
strained and the number of foci restricted to one per dimension.

Hierarchy Constraints. We use a user-defined k value that acts
as a resolution parameter, bounding the number of visual items
per displayed axis. This parameter is enforced as the maximal
arity of dimension hierarchies. k should be chosen large enough
for the representation to preserve an appropriate amount of infor-
mation but small enough for the visual items to fit the available
screen space. Additionally, dimension hierarchies should order
their leaves with respect to their values such that every maximal
antichain defines partitions of dimension intervals since the cho-
sen visual representation relies on this property. Binning (equal
range partitioning) and adaptive binning (equal size partitioning)
are examples of partitioning algorithms that can be applied in a
bottom-up fashion to produce hierarchies complying with these
two requirements. No depth constraint is required, we adopt the
dynamic context aggregation strategy to bound the number of
vertices from quotient graphs displayed.

Level-of-Detail Navigation. We define as focus nodes, the nodes
that have the maximal depth in the current antichain. The rest
of the antichain nodes from one dimension are aggregated into
the minimal number of context nodes such that their order is pre-
served. In the proposed implementation, the top-level nodes are
initially presented as focus nodes and each drill-down triggers
a dynamic aggregation (examples are presented in Fig. 5). Con-
sequently, there is no more than k focus nodes and two context
nodes at once per axis. Thus, the number of nodes on display is
bounded by k + 2 per axis and the number of edges by (k + 2)2
per subplot.

5.2 Visual Encoding
We propose an extension of the work presented in [32] which
included two visual encodings: one oriented towards the distri-
bution of tuples, the other towards the distribution of values
themselves. Basically, the first encoding maps aggregate height
to their cardinality, while the second maps it to their covered
interval size (distance between extrema). We extend the encod-
ing and positioning of aggregates to emphasize the focus regions,
composed on each dimension of the data displayed with the finest

1

2

3

(a)

focus nodes
(children of 1)

context node
with aggregate
of 2 and 3

4

(b)

5

(c)

Figure 5: Focus+context representation. (a) Initial display.
(b) Drill-down on 1 . The top context node represents the
aggregation of 2 and 3 . (c) Drill-down on 4 and 5 succes-
sively.

detail. Context regions are displayed with slightly lower width
to emphasize the focus regions. Since regions of interest are in-
crementally refined by successive drill-down, they get smaller
in height relative to the whole both in terms of cardinality and
interval of values. Therefore, the height of focus and context re-
gions are rendered with different scaling factors. Focus nodes are
represented colored and augmented by a bidirectional smoothed
histogram. Context nodes are augmented by a pile of level blocks
(see Fig. 5c). The wider these blocks are, the lower in the hierar-
chy are the nodes they represent (notice on Fig. 5c the difference
in width of the outer blocks from the top and bottom context).
The height and vertical order of level blocks follows the same
encoding as those of focus nodes. Level blocks are computed on
the client side and thus not transferred nor counted in the visual
item budget.

In the drilling mode, focus nodes and level blocks are clickable.
Clicking on a focus node triggers its animated expansion which
split it into its children and merges its siblings into level blocks.
Level blocks represent an aggregation of nodes previously in
focus, thus they enable going back to this precise previous state.

5.3 System Overview
Our system consists of two main parts and follows a client/server
architecture where the client is the visualization endpoint and
the server is an interface to an on-demand computing and pre-
processing back-end. The latter could be implemented both in
a distributed environment for a Hadoop cluster and as a multi-
threaded application for single machines (desktop computer or
dedicated server). Past a certain number of input records (for a
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given number of dimensions and resolution parameter), a dis-
tributed platform should be more efficient while facilitating load
expansion.

The client is a WebGL application that displays the represen-
tation, computes level blocks and context aggregation on node
drill-down, and queries the supporting back-end for other inter-
actions. The back-end server is a long-lived Spark application
which runs distributed job on demand while keeping prepared
data in memory. It computes dimension hierarchies in a pre-
computation step and stores the resulting meta-node weights
(extrema and cardinality) for all the hierarchies in a distributed
database. Contrary to the previous system, the hierarchical as-
pect makes the number of displayable meta-edges too large to
allow their precomputation in reasonable time (see Sec. 4.1).

The membership of each input data value is stored in a hierar-
chy matrix of the same size as the input data, where each value
holds the list of computed ancestors for the matching input data
value. This matrix is kept in memory and split among computing
units which will pass over their slice of the data to filter and
aggregate results on demand. The aggregation outputs the meta-
edges (source, target and cardinality) as well as the weights of
context nodes since they do not exist in the precomputed hierar-
chies. Upon user interaction and if necessary, the client requests
the server which in turn runs a distributed operation and merges
the partial results returned by computing units. Finally, the client
receives the incremental changes in plain text and updates the
view consequently.

5.4 Performance Evaluation
Our system supports moving an axis, selecting an aggregate node
or edge, drill-down on a focus node and rolling-up by clicking on
a context part. Drill-down, roll-up and moving an axis correspond
to the same low-level operation which consists in computing the
edges of two-dimensional subplots given the current focus on
each dimension involved. Compared to the other operations that
only modify two to three subplots, selection operations affect all
subplots, thus are more computationally expensive.

Since we are interested in supporting "n ≫ d" datasets, we
evaluate our system for varying number of tuples n and using
the most expensive interactive operation: node selection of the
largest node (in covered tuples). To demonstrate the scalability
of the approach we also evaluate performance relative to the
resources allocated for computation.

Each node of the distributed platform has 64GB RAM and 2x6
hyper-threaded cores at 2.10GHz each, connected via a 1Gbit/s
network. The single computer used for running the multi-threaded
implementation has 2x4 hyper-threaded cores at 3.3GHz and
64GB RAM. Test datasets are generated for varying n (from 104

to 109), with d = 15 and k = 31. Test datasets are generated
such that pairs of dimensions present a close to null correlation
factor [5] which tends to create close to the maximum number of
edges between dimensions. Dimension hierarchies are generated
using Canopy clustering [1] applied in a bottom-up manner.

On Fig. 6a, execution times of the selection of the largest top-
level node are plotted for increasingly large datasets. We evaluate
both a multi-threaded single-computer implementation and the
distributed Spark implementation. The stairs-shaped curve of
the single computer can be explained by the similar trend of the
selected node cardinality for every test dataset. Indeed, due to the
hierarchy constraints and the bottom-up approach for clustering,
the number of nodes on the top-level varies and the cardinality
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(a) Execution time for node selection relative to data size for two
implementations. The distributed version uses 15 executors. Er-
rors bars are not symmetrical and missing their bottom parts on
two points due to the log-log scale.
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(b) Scalability test using node selection, n = 2 · 108.

Figure 6: Performance evaluations. Experimental results
are averaged over 1000 runs. Executor resources (12 cores,
31GB memory) are sized to match those of physical units.

of the largest nodes does not increase linearly with n. We observe
that, on our infrastructure, under n = 2 · 108 (about 108 selected
tuples) the Spark application performances are stable despite in-
creasing workload. This suggests that execution time for datasets
of smaller size is dominated by costs related to network and disk
I/O, and/or by merging all executor results by the driver unit.
Indeed, the cost of merging results remains approximately the
same as it is a function of the output size and the number of task
running in parallel. Another visible aspect of the results on small
datasets is their high variation. The oversized allocated memory
can be an explanation: when triggered, garbage collection incurs
a substantial delay. Overall, for n less than approximately 106, the
distributed infrastructure underperforms the single-computer de-
spite having more resources. Past this limit, the system is better
tuned and seems to scale linearly relative to the number of tuples
in the selection. This observation holds for the other experiments
carried out for edge selection, roll-up, and drill-down.

We investigate the scalability of the system using a dataset
larger than this limit. Fig. 6b presents the median execution time
for node selection on a 2 ·108-tuple dataset with varying numbers
of executors. The plotted ideal execution time corresponds to a
linear speedup, that is, halving the execution time when doubling
the number of executors. This experiment shows that the system
performs close to the ideal.

6 CONCLUSION
We presented a graph model for hierarchical aggregation and
interaction strategies for parallel-coordinate-based visualization.
This model formalizes aggregation over multidimensional data at
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the most-expressive level by making use of per-dimension hier-
archies. This approach treats all dimensions equivalently which
matches the way dimensions are handled in parallel coordinates.

Based on this model, we presented a client/server system for
interactive exploration of large multidimensional data using ab-
stract parallel coordinates. We address the limitation of the pre-
vious system, based on fixed partitions of dimension values, with
hierarchies that allow to interactively change partition. The pro-
posed drill-down operation enables the definition of an arbitrary-
detailed focus region on each axis while retaining context in
a reduced form. On the client-side, we showed how to display
focus and context regions with intuitive navigation cues. The
strength of this approach is that it supports exploration down to
the item-level while controlling the number of visual items, thus
ensuring perceptual scalability.

On the server-side, the back-end processing is handled on a
distributed platform with components that scale horizontally. Be-
sides drill-down/roll-up operations, the implementation supports
standard parallel coordinate operations. Experimental results
demonstrate the scalability of the back-end system relative to the
size of the input data and to the resources allocated for computa-
tion. The results indicate that the proposed system can support
increasingly large datasets by expanding its network of comput-
ing units. To a certain extent, adding computing resources can
also reduce interaction latencies.

One focus of the design is the bounded data transfer between
the client and server parts which relies on the single-focus ap-
proach (on each axis) and the precomputation of dimension hi-
erarchies with a bounded arity k of small orders of magnitude.
The hierarchies being predefined allows for efficient filtering and
aggregation of items based on ancestors but may be limiting for
exploration. As a counterbalancing measure, future work could
add support for user-driven hierarchy refinement. Depending on
the scope and scale of the refinements this could be handled on
the client-side and/or enforced on the server-side.

Another path for future work is methods for latency reduction
other than horizontal scaling. Space is a possible trade-off. Even
if the number of possible meta-edges makes their total precom-
putation infeasible, partial precomputation could be investigated:
either beforehand or as a background process targeting meta-
edges that are the most likely to be requested given the current
state.
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