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ABSTRACT
The amount and significance of time series that are associated
with specific locations, such as visitor check-ins at various places
or sensor readings, have increased in many domains over the last
years. Although several works exist for time series visualization
and visual analytics in general, there is a lack of efficient tech-
niques for geolocated time series in particular. In this work, we
present an approach that relies on a hybrid spatial-time series
index to allow for interactive map-based visual exploration and
summarization of geolocated time series data. In particular, we
use the BTSR-tree index, which extends the R-tree by maintain-
ing bounds for the time series indexed at each node. We describe
the structure of this index and show how it can be directly ex-
ploited to produce map-based visualizations of geolocated time
series at different zoom levels efficiently. We empirically validate
our approach using two real-world datasets, as well as a synthetic
one that is used to test the scalability of our method.

KEYWORDS
time series visualization, geolocated time series, visual explo-
ration

1 INTRODUCTION
Time series are generated and stored at a vastly increasing rate
in many industrial and research applications, including the Web
and the Internet of Things, public utilities, finance, astronomy, bi-
ology, and many more. A significant portion concerns geolocated
time series, i.e., those generated at, or otherwise associated with
specific locations. While indexing, mining and exploring time
series data has attracted a lot of interest from the database and
data mining communities [4, 12, 25, 28], studying of geolocated
time series is still largely overlooked.

Geolocated time series can be found in various domains and
applications. A typical example is encountered in the DAIAD
project1, where time series are used to represent water consump-
tion measured by smart meters installed in urban households.
Analyzing such time series can provide valuable insights regard-
ing trends and patterns of consumer behavior in daily life. Such
results can then be used to forecast and balance water demand,
as well as to plan and prioritize interventions that can guide
consumers towards more sensible water use. Similar use cases
1http://daiad.eu/
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can also be found in other domains, such as in geomarketing or
mobile advertisement, where geolocated time series may repre-
sent the number of visitors or the revenue generated at a certain
location across time. Extracting insights, trends and patterns can
be significantly facilitated by map-based visualizations of sum-
marized time series data. For example, such visualizations can
reveal which type of consumption patterns are most frequently
observed among consumers in a certain area or what the spatial
distribution of sales for a certain product looks like.

However, time series is an inherently complex data type, and
such datasets can reach extremely large volumes, both horizon-
tally (i.e., very long series across time) and vertically (i.e., time
series generated by countless sources). Consequently, manage-
ment, analysis and exploration of such Big Time Series Data is a
task of excessive complexity, requiring efficient algorithms. In
particular, visual exploration of geolocated time series needs to
process the required information in real time, while the user
interacts with the map. Whenever the user zooms in or scrolls
the map, visual analytics and aggregates should be computed
on-the-fly, e.g., identifying the predominant patterns in the time
series and their spatial distribution within the map area.

Consider the example illustrated in Figure 1. When the user
zooms the map into the red rectangle, the visualization tool
should readily identify and present the two patterns (shown
in blue and green color) appearing therein. To avoid cluttering
the map, when the spatial distribution is very dense or the map
area is too large, it is meaningful to display only aggregate infor-
mation, e.g., the number of time series per identified pattern and
their respective centroids; individual time series may be identified
only at a greater zoom level.

Such fast computation and retrieval for large datasets of geolo-
cated time series can be enabled by indexing. Several approaches
have been proposed that efficiently index large amounts of plain
time series data, either relying on Discrete Wavelet Transform
like [5] to reduce dimensionality of time series, or the family
of indices based on Symbolic Aggregate Approximation (SAX)
over the time series [3, 4, 28, 31]. However, all aforementioned
techniques index the data solely on the time series domain, not
taking the spatial dimension into account. If the analyzed time
series are inherently associated with a spatial attribute (e.g., loca-
tions of smart meters), such indexing does not efficiently support
queries and visualizations that do not simply apply to the time
series domain, but also involve spatial filters. As in the example
of Figure 1, a user may need to explore time series similar to
a specific pattern, but also having locations within the actual
map area. For such mixed requests, it is inefficient to evaluate
each predicate separately, e.g., using first the time series index to
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Figure 1: Exploring time series patterns in a spatial region.

retrieve a candidate set of time series similar to the pattern, and
then applying a spatial filter against these candidates to retrieve
only those qualifying within the specified query area.

To address this shortcoming, we have recently proposed an
extension to the R-tree spatial index [16], offering efficient sup-
port to similarity search on geolocated time series. The idea
behind our BTSR-tree hybrid index [7] is to combine both spatial
proximity and time series similarity. To that end, in addition to
the standard Minimum Bounding Rectangle (MBR) denoting the
spatial bound of its contents, each node is augmented with a
Minimum Bounding Time Series (MBTS), i.e., a band with upper
and lower bounds that encloses all time series contained in its
subtree. Maintaining both kinds of bounds per node enables prun-
ing the search space simultaneously in the spatial and the time
series domains while traversing the index. To increase pruning
effectiveness, time series indexed in a given node are further
distinguished into bundles on the basis of their similarity, hence
achieving tighter bounds in the MBTS of these bundles.

In this paper, we take advantage of this novel BTSR-tree in-
dex and propose an interactive method for map-based visual
exploration and summarization over large datasets of geolocated
time series. Intuitively, when the user interacts with the map,
i.e., either zooms in/out or moves the visible area, this technique
can identify the most significant patterns characterizing the time
series located in this area. These patterns are abstracted by the
MBTSs of the bundles contained in the nodes of the BTSR-tree in-
dex within this area, summarizing the various time series therein.
In addition, the corresponding MBRs and the number of geolo-
cated time series per pattern can be depicted on the map.

For providing prompt visualizations of summaries over geolo-
cated time series data and minimizing latency when drawing the
relevant graphic elements, we need early access to both spatial
and time series information while traversing the index. For this
purpose, we adapt the BTSR-tree index so as to also include ag-
gregates per node, i.e., the number of time series pertaining to
each bundle. Subsequently, we introduce a new traversal algo-
rithm for efficient retrieval of a given number of bundles that
are the most representative in the map area. To the best of our
knowledge, this is the first work that considers visual exploration
and summarization of geolocated time series.

In summary, our main contributions are as follows:
• We propose an adapted variant of the BTSR-tree index

as well as a novel algorithm for its traversal in order to
quickly retrieve summaries (bundles) of geolocated time
series within a given area.

• Thanks to robust index support, we introduce a method
that can cluster bundles according to time series similarity,
calculate their support and identify their spatial extent,
thus enabling their interactive map-based exploration.
• We exemplify the proposed visualization method with two

use cases based on real-world datasets.
• We also empirically evaluate the performance of index

traversal, confirming its low execution cost against a large
synthetic dataset of geolocated time series.

The remainder of this paper is organized as follows. Section 2
reviews related work. Section 3 outlines basic concepts and for-
mulates the problem. Section 4 describes the BTSR-tree index and
introduces our approach on summarization of geolocated time
series for their efficient visual exploration. Section 5 presents
indicative use cases with map visualizations and also reports
performance results. Finally, Section 6 concludes the paper and
outline future research directions.

2 RELATED WORK
As our approach suggests visual exploration of time series and is
based on indexing of such data, next we briefly survey both of
these research topics.

Visual Exploration of Time Series. In constrast to declarative
visualization specifications suggested in [29], a recent tutorial
[21] advocates the use of example-based methods in exploration
of large relational, textual, and graph datasets. Such a query-
by-example approach has been applied in [13] so as to explore
relevance feedback for retrieval from time series databases. In-
stead of returning the top matching time series, this technique
incorporates diversity into the results, which are presented to
the user for feedback and refined in several rounds.

RINSE [32] is a Recursive Interactive Series Explorer specif-
ically designed for exploration of data series. Built on top of
ADS+ [31], a special adaptive index structure for data series, it
can progressively build parts of the index on demand at query
time, concerning only those chunks of the data involved in users’
queries. In terms of visualization, users can get those series qual-
ifying to range or nearest-neighbor queries interactively drawn
on screen, as well as monitor various statistics regarding the
index footprint (e.g., RAM and disk usage) as it gets updated.

In contrast, ATLAS [6] is a visual analytics tool specifically
geared towards interactivity when ad hoc filters, arbitrary aggre-
gations, and trend exploration are applied against massive time
series data. This client-server architecture employs a column
store as its backend equipped with indexing, and preemptively
caches data that may be required in queries so as to reduce latency
when panning, scrolling, and zooming over time series.

Recently, the ONEX paradigm [22] concerns online explo-
ration of time series. It first constructs compact similarity groups
over time series for specific lengths based on Euclidean distance,
and then can efficiently support exploration of these groups with
the Dynamic Time-Warping (DTW) method over their represen-
tatives of different lengths and alignments.

Besides, smoothing can be applied to streaming time series to
remove noise in visualizations while preserving large-scale devi-
ations [27]. To highlight important phenomena without harming
representation quality from oversmoothing, this approach intro-
duces quantitative metrics involving variance of first differences
and kurtosis to automatically calibrate smoothing parameters.

ForeCache [2] leverages two prefetching mechanisms to facil-
itate exploration of large geospatial, multidimentional and time
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series data stored in a DBMS. By predicting the user’s behav-
ior, it fetches the necessary data as the user interacts with the
application.

None of the aforementioned methods and systems provides
map-based visual exploration of geolocated time series, as is the
goal of our work in this paper.

Indexing of Time Series. Earlier approaches towards indexing
of time series data were based on leveraging multi-resolution
representations. For instance, the Discrete Wavelet Transform
[15] is used in [5] to gradually reduce the dimensionality of
time series data via the Haar wavelet [17] and generate an index
using the coefficients of the transformed sequences. In [26], it
is further observed that, other than orthonormal wavelets, bi-
orthonormal ones can also be used for efficient similarity search
over wavelet-indexed time series data, demonstrating several
such wavelets that outperform the Haar wavelet in terms of
precision and performance. In addition, an alternative approach
regarding k-nearest neighbor search over time series data is in-
troduced in [18]. The proposed method accesses the coefficients
of Haar-wavelet-transformed time series through a sequential
scan over step-wise increasing resolutions.

State-of-the-art approaches for time series indexing comprise
methods based on the Symbolic Aggregate Approximation (SAX)
representation [20]. This is derived from the Piecewise Aggregate
Approximation (PAA) representation of a time series [19, 30], by
quantizing the segments of its PAA representation on the y-axis.
The first attempt to leverage the potential of the SAX representa-
tion was presented in [28], introducing the indexable Symbolic
Aggregate Approximation (iSAX), capable of a multi-resolution
representation for time series. The iSAX index was further ex-
tended to iSAX 2.0 [3] by enabling bulk loading of time series
data. Its next version is the iSAX2+ index [4], which handles
better the expensive I/O operations caused by the aggressive
node splitting while building the index. Finally, the ADS+ in-
dex [31] is another extension of iSAX, which overcomes the still
significantly expensive index build time by adaptively building
the index while processing the workload of queries issued by
the user. A comprehensive overview of the time series indexing
approaches based on the SAX representation is presented in [23].

Unfortunately, none of the abovementioned access methods
can inherently support geolocated time series, i.e., time series
inextricably associated with a location. To the best of our knowl-
edge, the only index in the literature that supports such time
series is the BTSR-tree index [7]. This hybrid index follows a
similar rationale set by spatio-textual indices [8, 9, 11, 14] that
have been proposed to speed up evaluation of queries combin-
ing location-based predicates with keyword search. Essentially,
this paradigm implies combining a spatial index structure (e.g.,
R-tree, Quadtree, Space-Filling Curve) with a textual index (e.g.,
inverted file, signature file). Depending on their structure, these
variants can be characterized either as spatial-first or textual-first
indices [10]. In a similar spirit, our BTSR-tree is a spatial-first
index based on the R-tree that can additionally abstract similarity
of time series instead of a textual one. As a result, it can offer anal-
ogous improvements when searching against geolocated time
series data, as we discuss in more detail in Section 4.1.

3 PROBLEM DEFINITION
Next, we introduce notation and definitions used in our approach,
and we formally define the problem addressed in this paper.

A time series is a time-ordered sequence of valuesT = {v1, . . . ,
vw }, where vi is the value at the i-th time point and w is the
length of the series. In particular, we deal with time series that
are additionally characterized by a location, denoted by T .loc .
Assuming a 2-dimensional space, we further use the notation
T .locx , T .locy to refer to the (x ,y) coordinates of T ’s location.

In the spatial domain, the distance between two geolocated
time series T and T ′ of equal length w is calculated using the
Euclidean distance of their respective locations. Furthermore,
we normalize this distance with maxDistsp , i.e., the maximum
spatial distance of any pair of objects in the dataset, to obtain a
measure in the interval [0,1]. Thus:

distsp (T ,T
′) =

√
(T .locx −T ′.locx )2 + (T .locy −T ′.locy )2

maxDistsp
(1)

In the time series domain, similarly to other prior works (e.g.,
[28]), we also apply the Euclidean distance to measure the simi-
larity of a pair of objects. In future work, we plan to make use of
more complex distance measures [24]. More specifically, we cal-
culate the distance between two time series T and T ′ as follows:

distts (T ,T
′) =

√√ w∑

i=1
(vi −v ′i )2

maxDistts
(2)

wheremaxDistts denotes the maximum distance of any pair of
objects in the dataset and is used for normalization, as above.

To index and summarize time series, we use the notion of Mini-
mum Bounding Time Series (MBTS). An MBTS is a summarization
of a set of time series T , defined by a pair of upper and lower
time series bounds that contain them. Formally, given a set of
time series T , its MBTS consists of an upper bounding time series
Tup and a lower bounding time seriesTlo , constructed by selecting
the maximum (for Tup ) and minimum (for Tlo ) of values at each
time point among all time series of the set as follows:

Tup = {max
T ∈T

T [0], . . . ,max
T ∈T

T [w − 1]}
Tlo = {min

T ∈T
T [0], . . . , min

T ∈T
T [w − 1]} (3)

We can now formally introduce our problem. Given a set of
geolocated time series and an area, our goal is to produce a
summary for visualization comprising the following two parts:
• Time series summary: A collection of MBTSs (bundles),

summarizing the time series located within the given area.
• Spatial summary: A set of MBRs, each one associated with

an object counter for each identified bundle.
The bundles provide a summarization of the time series that

are contained within their MBTSs. Figure 2 depicts an example
of two time series bundles for two different sets of time series.
Regarding the spatial summary, for each MBR associated with
a certain bundle, the counter denotes the number of time series
contained in it.

4 APPROACH
We propose a visualization method for geolocated time series
that draws on a map the time series and spatial summaries for
the current visible area. Using this process, a user can select the
bundle of her preference and the proper spatial summary will
appear on the map after acquiring the necessary MBRs from
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Figure 2: Example illustrating the resulting bundles for
two sets of time series.

the BTSR-tree index. Whenever the user zooms in/out or moves
around the map, the BTSR-tree is traversed, and the correspond-
ing bundles, MBRs and object counts are obtained to drive the
visualization. In each case, the rectangle corresponding to the
visible part of the map is used to feed a traversal algorithm that
efficiently gathers the results. In the following, we describe this
process in detail, after providing some necessary background
information on the BTSR-tree index.

4.1 The BTSR-tree Index
To efficiently generate real-time visualizations of geolocated time
series data, we need early access to both spatial and time series re-
lated information while traversing the index, in order to maintain
low latency levels when drawing the required graphic elements.
However, none of the approaches presented in Section 2 supports
geolocated time series indexing. To the best of our knowledge,
the recently proposed BTSR-tree index [7] is the only one that
provides the desired functionality.

The BTSR-tree is based on the R-tree [16] for the spatial
indexing part. The R-tree organizes a hierarchy of nested d-
dimensional rectangles. Each node corresponds to a disk page
and represents the MBR of its children or, for leaf nodes, the
MBR of its contained geometries. The number of entries per node
(excluding the root) is between a lower bound m and a maxi-
mum capacity M . Query execution in R-trees starts from the root.
MBRs in any visited node are tested for intersection against the
search region. Qualifying entries are recursively visited until the
leaf level or until no further overlaps are found. Several paths
may be probed, as multiple sibling entries could overlap with
the search region. The BTSR-tree extends the information stored
within each node of the R-Tree with bundles of MBTSs. This al-
lows to efficiently prune the search space when evaluating hybrid
queries combining time series similarity with spatial proximity.

As in the standard R-tree, each node of the BTSR-tree has at
least m and at most M entries and stores the MBRs of its chil-
dren. Additionally, for each child, a node stores a pre-specified
number of time series bundles, each consisted of an MBTS that
encloses all the time series indexed in its subtree. Each bundle is
calculated using Equation 3. Construction and maintenance of
the BTSR-tree follow the procedures of the R-tree for data inser-
tion, deletion and node splitting. Objects (i.e., geolocated time
series) are inserted into leaf nodes, and any resulting changes
are propagated upwards. Once the nodes have been populated,

the bundles of each node are calculated bottom-up. To construct
the time series bundles within each node, we rely on k-means
clustering. The objects contained in each node are clustered ac-
cording to their Euclidean distance on the time series domain.
The example in Figure 2 depicts the bundles (the two bands with
a thick outline) obtained for a set of time series (shown as thin
polylines) when the number of clusters is set to k = 2.

For inner nodes, the bundles are constructed bottom-up. First,
in each leaf node, the contained time series are clustered into
k bundles. Then, the MBTS of each bundle is computed and
stored in the node. As a next step, each parent node receives
all the MBTSs of its children and computes its own k bundles
and respective set of MBTS by clustering them. The process
continues upwards, until reaching the root of the tree. Optionally,
Piecewise Aggregate Approximation [19, 30] can be applied over
the time series. As detailed in [7], this allows a trade off between
the number of bundles per node and the MBTS resolution, thus
permitting a larger number (> k) of bundles in nodes at higher
levels in the tree hierarchy.

In addition, to support the required functionality of our visual-
ization method, we further extend here the information stored in
each node with the count of geolocated time series that are fully
contained within each bundle. This is also done bottom-up, while
the index is traversed to calculate the bundles. At each leaf node,
after the clustering, we propagate the number of members of
each cluster to its parent, which, in turn calculates its clusters and
aggregates the counts it has received for each bundle’s members.
This procedure continues up to the root of the tree.

4.2 Summary Construction for Map-Based
Visualization

We now present our summarization approach for producing map-
based visualizations of geolocated time series. The process is
outlined in Algorithm 1. It takes as input the query rectangle
(q), i.e., the area of the map for which the visualization is pro-
duced, and the number of bundles k to be generated. The process
comprises three distinct steps. Initially, the BTSR-tree index is
traversed to obtain the MBRs contained in the query rectangle,
along with their bundles and the number of objects per bundle
(Line 1). Next, k-means clustering is applied using the average
time series per bundle as centroids (Line 2). Finally, the new
bundles are calculated and the proper MBRs and correspond-
ing object counts are assigned to each bundle (Line 3). Next, we
describe each step in more detail.

Step 1: BTSR-tree Traversal. During this step, the BTSR-tree
index is traversed, with the target being the fast provision of a
predefined number k of geolocated time series bundles contained
within the given areaq, along with the MBRs where these bundles
can be found and the total number of geolocated time series that
reside within each MBR. All required information is stored within
the nodes of the BTSR-tree, thus, when a node that is contained
within the query rectangle is found, the relevant information
is retrieved and added to the intermediate results, without any
need to continue searching in its sub-tree. The output of this step
is passed to the next step of the procedure.

In more detail, the traversal is performed as follows. After
initializing a queue with the root’s children (Line 7), we loop
over it (Line 8) until it’s empty. For each inner node’s child N ′,
we check whether its MBR is contained within the given query
rectangle q (Lines 11–12). If so, its MBR, time series bundles and
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the number of objects per bundle are added to the intermediate
results (Line 13) as a tuple with the following components:

⟨mbr , {(mbts1,cnt1), ..., (mbtsk ,cntk )}⟩
Each such tuple indicates the MBR of a node (mbr ), consisting
of the coordinates of the lower left and upper right point, as
well as k pairs denoting the bundles of the node along with the
corresponding number of objects per bundle. If the MBR is not
contained in the query rectangle, we check whether it overlaps
with it and if so, we add the child node to the queue (Line 15). If
not, this MBR is located outside the query rectangle, and thus
we can skip searching this child. Once no more nodes are left to
search, the intermediate results are finally returned (Line 16).

Step 2: Bundles Clustering. The traversal algorithm returns tu-
ples, each containing the bundles residing in the query rectangle,
the corresponding nodes’ MBRs and the number of objects per
bundle. During step 2, k-means clustering is executed on the
average time series of each bundle.

Line 2 of Algorithm 1 calls the clustering procedure. Initially,
for each tuple (Line 20), we loop over its bundles (Line 21) and
generate a new tuple per bundle of the following format:

⟨Tavд ,mbts,cnt ,mbr ⟩
This new tuple contains an average time series, the bundle itself
(mbts), the number cnt of objects enclosed in this bundle, and the
MBR (mbr ) this bundle belongs to (Line 23). The average time
seriesTavд is calculated by averaging the upper and lower bound
of each bundle (Line 22), i.e., average value at each time point.
The resulting collection of tuples (Line 24) is fed to the k-means
algorithm in order to return the required number k of bundles
to be created. This clustering generates a clustered collection of
tuples using the calculated average time series (Line 25). These
results are then forwarded to step 3 (Line 26).

Step 3: Bundles Calculation and MBR Assignment. During step 3,
the clustered tuples received from step 2 are used to calculate the
final bundles, corresponding MBRs and total number of objects
per MBR are assigned to each bundle. The final bundles are calcu-
lated in a similar manner to the MBTS bundles during BTSR-tree
construction. More specifically, at each time point, we obtain the
maximum and minimum value among the corresponding upper
and lower bounds for the bundles of each cluster (see Section
4.1). In case two MBRs that belong to the same final bundle are
the same, their number of objects is aggregated. The final result
is then forwarded to the visualization layer.

Line 3 of Algorithm 1 calls the corresponding procedure. For
each cluster of tuples received from step 2 (Line 29), we loop
over its members (Line 32) and we use each tuple’s bundle and
MBR to update the upper and lower bounds and the collection of
MBRs that are contained in the final bundle (Lines 33–34). Once
the bounds and the corresponding list of MBRs for the current
bundle have been calculated, we issue an aggregated tuple to the
final result (Line 35). This tuple has the following components:

⟨mbts ′, {(mbr1,cnt1), ..., (mbrn ,cntn )}⟩
wherembts ′ is a resulting bundle, along with the MBRs associated
with it. Note that the number n of MBRs (as well as their shape)
may be varying per bundle, reflecting the spatial distribution
of the respective pattern. Each MBR is accompanied with the
corresponding number of objects (i.e., raw time series) therein.
The final result with all such tuples is then returned in order to
generate the visualization (Line 36).

Algorithm 1: Summarization of Geolocated Time Series
Input: The query rectangle q; the number of bundles to be

generated k
Output: A list R containing tuples of bundles, MBRs and

object counts
1 R ← IndexTraversal (q) // Step 1

2 Rc ← BundlesClusterinд(R,k ) // Step 2

3 Rf ← BundlesCalculation(Rc ) // Step 3

4 return Rf

5 Procedure IndexTraversal (q)
6 R ← ∅
7 Q ← Root .дetChildren()

8 while Q , ∅ do
9 N ← Q .дetNext ()

10 if N is not leaf then
11 foreach N ′ ∈ N .дetChildren() do
12 if q.contains (N ′.mbr ) then
13 R ← R ∪ {⟨N ′.mbr , {N ′.mbts}, {N ′.cnt }⟩}
14 else if q.overlaps (N ′.mbr ) then
15 Q ← Q ∪ N ′.дetChildren()

16 return R

17 Procedure BundlesClusterinд(R,k )
18 Rc ← ∅
19 C ← ∅
20 foreach t ∈ R do
21 foreach b ∈ t .mbts do
22 Tavд ← avд(b .up,b .lo)

23 t ′ ← ⟨Tavд ,b,t .cnt (b),t .mbr ⟩
24 C ← C ∪ {t ′}
25 Rc ← kmeans (C .avд,k )

26 return Rc

27 Procedure BundlesCalculation(Rc )
28 Rf ← ∅
29 foreach Cl ∈ Rc .clusters do
30 B ← ∅
31 M ← ∅
32 foreach t ∈ Cl do
33 B ← updateMBTS (B,t .mbts )

34 M ← updateMBRs (M ,t .mbr ,t .cnt )

35 Rf ← Rf ∪ {⟨{B}, {M }⟩}
36 return Rf

5 EXPERIMENTAL EVALUATION
In this section, we first describe our experimental setup, followed
by indicative examples of map-based visualizations of real-world
geolocated time series, as well as scalability results using a syn-
thetic dataset containing 4 million time series. The experiments
were conducted on a Dell PowerEdge M910 with 4 Intel Xeon
E7-4830 CPUs, each containing 8 cores clocked at 2.13GHz, 256
GB RAM and a total storage space of 900 GB. Finally, we assume
that the index fits in memory.
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5.1 Experimental Setup
5.1.1 Datasets. We use two real-world datasets selected from

different application domains and with diverse characteristics. In
addition, we generated a synthetic dataset to test the scalability
of our method. Table 1 lists a summary of the characteristics of
each dataset.

Table 1: Datasets used in the experiments.

Dataset Area Number of Length w of
(km2) time series each time series

Water 114 822 168
Taxi 2,500 417,960 168
Synthetic 114 4,000,000 168

DAIAD Water Consumption (Water). Courtesy of the DAIAD
project, we acquired a geolocated time series dataset of hourly
water consumption for 822 households in Alicante, Spain from
1/1/2015 to 20/1/2017. In order to get a more representative
dataset for our tests, we calculated the average weekly time
series per household, which is the average consumption value
per hour of the week. Thus, the length of each resulting time
series is 24 × 7 = 168 values across the week.

NYC taxi dropoffs (Taxi). This dataset contains time series
extracted from yellow taxi rides in New York City during 2015.
The original data2 provide pick-up and drop-off locations, as well
as corresponding timestamps for each ride. For each month, we
generated time series by applying a uniform spatial grid over the
entire city (cell side was 200 meters) and counting all drop-offs
therein for each day of the week at the time granularity of one
hour. Thus, we obtained the number of drop-offs for 24 × 7 time
intervals in every cell, which essentially captures the weekly
fluctuation of taxi destinations there. The centroid of each cell is
used as the geolocation of the corresponding time series.

Synthetic Water Consumption (Synthetic). To examine the scala-
bility of our method, we generated a synthetic dataset comprising
4 million geolocated time series by inflating the water consump-
tion dataset. This was achieved by using the original time series
as seeds and introducing some random variations in their loca-
tion and pattern. We chose the water dataset so as to generate
a more densely populated dataset (Alicante is a medium-sized
city), in order to stress-test our visualization method.

5.1.2 Parameters. We built the BTSR-Tree index setting the
minimum and maximum number of entries per node tom = 60
and M = 200, respectively. Regarding the number of bundles,
we set k0 = 5 for its leaf nodes. The number of bundles for the
traversal algorithm is set to be equal to the number of bundles
at the leafs, i.e., k = k0 = 5. For an evaluation of the BTSR-Tree
index under different parameter settings, please refer to [7].

5.2 Map Visualizations
Our visualization method depicts the MBTS derived for the most
representative patterns of time series at the currently visible
area of the map. Once our summarization method returns the
results, the corresponding MBRs contained in the current view
and zoom level are drawn on the map, along with the number
of the geolocated time series that belong to the selected bundle.
This number is depicted using circles, colored green for small
numbers, yellow for larger and red for more densely populated
MBRs, thus easily conveying the local intensity of this pattern.
2http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml

The bundles are listed on the left of the map, using confidence
bands to indicate their upper and lower bounds. The average
time series of each bundle is also depicted. A user can scroll this
list and select the bundle of their preference. Once a bundle is
selected, the contents of the map are updated accordingly with
the respective MBRs and aggregates.

Figure 3 shows an example of such visualization using the
water dataset. The depicted area is in the center of Alicante, in
the most densely populated zone of the city. In this example,
Bundle 4 is selected (indicated with a green colored frame) and
the relevant MBRs are shown on the map (using red colored
frames). This indicates that inside each depicted MBR there ex-
ists a specific number of geolocated time series that have been
clustered to the chosen bundle. As mentioned, each geolocated
time series in this dataset represents hourly water consumption
of a household across one week. Different consumption behav-
iors have been grouped together and a daily pattern for each
bundle can be noticed which is due to the Circadian rhythmic
way that people consume water [1]. The rather large number of
geolocated time series in the bundle, considering the zoom level
and the extent of the MBRs, intuitively suggests that neighboring
families tend to have similar water consumption behavior.

Figure 4 illustrates another example, this time using the taxi
dataset in New York City. This dataset is significantly larger, and
the zoom level selected in this example is lower (a larger geo-
graphic area is visible), hence the MBRs contain a larger number
of time series. In this figure, we choose Bundle 1, which repre-
sents the rather quieter taxi dropoff zones in Manhattan, as the
total number of dropoffs there is rarely over 60 during any hour
of the week. In this example, there is also a clear daily routine in
all bundles, with the dropoffs reaching a local maximum twice
per day, suggesting the rush hours in New York City, when peo-
ple commute to and from their work. In almost all bundles, the
daily pattern is significantly different on Saturdays and Sundays,
which confirms the intuition that during weekends people do
not tend to commute in a routinely fashion. Overall, such visual
representations of information digested from massive time series
data can easily catch users’ attention to important phenomena
and ongoing trends, confirming the usefulness of our approach.

5.3 Performance Results
In order to evaluate the performance of our approach on larger
datasets, we built the index using the synthetic dataset and exam-
ined its response time for different zoom levels on the map. Since
this is intended as an interactive application, where the summa-
rization method is triggered as soon as the user moves the map,
response times must be adequately small. Ideally, the response
time should be in the order of milliseconds. In our method, this
is facilitated by the fact that the search along a path stops once
it encounters a node whose MBR is contained in the actual map
extent (rectangle). In this experiment, we measure the response
time for different zoom levels, since zooming-in requires deeper
traversal of the BTSR-tree index in order to locate the relevant
nodes. We use map scales to indicate the different zoom levels.

Figure 5 depicts traversal costs for different map scales over
the areas covered by the three datasets. More specifically, the
water and synthetic datasets cover the area of the city of Alicante,
Spain, whereas the taxi dataset the wider metropolitan area of
New York City. Response time in all cases is equal or lower than
one second, which makes this method suitable for interactive
visualization. The synthetic dataset, due to its very high density
is significantly slower than the rest, however still the results are
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Figure 3: Visualizing water consumption patterns in the city center of Alicante (map scale 1:5000).

Figure 4: Visualization of taxi dropoff patterns in Manhattan, NYC (map scale 1:10000).

obtained in less than a second. The response for the water dataset
is almost instant due to its small size and very low density.

Initially, in all cases, at the largest scale, the visible area of the
map contains all the time series in the dataset, thus it only has to
retrieve information from the root of the index. Then, as we zoom
in, more nodes have to be visited, as the MBRs of the accessed
nodes begin to overlap with the map rectangle and their children

have to be retrieved. The worst case for the synthetic dataset is at
scale 1:5000, which roughly corresponds to a large neighborhood
of the city, where many time series are located. For the taxi
dataset, the worst case is at 1:20000, which corresponds to the
wider Manhattan area and then the response time gradually drops
due to the lower dataset density. The number of nodes accessed
in each case is proportional to the response times, ranging from
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Figure 5: Execution time for different map scales.

one node (the root) in case of the smaller map scale (all city) up to
165 at scale of 1:5000 for the synthetic dataset, one up to 53 for the
taxi dataset and one up to 15 for the water dataset. Interestingly,
fewer node accesses are required in all cases at the very large
scale of 1:500, since the respective small map area overlaps with
fewer nodes and most of the search space is pruned.

Consequently, we deem that our method performs adequately
fast even against a heavily dense synthetic dataset, where a large
number of time series are contained within a small area.

6 CONCLUSIONS AND FUTURE WORK
In this paper, we introduced a method for map-based visual ex-
ploration of geolocated time series data. To that end, we proposed
a summarization approach over geolocated time series, which
allows a visual analytics application to retrieve the required infor-
mation. Such retrieval can be achieved at low latency, thus being
suitable for interactive exploration of large volumes of such data.
The results can be displayed on a map, depicting the relevant
MBRs and the number of time series contained in each one, for a
selected pattern detected in the time series data. Thanks to the
support of a robust hybrid indexing technique, the patterns de-
tected at a given zoom level are calculated via k-means clustering
over the time series that reside in the currently visible part of the
map. Our experiments on a large-scale synthetic dataset indicated
that the visualization can be rendered adequately fast for use in
interactive map-based applications. Additionally, we presented
indicative demonstrations of the visualizations generated on two
real-world datasets from different domains, confirming that these
visualizations are helpful in revealing patterns both on the time
series themselves as well as their geographic distribution.

Our ongoing and future work focuses on supporting more de-
tailed visual analytics and identifying more fine-grained patterns
through visual exploration. One possible extension would be to
enable zooms along time, so that the user can identify patterns
and their spatial distribution, not only over the entire time series,
but also over particular intervals. Further, it would be interest-
ing to drill-down in a particular summarized result and discover
whether there are differentiations in the spatial distributions of
its constituent, more detailed patterns.
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