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Figure 1. Visualization of SAR activity in the Mediterranean Sea during July-September 2015 

 

ABSTRACT 

The overall aim of this work is to explore the possibility of 

automatically detecting Search And Rescue (SAR) activity, 

even when a distress call has on yet been received. For this, 

we exploit a large volume of historical Automatic 

Identification System (AIS) data so as to detect SAR activity 

from vessel trajectories, in a scalable, data-driven supervised 

way, with no reliance on external sources of information 

(e.g. coast guard reports). Specifically, we present our 

approach which is based on a parallelised, nonparametric 

statistical method (Random Forests), which has proved 

capable of achieving prediction accuracy rates higher than 

77%.  

1 INTRODUCTION 

1For many years, North Africa has served as the jumping 

off point for refugees and migrants hoping to cross the 
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Mediterranean Sea to Europe. Since the Syrian war in 2011, 

there has been a rapid increase in the number of people 

crossing; a trend which is not expected to stop any time soon. 

According to the UN Refugee Agency, this year alone, at 

least 2,030 people have died or gone missing on the voyage, 

with the greatest number of fatalities occurring along the so-

called Central Mediterranean Route, through Libya [23]. 

Although under maritime law, any vessel in the area of a 

vessel in distress is obliged to offer assistance, numerous 

national and international missions have been launched on 

the EU borders and in the international waters of the 

Mediterranean, so as to assist in Search and Rescue (SAR) 

operations, such as Operation Mare Nostrum led by Italy, 

Operation Triton led by Frontex, NATO Operation Sea 

Guardian and the EU operation Sophia. Many of these 

operations were not designed with SAR as a primary mission 

goal. Due to this numerous Non-Governmental 

Organisations (NGO) have stepped in and have been 

performing SAR operations in the area; these include 
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Migrant Offshore Aid Station (MOAS), Doctors Without 

Borders, Sea-Watch and others. According to the UNHCR 

an overall 41% of those rescued have been by the NGOs.  

Recently though concerns have been raised about 

the possible interactions between NGOs and smugglers. A 

report published by the EU agency Frontex stated that there 

were “clear indications before departure on the precise 

direction to be followed in order to reach the NGOs’ 

boats”[4]. According to this same report, during 2015, and 

the first months of 2016, smuggling groups instructed 

migrants to make satellite phone calls to the Maritime 

Rescue Coordination Centre (MRCC) in Rome so as to 

initiate targeted rescues on the high seas. During this period, 

SAR operations were mainly undertaken by Italian law 

enforcement, EUNAVFOR Med or Frontex vessels with 

NGO vessels involved in less than 5% of the incidents. From 

June to October 2016, however, the pattern was reversed. 

“Satellite phone calls to MRCC Rome decreased sharply 

(down to 10%) and NGO rescue operations rose significantly 

to more than 40% of all incidents. Since June 2016, a 

significant number of boats were intercepted or rescued by 

NGO vessels without any prior distress call and without 

official information as to the rescue location” according to 

Frontex [4].  

Maritime Domain Awareness (MDA) is the 

effective understanding of activities, events and threats in 

the maritime environment that could impact global safety, 

security, economic activity or the environment [5]. Whilst in 

the past, MDA had suffered from a lack of data, current 

tracking technology has transformed the problem into one of 

an overabundance of data and information. Currently, huge 

amounts of structured and unstructured data, tracking vessels 

during their voyages across the seas, are becoming available, 

mostly due to the Automatic Identification System (AIS) that 

vessels of specific categories are required to carry. The AIS 

is a collaborative, self-reporting system that allows maritime 

vessels to broadcast their information to nearby vessels and 

coastal based stations [26]. AIS transceivers allow real time 

information exchange between vessels and shore based 

stations through digital radio signals transmitted over 

dedicated channels in VHF band. The major challenge faced 

today, is exploiting these vast amounts of data and transform 

it into actionable information. Discovering patterns 

emerging within these huge datasets is of great importance 

so as to provide critical insights into the patterns vessels 

follow during their voyages at sea.  

The main objective of our work is to explore the 

possibility of leveraging these huge mobility datasets so as 

to automatically detect vessels performing SAR operations. 

Towards this direction we adopt a practical data mining and 

machine learning approach which is capable of overcoming 

the shortcomings and difficulties presented by AIS data 

(highly skewed, non-uniform, reception errors etc.) [6]. In 

sum, this work presents novelties on two fronts: 

• Domain Specific: The overall aim of this work is 

to explore if it is possible to automatically detect 

SAR activity from open data (such as AIS), even 

when a distress call has not been received. This 

work has an important social impact, as it can help 

improve coordination of SAR efforts and 

understanding of implicated activities (e.g. 

response time).  

• Algorithmic: We extract patterns of “rescue-like 

behavior” from billions of records of spatio-

temporal (AIS) data and apply Random Forests, 

which is a parallelised nonparametric statistical 

method, evaluated as capable of achieving 

prediction accuracy rates of more than 77%, even 

when applied to large volumes of highly skewed 

geospatial data. To the best of the authors 

knowledge, no previous work has considered 

deriving SAR activity from AIS data.  

The rest of the paper is organized as follows: Section 2 

shortly presents previous work in this domain, while Section 

3 describes our approach and Section 4 presents the 

preliminary results while section 5 concludes this paper by 

briefly outlining the main contributions of this work and 

suggesting future improvements.  

2 RELATED WORK 

The rise in the availability of larger quantity and better 

quality mobility data, has increased the interest of 

researchers in data driven knowledge discovery. Some of the 

typical mining tasks in the spatio-temporal context include, 

frequent pattern discovery, trajectory pattern clustering, 

trajectory classification, forecasting, and outlier detection.  

Recent works on pattern discovery are based on online event 

recognition systems that recognize suspicious and illegal 

vessel activities of compressed routes (i.e., only critical 

points of routes are preserved)[17]. Although this solution 

identifies complex events, it does not classify those to 

specific vessel operations (e.g. tugging, fishing, search and 

rescue, etc.). The merits of this work have been extended in 

where vessels’ moving pattern analysis is performed through 

an ontology-based system[14]. Trajectory classification, 

includes constructing a model capable of predicting the class 

labels of moving objects based on their trajectories and other 

features [9]. Trajectory classification has been applied in 

many mobility applications and numerous methods have 

been proposed throughout the given literature, however less 

attention has been paid to the maritime domain and 

classifying a vessel’s type with regards to its trajectory. For 

example, in [9], authors propose a feature generation 

framework TraClass for trajectory data from satellite images 

and trace gas measurements, which generates a hierarchy of 

features by partitioning trajectories and explores two types 

of clustering: (1) region-based and (2) trajectory-based. In 
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this paper, hierarchical region-based and trajectory-based 

clustering after trajectory partitioning is performed, and a 

vessel classification rate as high as 84.4% is reported, but 

unfortunately information on how many vessel types are 

included in the dataset is not provided [9].  

Several studies have proved the value of using AIS 

data for data driven knowledge discovery in this domain [12, 

15, 16]. An interesting trajectory classification case that has 

caught researchers attention, is that of fishing activity 

detection; especially for applications such as illegal fishing, 

where the task can be defined as given a ship trajectory T, 

predict a label 𝑦𝑖  for each data point 𝑡𝑖  where 𝑦𝑖  ∈{Fishing, 

NonFishing}[21]. In [21], authors develop three different 

models to detect potential fishing behavior according to the 

type of fishing activity; for trawlers a Hidden Markov Model 

(HMM) is developed using vessel speed as observation 

variable; for longliners a pattern recognition approach 

named Lavielle’s algorithm has been applied; and for purse 

seiners a multi-layered filtering strategy based on vessel 

speed and operation time was implemented. Validation 

against expert-labeled datasets showed average detection 

accuracies of 83% for trawler and longliner, and 97% for 

purse seiner. Although these methods were designed for 

wide applicability, high accuracy results are only achieved 

by preprocessing AIS data, where wrong detections, noise 

and faulty out-of-bounds data (e.g. observations on land) are 

previously removed [21]. The use of AIS data poses a series 

of data management and data processing challenges linked 

to the treatment of large volumes of data which may heavily 

reduce the applicability of the approach. Many traditional 

data mining approaches assume that the underlying data 

distribution is uniform and spatially continuous. This is not 

the case for global AIS data, as it is often to have large 

geographical coverage gaps, message collisions or erroneous 

messages especially when processing large areas [18, 25]. 

In [11] Mazzarella, Vespe, Damalas and Osio focus 

on discovering and characterising fishing areas by exploiting 

historical AIS data broadcast by fishing vessels. 

Specifically, they focused on detecting the behavior of 

fishing boats that are probably actively fishing. The 

methodology used for the identification of fishing activity 

was based on assuming a fishing behaviour highly dependent 

and characterised by speed. Detecting changes and 

frequency of speed could help identifying which part of the 

vessel track can be considered as fishing and which not 

[13].Their approach relies on DB-SMoT [20] and DBSCAN 

[3] but unfortunately it is difficult to evaluate the overall 

accuracy of their results due to the limited availability of 

ground truth data.  

In [24], authors make use of trajectory kernels in 

combination with a Support Vector Machines (SVM) to 

detect fishing activity from AIS data, which was collected in 

a 50km radius around the Port of Rotterdam. For their 

classification experiments they use the four most common 

vessel types: cargo ship, tanker, tug and law-enforcement 

vessel with the best accuracy score being 76.25%. Jiang, 

Silver, Hu, De Souza, and Matwin in [8], also make use of 

AIS data and compare Autoencoders with SVMs and 

Random Forests. In their work they suggest that 

autoencoders can perform at least as well as and sometimes 

better than SVM and Random Forests on classification 

fishing activities, achieving up to 85% accuracy [8]. 

However, the nature of the autoencoders is to capture as 

much information as possible and not as much relevant 

information as possible and since this work utilised only a 

small dataset it would be difficult to have only a small part 

of the input that is relevant to the considered problem. 

Furthermore, SVMs do not work well with categorical 

features and often fail to handle larger datasets as they pose 

significant memory requirements and computational 

complexity in such cases. Other studies indicate the 

superiority of Random Forests when used for classification 

tasks, compared to SVMs and back propagation neural 

networks [10]. 

Random Forests, which are based on decision trees 

combined with aggregation and bootstrap ideas, were first 

introduced by Breiman in 2001 [2]. They are a powerful 

nonparametric statistical method allowing to consider in a 

single and versatile framework regression problems, as well 

as two-class and multi-class classification problems [19]. 

Random Forests can deal with large numbers of predictor 

variables even in the presence of complex interactions, and 

have been applied successfully in genetics, clinical 

medicine, and bioinformatics within the past few years. 

Random Forests have been shown to achieve a high 

prediction accuracy in such applications and to provide 

descriptive variable importance measures reflecting the 

impact of each variable in both main effects and interactions 

[22]. They are considered capable of good accuracy, 

relatively robust of outliers and noise, can be pararellised 

and are thus considered suitable data mining algorithm for 

big data [1, 2].  

3 PROPOSED APPROACH 

Our aim is to explore the possibility of automatically 

detecting SAR activity from open data (such as AIS), even 

when a distress call has not been received. The task can be 

formulated as given a set of vessel trajectories T, predict a 

label 𝑦𝑖  for each trajectory 𝑡𝑖 where 𝑦𝑖  ∈{SAR, Non-SAR}. 

A trajectory T is a set of AIS messages monitoring a vessel’s 

movement from a departure port to a destination port.  

3.1  Dataset description and processing requirements 

According to International Organisation for Migration, more 

than 360.000 migrants have arrived to EU by sea in 2016, 

mainly at Italy, Greece and Spain [7]. With respect to the 

spatial coverage, our analysis has been focused on a 

bounding box covering the Central Mediterranean Route, 
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where most of the refugee fatalities have been observed. 

Figure 2 below illustrates the bounding box taken into 

account in conjunction with the refugee fatalities in 2016. It 

should be noted that our approach relies only on AIS data 

and the migration fatalities dataset visualised in Figure 2 is 

used only as a reference to define the bounding box area.  

 

 

Figure 2. Spatial coverage in conjunction to migration 

fatalities for 2016 

The considered dataset includes the 6 most relevant 

to navigation AIS messages out of the 27 AIS message types 

defined in ITU 1371-4 report [26], which are used in 

approximately 90% of AIS-based scenarios. More 

specifically, the dataset includes messages of types 1, 2, 3, 

5, 18, and 19 out of which 1, 2, 3, 18 and 19 are position 

reports, including latitude, longitude, speed-over-ground 

(SOG), course-over-ground (COG), and other fields related 

to ship movement, while type 5 messages correspond to 

static-and voyage information, including the IMO identifier, 

radio call sign, name, ship dimensions, ship and cargo types. 

Each vessel's type can be deduced using the 

information contained in these messages that the vessel is 

transmitting. This piece of information, typically referred to 

as AIS SHIPTYPE, usually consists of two digits, the first 

one ranging from 1-9 indicates the general category of the 

subject vessel (e.g., Special Category, Passenger, Cargo, 

etc.), while the second one provides additional information 

regarding the vessel’s type of cargo in certain vessel 

categories (e.g., Cargo Ships, Tankers, etc.). The vessel's 

crew or the accountable officer are responsible for correctly 

entering information into the AIS transponder and although 

there are explicit types for SAR vessels, it is frequently the 

case that vessels participating in SAR operations are not 

declared as such. Furthermore, only the fact that a vessel’s 

type is SAR does not necessarily infer that each voyage of 

the vessel is linked to SAR operations (e.g., such vessel 

could travel between ports for maintenance purposes). Data 

volume included in our analysis demands large 

computational power and a parallel processing approach, 

due to the fact that traditional analytics fail to handle such 

volumes of data in a considerable time frame. Consequently, 

we have deployed our approach in Microsoft Azure which is 

a distributed computing framework capable to process large 

amount of data fast. Particularly our system included two 

Head D12v2 nodes, and six D13v2 Worker nodes summing 

up to a Spark cluster with 56 cores and 392GB memory (in 

total). The worker nodes have 8 processing cores and 56GB 

of memory each and the head nodes have 4 processing cores 

and 28GB of memory each. 

3.2 Data processing and analysis 

The dataset used for this study consists of all the voyages of 

2016 that intersect with the bounding box shown in Figure 

2. More specifically this includes 275.657 (SAR and non-

SAR, according to the reported AIS SHIPTYPE) voyages 

made by 12.291 vessels. These correspond to 54.766.629 

AIS observations. After processing the initial data we used 

an algorithmic approach we have introduced in [6], which 

determines departure and destination port for each AIS 

message, thus transforming them into specific voyages. Each 

voyage includes the vessel’s trajectory as well as its static 

and voyage information described in the previous sub-

section. Then, a data curation process was performed, to 

discard voyages with insignificant amount of positions (e.g. 

statistically too few to be representative). More specifically, 

all the voyages that included less than 50 positions were 

removed (as the geographical area selected covers a distance 

of over 1500 kilometers, trajectories with only 50 reported 

positions translate to a sample rate of less than one sample 

per hour). Such voyages suffer from gaps of communication, 

which will affect the accuracy and the effectiveness of the 

proposed. After the curation process the dataset included 

114.762 voyages, performed by 10.816 vessels, containing 

52.505.718 AIS records. However, the SAR data available 

in this geographic area for 2016 are more than 100-times less 

compared to the data of non-SAR voyages. More 

specifically, the dataset includes 114.377 non-SAR voyages 

of 10.788 vessels which include a total of 52.429.521 AIS 

messages while the SAR voyages are 385 made by 28 

vessels with 75.797 AIS records. For evaluating the 

approach, the dataset was split into training and test data; the 

training set included 70% of the SAR voyages and in order 

to avoid having imbalanced training data or having 

imbalanced evaluation metric of the classifier (e.g. true 

positive rate at some false positive threshold), we 

subsampled  the non-SAR voyages (i.e., randomly selecting 

a subset) included in the training data. Particularly the 

training data included 1.544 non-SAR voyages and 261 SAR 

voyages made by 949 and 26 distinct vessels respectively. 

The rest of the data (i.e. 30% of the SAR voyages and all the 

non-SAR voyages not included in the training set) 

constituted our test data. 

For all the records in the dataset we filter the 

following attributes which will be used in our analysis for 

distinguishing SAR patterns:  

a. Ship id: This is a unique identifier for each vessel 
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b. Ship type: This is a two-digit code that corresponds 

to the general category of the vessel and the vessel’s 

type of cargo in certain vessel categories 

c. Latitude, Longitude: These represent the geographic 

location of the vessel  

d. SOG: This is the speed over ground of the vessel 

measured in knots 

e. COG: This is the course over ground of the vessel 

measured in degrees with 0 corresponding to north 

f. Heading: This attribute represents the ship's heading 

in degrees with 0 corresponding to north 

g. Timestamp: This is the full UTC timestamp that the 

AIS message was received by MarineTraffic 

It should be noted that COG and Heading may be 

different, due to weather conditions such as wind speed and 

direction, wave height and currents (e.g. when vessels are 

drifting). COG on the one hand is the actual moving 

direction of the vessel, while heading simply indicates where 

the ship is pointing compared to north. Based on all these 

attributes and in conjunction with other datasets that assist 

on determining the boundaries of a port the following 

additional attributes were calculated: 

a. Departure port id: This is a unique identifier of the 

port from which the vessel departed  

b. Departure timestamp: Full timestamp of the first AIS 

message outside of departure port geometry 

c. Departure port name: This is the name of the 

departure port 

d. Departure port type: This attribute determines the 

type of the port (e.g., port, anchorage, etc.) 

e. Departure country code: This attribute indicates the 

country of the departure port 

Similar attributes related the arrival of each vessel 

to a port have been also calculated.  

3.3 SAR Motion analysis 

All these attributes have been used to transform raw 

positional data into vessel voyages. However, in order to 

distinguish SAR trajectories from other voyages it has been 

required to delve into more details on the motion patterns 

during SAR operations and focus on maneuverability of such 

vessels. The methodology used for the identification of SAR 

activity is based on assuming that SAR behaviour is highly 

dependent and characterised by frequency of speed changes, 

frequency of turns, departing and arriving at the same port 

or anchorage and voyage duration. Detecting changes and 

frequency of speed as well as departing and arriving at the 

same port will help distinguishing SAR trajectories from 

typical voyages (i.e., travelling from one port to another). 

However, there are also other types of ships that may follow 

similar patterns. For instance, inland vessels tend to have 

frequent changes in course over ground and heading due to 

the voyage area topography. Another example are tugboats 

that maneuver other vessels by pushing or towing them. 

Such vessels typically operate in crowded port or narrow 

canals and perform various maneuvers leading to increased 

frequency of turns. Furthermore, tugs typically have the 

same departure and arrival port as they are called to leave a 

port (i.e., depart), reach the vessel to be towed (or pushed) 

and return to the same port. One of the distinguishing factors 

between such vessels and SAR is the voyage duration. In 

many SAR operations, once vessels recover migrants from 

sea, they return to the same port from which they departed 

so as to disembark rescued people and return back to the 

SAR operation area. Furthermore, SAR vessels patrolling 

tend to have a steady course, while when they are engaged 

in rescuing operation they perform complex maneuvers to 

collect migrants. In some cases, it has been observed that 

vessels patrolling an area, may be at open sea (i.e., outside 

of port boundaries) for several days (or even weeks) 

traveling in a rather small bounding box (compared to the 

overall time of their voyage). 

Based on those characteristics, we produced some 

additional attributes that have been considered as possible 

features for the classification process. For each voyage we 

have ordered the AIS messages received chronologically and 

we calculated COG, SOG and Heading deltas for each pair 

of (chronologically) consecutive messages. Negative values 

in the COG delta feature indicate moving to the left, while 

positive values indicate moving to the right. Similarly, 

negative values in the SOG delta feature indicate speed 

decrease, while positive values indicate speed increase. 

Finally, negative values for the Heading delta imply a turn 

of ship’s heading to the left, while positive values indicate a 

turn to the right. In our analysis we use the absolute values 

of COG, SOG and Heading deltas, which capture the 

magnitude of change of the corresponding attributes. In 

addition, two extra features have been added to the dataset. 

The first one is a Boolean value indicating whether the vessel 

has the same departure and arrival port has been added to the 

dataset, while the latter one is the voyage duration. 

After constructing these last features, we were able 

to measure the quantiles for the COG, SOG and Heading 

deltas and it has been observed that SAR operation voyages 

have different behavior compared to other voyages. More 

specifically, non-SAR voyages seem to have low values 

even for large quantiles (i.e., 75%, 80%, 85% etc.) compared 

to the SAR voyages, meaning that in most observations the 

COG, SOG and Heading deltas are typically small, while for 

SAR voyages those quantiles had large values. Thus, we 

added to our dataset the 50%, 75%, 85% and 95% quantiles 

for each of those voyages.  
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4.  RESULTS AND DISCUSSION 

The focus of this work is on exploiting large volumes of 

historical AIS data so as to identify SAR operations from 

trajectories in a scalable data-driven and supervised way. 

Our approach is based on a parallelised, non-parametric 

statistical method, the Random Forests. To evaluate the 

approaches’ performance, we conducted a series of 

experiments that showcase its effectiveness to unseen real-

world data. Firstly, we applied a multiple fold cross 

validation procedure and measured the F1 score. This score 

given by the Equation (1) below is the weighted average of 

Precision and Recall taking both false positives and false 

negatives into account. Then, using the best model derived 

through the cross-validation procedure the algorithm 

classified the test data. 

F1 Score = 2 ∗
Recall ∗ Precision

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (1) 

4.1 Random Forest training and validation 

The training dataset described in subsection 3.2 has been 

used to train and validate the Random Forest model using 

the features analysed in subsections 3.2 and 3.3. The dataset 

has been repeatedly partitioned, following the well-known 

k-fold cross-validation procedure, into training and 

validation pairs. The partitioning process has been repeated 

5 times (i.e. 5-fold cross validation) each time leading to 

different training and validation pairs. In each partition we 

have split the dataset into five parts. Four of them used as 

training set and one of them as validation set with the former 

set utilised to create the model of the Random Forest and the 

latter one used for predicting the class of the observations 

and comparing it against its actual value. Each Random 

Forest model derived has 10.000 trees and the F1 metric has 

been measured, leading to an average score of 0.946 for all 

the 5 folds. The best model derived from the cross-validation 

process has been retained and used for predicting the values 

of the test set. Finally, it should be noted that, although 

classification has not been applied afore for SAR missions, 

the Random Forest algorithm shows similar performance 

compared to other classification schemes used for 

identifying other types of vessels’ motion patterns such as 

fishing [8][21][24]. 

4.2 Random Forest prediction model evaluation 

The best model obtained through the 5-fold cross validation 

process has been used for predicting the labels of the test 

dataset. To evaluate the performance of the model against 

first seen data, we measured the F1 score, the Accuracy, the 

weighted Recall and the weighted Precision presented in 

Table 1 below. Accuracy is the most intuitive performance 

measure giving the ratio of correctly predicted observation 

to the total observations. Precision is the ratio of correctly 

predicted positive observations to the total predicted positive 

observations. High Precision relates to the low false positive 

rate. Finally, Recall is the ratio of correctly predicted 

positive observations to the all observations in actual class. 
Table 1: Prediction model metrics scores 

Metric Value 

F1 score 0.986 

Accuracy 0.975 

Weighted Recall 0.975 

Weighted Precision 0.998 

 

The results, show high scores in all the metrics. 

This occurs due to the highly imbalanced test dataset. More 

specifically it shows that the model can distinguish non-SAR 

voyages and classify them as such. The ROC curve and the 

Area Under ROC curve shown in Figure 3 below indicate 

also the capabilities of the derived model to classify SAR 

and non-SAR voyages, as the area under ROC is equal to 

0.86. 

 

Figure 3: ROC curve and Area Under ROC curve of the 

Random Forest prediction model 

However, since the test dataset is imbalanced, and 

in order to further investigate how well the algorithm 

identified SAR voyages we have measured the 

misclassification rate for each vessel type. Particularly the 

prediction accuracy of each vessel type class has been 

derived and Table 2 below includes the top-5 (i.e., with most 

misclassification) vessel types (i.e. false positives) and the 

misclassification of SAR voyages (i.e. false negatives). The 
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results show that the classification model labelled accurately 

77,5% of the SAR voyages. 
 

Table 2: Top-5 misclassified vessel classes 

AIS 

Vessel 

type 

AIS 

Vessel 

type 

name 

# voyages Misclassification 

rate (%) 

51 SAR 124 22.5 (false 

negatives) 

34 Dive 

Vessels 

40 62.5 

53 Port 

Tender 

10 60 

49 High-

Speed 

Craft I 

548 57.6 

40 High-

Speed 

Craft II 

435 57.01 

30 Fishing 1021 26.75 

 

Though, the misclassification rate of the non-SAR 

voyages presented above is high, these classes represent a 

small portion of the overall test dataset, with only a few tens 

or hundred voyages. On the other hand, the classification 

algorithm achieved remarkable accuracy rate reaching up to 

99.7% in classes with more voyages in the test set. Table 3 

below includes the five vessel types with the most voyages 

in the test set and the misclassification rate for those vessel 

types. 
Table 3: Top 5 vessels with most voyages 

AIS 

Vessel 

type 

AIS Vessel 

type name 

# 

voyages 

Misclassification 

rate (%) 

70 Cargo 32.611 0.3 

60 Passenger 17.253 1.64 

71 Cargo – 

Hazard A 

10.308 0.32 

80 Tanker 9.599 1.43 

69 Passenger 9.057 0.695 

5.  CONCLUSION AND FUTURE WORK 

This work focused on the task of automatically detecting 

SAR vessels from maritime trajectory data. Specifically, we 

leveraged a large volume of historical AIS data and 

described our approach which is based on Random Forests, 

a parallelized nonparametric statistical method, with no 

reliance on external sources of information (e.g. coast guard 

reports), so as to detect vessels performing SAR operations 

in the Mediterranean Sea. The task was formulated as given 

a set of ship trajectories T, predict a label 𝑦𝑖  for each 

trajectory 𝑡𝑖  where 𝑦𝑖  ∈{SAR, Non-SAR}. Our proposed 

approach proved capable of classifying SAR trajectories at 

an accuracy higher than 77%. To the best of the authors 

knowledge, no previous work has considered deriving SAR 

activity from AIS data in a data driven approach. In the 

future, we will attempt to reformulate the problem towards a 

point based approach classification, such that given a ship 

trajectory T, predict a label 𝑦𝑖  for each data point 𝑡𝑖  where 𝑦𝑖  

∈{SAR, NotSAR}. Based on these labeled points, SAR time 

per area can possibly be calculated on any given scale. 
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