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ABSTRACT
Accurate and robust short-term traffic forecasting is a critical
issue in intelligent transportation systems and real-time traffic
related applications. Existing short-term traffic forecasting ap-
proaches are used to adopt global and static model structures and
assume the traffic correlations between adjacent road segments
within assigned time periods. Due to the inherent characteristics
of spatial heterogeneity and temporal non-stationarity of city
traffic, it is rather difficult for these approaches to obtain stable
and satisfying results. To overcome the problems of static model
structures and quantitatively unclear spatiotemporal dependency
relationships, this paper proposes a dynamic spatiotemporal k-
nearest neighbor model, named D-ST-KNN, for short-term traffic
forecasting. It comprehensively considers the spatial heterogene-
ity and temporal non-stationarity of city traffic with dynamic
spatial neighbors, time windows, spatiotemporal weights and
other parameters. First, the sizes of spatial neighbors and the
lengths of time windows for traffic influence are automatically
determined by cross-correlation and autocorrelation functions,
respectively. Second, dynamic spatiotemporal weights are intro-
duced into the distance functions to optimize the search mecha-
nism. Then, dynamic spatiotemporal parameters are established
to adapt the continuous change in traffic conditions, including
the dynamic number of candidate neighbors and dynamic weight
allocation parameters. Finally, the D-ST-KNN model is evaluated
using two vehicular speed datasets collected on expressways in
California, U.S. and city roads in Beijing, China. Four traditional
prediction models are compared with the D-ST-KNN model in
terms of the forecasting accuracy and the generalization ability.
The results demonstrate that the D-ST-KNN model outperforms
existing models in all time periods, especially in the morning
period and evening peak period. In addition, the generalization
ability of the D-ST-KNN model is also proved.

1 INTRODUCTION
Short-term traffic forecasting, which has an important role in
intelligent transportation systems, enables traffic managers to
formulate reasonable and efficient strategies for alleviating traffic
congestion and optimizing traffic assignments. Short-term traffic
forecasting also enables the public to achieve accurate vehicular
path planning [29][10].

In the past few decades, researchers have proposed several
short-term traffic forecasting models that can be divided into two
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categories: parametric models and nonparametric models. A para-
metric model uses an explicit parametric function to quantify the
relationship between historical traffic data and predicted traffic
data. Considering the stochastic and nonlinear characteristics of
traffic, constructing a mathematical model with high accuracy
for characterizing traffic characteristics in practice is difficult
[1]. Nonparametric models, such as data-driven methods, do not
require a priori knowledge and explicit expression of mechanism;
thus, they are more suitable for short-term traffic forecasting
problems [22] [23] [7] [31].

As a typical nonparametric method, the k-nearest neighbors
(KNN) model has received considerable attention. Many scholars
have successfully applied the traditional KNN model to short-
term traffic prediction [2][17][19][4][16][30][28]. Considering
that the evolution of traffic is a spatiotemporal interaction pro-
cess, traffic conditions of road segments are spatially and mutu-
ally affected [6]. Therefore, spatiotemporal relationships between
multiple road segments in road networks are considered to im-
prove traffic prediction [25][21][20]. Based on the traditional
KNN model, [26] realized an enhanced model with the support
of spatiotemporal information and argued that it achieves better
performance than the model that employs only temporal informa-
tion. [27] considered upstream and downstream traffic informa-
tion and proposed a distributed architecture of a spatiotemporal-
weighted KNN model for short-term traffic prediction. [3] em-
ployed a spatiotemporal state matrix instead of the traditional
time series to describe the traffic state while using a Gaussian
weight distance to select the nearest neighbor to improve the
KNN model. However, the disadvantages of these ST-KNNs are
that the spatiotemporal relation cannot be accurately quantified,
which is primarily reflected in the modeling process, the size of
the spatial dimension m and the length of time window n of the
state space cannot be automatically determined, and some values
are artificially set. For example, for m=3, three adjacent road
segments are selected; for n=2, the historical data of the first two
time steps of the current time step are used to construct samples.
When the time series problem is transformed into a supervised
machine learning problem, the values of m and n determine the
number of selected features. Therefore, manually engineered fea-
tures can easily cause dimensional disaster prevent the guarantee
of the prediction accuracy of the model [15].

The prediction model is usually static, thus, it cannot describe
the characteristics of the dynamic change in traffic, which are
primarily reflected in the following three aspects: 1) existing stud-
ies usually assume that the spatial neighbors and time windows
are globally fixed, which indicates that once the number of road
segments m associated with the predicted road segment and the
length of the time window n are determined, they do not change
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in the spatiotemporal range. Considering the dynamic character-
istics of an urban road network, traffic flow in the road network
is not a static point but is a moving process from one location
to another location. The spatial neighbors of the road segment
primarily rely on the current traffic conditions. The number of
spatial neighbors is very small if traffic congestion exists but is
large during flat peak periods [5]. From the perspective of ur-
ban road network heterogeneity, the number of relevant road
segments for different road segments also differs; thus, sharing
parameter m is difficult in the entire spatial range [29]. The selec-
tion of a time window based on a time series is used to determine
the length of the historical traffic data to match similar traffic
patterns. The traffic data in the historical time step and the cur-
rent time step must be relevant in the selection process [18]. Due
to the dynamic and heterogeneous nature of the road network,
even the same road segment, a significant difference is observed
in the time series of traffic data in different time periods (such as
morning and evening peak periods). That causes the selection of
the time window to be dynamic [8]. Thus, the spatial neighbors
and time windows that dynamically change over time and space
are not easily described with globally fixed spatiotemporal state
matrices; thus, there is a need for a dynamic spatiotemporal KNN
model to adapt to the characteristics of traffic changes. 2) Existing
research considers that different historical data for different time
periods have different contributions to the prediction of future
traffic conditions. When calculating the distance between two
state spaces, the weight distance criterion is usually adopted to
assign different weights to each component in the state space.
The closer the time window is to the predicted time, the larger the
allocated weight; the closer the spatial distance is to the predicted
road segment, the greater the assigned weight [3]. However, dy-
namic changes in the spatial neighbor and the time window not
only affect the dimension of the space-time matrix but also cause
the intensity of the correlation among different positions to dy-
namically change over time. Therefore, the influence of different
components of traffic data is difficult to characterize with global
fixed spatiotemporal weight matrix. 3) To determine the value of
the number of similar state spaces K, researchers usually employ
a cross-validation method to select a suitable value, then share in
the entire range of space and time[26] [28]. Due to the difference
in traffic patterns in the different time periods and space loca-
tions, the global fixed value of K cannot adapt to the dynamic
and heterogeneous nature of a road network.

The key to short-term traffic forecasting models is the effective
use of the potential spatiotemporal dependencies in the traffic
data. The existing KNN models usually assume that the traffic
change is a static point process and often disregard its important
dynamics and heterogeneous characteristics. As a result, the
structure of the prediction model is usually globally fixed in time
and space, including the globally fixed spatial neighbor, time
window, spatiotemporal weights, and spatiotemporal parameters,
such as the traditional KNN model and the spatiotemporal KNN
model.

In this paper, we propose a dynamic spatiotemporal KNN
model (D-ST-KNN) for short-term traffic prediction considering
spatial heterogeneity and temporal non-stationarity of city traf-
fic. First, we investigated the autocorrelation of road traffic to
determine the time window required for the traffic data. Second,
we used the cross-correlation among different road segments to
analyze the spatiotemporal dependencies of traffic and build a
dynamic spatial neighbor for each road segment. The dynamic
spatiotemporal state matrix is obtained by the dynamic spatial

neighbor and the dynamic time window instead of the traditional
time series or the static spatiotemporal matrix to characterize
the state space. Finally, we introduced the dynamic spatiotempo-
ral weight, dynamic spatiotemporal parameters, and Gaussian
weight function to improve the KNN model to adapt to the dy-
namic and heterogeneous characteristics of the traffic.

The remainder of this paper is organized as follows: Section 2
proposes a D-ST-KNN model that considers the spatial hetero-
geneity and temporal non-stationarity of city road traffic. The
construction of the dynamic spatiotemporal state matrix, weights,
and other parameters are also introduced in this section. In Sec-
tion 3, the dynamic characteristics, prediction performance, and
computational efficiency of the presented model are compre-
hensively validated. The experimental results are also discussed.
Section 4 concludes the paper and provides an outlook of future
work.

2 METHODOLOGY
In this section, we propose a D-ST-KNN model. Our method is
divided into five phases: the data bucket partition, state space
definition, distance function definition, optimal neighbor selec-
tion, and prediction function definition, which corresponds to
Sections 2.1-2.5. First, considering the dynamic nature of traffic,
the original spatiotemporal data sets are partitioned according
to different time periods to form different data buckets. Second,
considering the spatial heterogeneity, each segment of a data
bucket is separately processed, and the appropriate spatial neigh-
bors and time windows are selected. The spatiotemporal state
matrix is constructed to describe the traffic conditions. Then, we
introduce the spatiotemporal weight matrix to define the dis-
tance function and measure the distance between the current
spatiotemporal state matrix and the historical spatiotemporal
state matrix to select the K nearest neighbors. Finally, we inte-
grate these neighbors to obtain the predicted value of the target
road segment.

2.1 Data bucket
Considering the non-stationarity and periodicity of traffic data,
there are significant differences in the traffic characteristics among
different time periods, such as the morning peak period, inter-
peak period, and evening peak period. In the same period, the
traffic data of same road segment has statistical homogeneity
and the traffic pattern tends to be stable with periodic changes,
such as different days for the morning peak period, which results
in the spatial neighbor, the time window, and spatiotemporal
parameters that can be shared. Therefore, we divide the origi-
nal traffic data {volLjt , j ∈ [1,N ], t ∈ [t0, tc ]} into different time
periods to describe the homogeneity in same time period and
dynamics in different time periods, where t0 and tc represent the
start time step and the current time step of the time series, and
Lj denotes the jth road segment.

In the study of urban traffic modeling and prediction, to distin-
guish the difference among the traffic characteristics in different
time periods, [24] divided a day into six time periods (period 1:
midnight-6:30 am; period 2: 6:30-10:00; period 3: 10:00-13:30; pe-
riod 4:13:30-17:00; period 5:17:00-20:30; period 6:20:30-midnight).
The test reveals that the partition is statistically acceptable. Based
on this analysis and according to the same strategy, the original
traffic data are divided into M different time periods (M= 6) ac-
cording to the time dimension, which corresponds to different
data buckets. Assuming that the entire traffic data set is BK, the
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data bucket division must be satisfied:




BK = bk1 ∪ bk2 ∪ ... ∪ bkM
bki = {volLjt |1 ≤ j ≤ N ,∀t ∈ [tbkia , t

bki
b )}

bki ∩ bko = ϕ
(1)

where i ∈ [1,M],o ∈ [1,M], i , o, bki is the ith bucket (i.e.,
bucket 1), and vol

Lj
t is the traffic data of road segment Lj at

time step t . t ∈ [tbkia , t
bki
b ) indicates that time step t is within

the corresponding time period of the ith bucket (i.e.,[0:00-6:30),
[6:30-10:00)). Lj denotes the jth road segment (i.e., Link 1), and
N is the total number of road segments. Note that dividing the
original traffic data into different buckets at the pre-processing
stage does not have any impact on the analyses and conclusions
in this study because the same partitioning strategy were used
for all the algorithms that are evaluated.

2.2 Dynamic spatiotemporal state matrix
2.2.1 Dynamic spatial neighborhoods. The dynamic spatial neigh-
borhood is used to determine how the traffic conditions of the
predicted road segment are affected by the surrounding road seg-
ments in different buckets to determine the correlation among
road segments. The traditional method usually calculates the cor-
relation coefficients between the time series of the predicted road
segments and the time series of other road segments and sets the
threshold to select the relevant road segments [3]. Considering
that a road network has multiple internal and external factors,
such as the influence of traffic lights, the impact of surround-
ing road segments on predicted road segments has a certain
degree of lag. Therefore, the delayed spatiotemporal relation-
ships cannot be exactly expressed by correlation coefficients. The
cross-correlation function is a delayed version of the correlation
coefficient function, which measures the correlation coefficients
of two time series at a specific lag [14]; therefore, it is more
suitable for describing the spatiotemporal dependence of traffic.

Assume that bki is the bucket of the predicted road segment
Lj at time step t, and t ∈ [tbkia , t

bki
b ). Given the surrounding

road segments Lv , the time series of the traffic data for two road
segments can be expressed as U = {volLjt |∀t ∈ [tbkia , t

bki
b )},

Z = {volLvt |∀t ∈ [tbkia , t
bki
b )}, j ∈ [1,N ],v ∈ [1,N ], and their

cross-correlation at lag φ is defined as follows:




cc f bkiu,z (φ) =
γ bkiu,z (φ)
αuσz ,φ = 0,±1,±2, · · · ,

γbkiu,z (φ) = E
[(ut − µu ) (zt+φ − uz ) ]

αu =
√∑ (ut − µu )2

σz =
√∑ (

zt+φ − uz
)2

(2)

where γbkiu,z (φ) is the correlation coefficient between time series
U and time series Z at lag φ in bucket bki , µu anduz are the mean
values of U and Z, respectively, and σu and σz are the standard
deviations of U and Z, respectively.

In this definition, the cross-correlation function can be re-
garded as a function of lag, and the lag value that makes the
cross-correlation function obtain the maximum value is the av-
erage delay time of the surrounding segments to the predicted
road segment [29]. The formal definition is expressed as

ψ Lv
bki
=

�����arдmax
φ

(
cc f bkiu,z (φ)

)����� ,v ∈ [1,N ] (3)

whereψ Lv
bki

is the lag value that maximizes cross-correlation of
the surrounding road segment Lv to the predicted road segment
in bki , and ψ Lv

bki
describes the maximum impact time range of

the surrounding segments in different buckets on the predicted
road segment, which can be employed for efficient selection of
spatial neighbors. Consider the predicted road segment Lj in bki
and its predicted time interval ∆t . When the surrounding road
segments deliver the traffic flow to the predicted road segments
within a given time interval, they influence the predicted road
segments, and the road segments beyond this time interval are
excluded. Its formal definition is expressed as

R
Lj
bki
←

{
Lv |∀0 ≤ ψ Lv

bki
≤ ∆t ,v ∈ [1,N ]

}
(4)

where RLjbki is the set of spatial neighbors of the jth road segment
in the ith bucket.

2.2.2 Dynamic time windows. Considering that the selection
of the time window is based on the time series of the predicted
road segment, we can select n historical traffic data that have a
correlation with the predicted road segment. The autocorrelation
function is usually employed to measure the correlation between
the time series and its delayed version; thus, it can be used for the
selection of the time window, i.e., the lag in which the prediction
error is minimized can be set as the window size. Note that the
lag in the autocorrelation function describes the delay effect of
the time series, and the lag described in Section 2.2.1 is used to
characterize the delay effect between different time series. Given
the time series of the jth road segment Lj in bki ,U = {volLjt |∀t ∈
[tbkia , t

bkj
b )}, the autocorrelation function ρLjbki (δ ) can be defined

as follows:

ρ
Lj
bki
(δ ) = E [(ut − µu ) (ut−δ − µu )]

σ 2
u

,δ = 0, 1, 2, · · · , (5)

Using the autocorrelation function to set the time window
entails three steps. First, consider the computational limitations,
it is necessary to determine the maximum range of lag. Second,
within the range, the parameters of the predictive model are
fixed, and cross-validation is performed with different lags. This
strategy is based on the fact that the value of the traffic data has a
significant correlation within the maximum lag range. Finally, the
lag that minimizes the prediction error is chosen as the optimal
time window.

2.3 Dynamic spatiotemporal weights
Considering the traffic conditions have significant differences
at different time intervals, which results in a change in the spa-
tiotemporal weights with time; the historical data of different
time and space will influence the future traffic conditions by a
different degree. The dimension of the spatiotemporal weight
is related to the spatiotemporal state matrix, and the dynamic
change in the spatiotemporal matrix causes the dimension of
the spatiotemporal weight matrix to change with different time
periods. Based on the traditional weight distance function, we
introduce a dynamic spatiotemporal weight in the distance func-
tion and optimize the weight distance function to adapt the near-
est neighbor similarity measure of the dynamic spatiotemporal
matrix.

In the temporal dimension, we use the time interval length (i.e.,
5 min interval) to characterize the contribution of different time
steps. In the spatial dimension, the spatial correlation (such as
cross-correlation) is used to characterize the influence of different
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spatial distances. The construction method is described as follows:
assume that the predicted road segment Lj at the current time
step tc is in data bucketbki and the dimension of the spatiotempo-
ral state matrix ismLj

bki
×nLjbki , which is determined by the method

provided in Section 2.2. Then, the spatiotemporal state matrix of
the current time step can be expressed as χLjtc

(
m
Lj
bki
,n

Lj
bki

)
.The

spatiotemporal matrix of the historical time step hi can be de-
fined as χLjhi

(
m
Lj
bki
,n

Lj
bki

)
, wheremLj

bki
is the spatial dimension of

the spatiotemporal state matrix of the jth predicted road segment
in the ith bucket, which is related to the number of elements
in the set of spatial neighbors RLjbki . Moreover, nLjbki is the tem-
poral dimension of the spatiotemporal state matrix of the jth
predicted road segment in the ith bucket, which is the size of
the time window. The time-weighted matrix is defined asW bki

t ,
and the space-weighted matrix is defined as W bki

s . The corre-
sponding elements are wbki

t (ti, t j), ti ∈ [1,n
Lj
bki
], t j ∈ [1,nLjbki ]

and wbki
s (si, sj), si ∈ [1,m

Lj
bki
], sj ∈ [1,mLj

bki
], which represent

the time weight value and space weight value, respectively, as-
signed to the jth predicted road segment in the ith bucket. The
weight distribution is as follows:

wbki
t (ti, t j) =




ti

/∑n
Lj
bki

t i=1 ti, ti = t j

0, ti , t j

(6)

wbki
s (si, sj)=




cc f siLv ,Lj

/∑m
Lj
bki

si=1 cc f siLv ,Lj
, si = sj

0, si , sj
(7)

In this definition, the temporal and spatial weights are linearly
distributed according to the proximity of the current time step
and the predicted road segments. cc f siLv ,Lj is the cross-correlation
between the time series of the si spatial neighbor (whose road
segment is Lv ) and the predicted road segment Lj . The closer
the value is to the predicted time, the greater the weight of
the allocation; the greater the relation to the space of the pre-
dicted road segment, the greater the weight. By introducing spa-
tiotemporal weights into the original spatiotemporal matrix, the
spatiotemporal-weighted state matrices of the current time step
Γ
Lj
tc and the spatiotemporal-weighted state matrices of the his-

torical time step Γ
Lj
hi

are denoted by the following:

Γ
Lj
tc =W

bki
s × χLjtc

(
m
Lj
bki
,n

Lj
bki

)
×W bki

t (8)

Γ
Lj
hi
=W bki

s × χLjhi
(
m
Lj
bki
,n

Lj
bki

)
×W bki

t (9)

By calculating the distance dbki (Γ
Lj
tc , Γ

Lj
hi
) between the histor-

ical spatiotemporal state matrix and the current spatiotemporal
state matrix, candidate neighbors can be selected. The formula is
expressed as

dbki

(
Γ
Lj
tc , Γ

Lj
hi

)
=

√
trac

((
Γ
Lj
tc − Γ

Lj
hi

)
×

(
Γ
Lj
tc − Γ

Lj
hi

) ′)
(10)

where trac represents the trace of the matrix.

2.4 Dynamic spatiotemporal parameters
In the KNN model, the spatiotemporal parameters include the
K values and the parameters introduced during the method con-
struction (such as the prediction generation functions). The rea-
sonableness of the parameters has substantial influence on the

prediction accuracy of the model. The K value is primarily em-
ployed to determine the number of candidate neighbors. If the K
value is too small, the model becomes more complex and overfit-
ting is possible. If the K value is too large, the model is simpler
and under-fitting is possible. Considering that the selection of the
K value is significantly influenced by the finite sample nature of
the problem, the assignment of its values is usually performed by
cross-validation to select the K value that minimizes the model
error [27].

The existing methods usually assume that the K value is glob-
ally fixed. When the K value is determined, it is shared through-
out the entire space and time. In contrast to the existing method,
the selection of the K value in the D-ST-KNN model considers the
characteristics of dynamic changes of traffic. Instead of setting
a global fixed K value, we can select the optimal K value for
different buckets, i.e., Kbki ,bki ∈ BK , i] ∈ [1,M].

To verify these assumptions, we use cross-validation to set the
range of K to [1, 40] and test the effect of different K values on
MAPE of the model in different buckets, as shown in Fig. 1.
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Figure 1: Impact of the number of candidate neighbors
Kbki on the MAPEs of different data buckets.

As the K value increases, the prediction error is gradually
reduced. When the K value attains a certain value, the error
of the model begins to stabilize. Thus, the optimal K value for
each bucket can be determined (i.e., Kbk1 = 27,Kbk2 = 23).
Compared with different buckets, the K values dynamically vary
with different time periods. The global fixedK value has difficulty
describing the dynamic change in traffic. Therefore, the dynamic
K value proposed in this paper is reasonable. The parameters
of the D-ST-KNN model also contain the parameters introduced
by the predicted generation function (refer to Section 2.5). The
calibration method of the parameter is shown in Section 3.2.

2.5 Predictive function
Due to the spatiotemporal state space, the spatiotemporal weight,
and the spatiotemporal parameters dynamically change with dif-
ferent buckets; to adapt to this change, the predictive generation
function should also dynamically change. This paper transforms
the four types of traditional weight distribution methods to en-
able them to adapt to the dynamics of traffic, including the inverse
distance weight [23], rank-based weight[11][13], and Gaussian
weight [3]. Selecting the best prediction function by comparing
the performance of different predictive functions (refer to Section
3.2). Note that the weight referred to in this section is expressed
as the weight assigned by the candidate neighbor, whereas the
weight in Section 2.3 represents the weight matrix of the weights
assigned to each element in the spatiotemporal state matrix.
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Assuming that dkbki is the distance between the kth candi-
date neighbor and the predicted road segment in the ith bucket

obtained by formula (10), �volLjtc+1 the predicted value of the pre-
dicted road segment Lj at time step tc + 1 is defined as

�
vol

Lj
tc+1 =

∑Kbki
k=1 vol

Lj
hi+1 (k) × φ

Lj
bki
(k)

∑Kbki
k=1 φ

Lj
bki
(k)

(11)

where tc ∈ [tbkia , t
bki
b ] is used to map the current time step into

the corresponding bucket, is used to determine the number of
candidate neighbors for the corresponding bucket, volLjhi+1 (k)
represents the traffic data of the kth candidate neighbor, and
hi ∈ [tbkia , t

bki
b ]; and φLjbki (k) and represent the weight of the kth

neighbor of the jth predicted road segment in the ith bucket. The
form is defined as follows:

φ
Lj
bki
(k) =




1
Kbki1
dkbki

(Kbki − rq + 1)2

1
4πabki

exp(−
���dkbki

���2
4abki 2 )

(12)

Formula (12) corresponds to equal weights, inverse distance
weights, the rank-based weight and the Gaussian weight, where
rq represents the order of the qth candidate neighbors, and abki
is the spatiotemporal parameter whose value is similar to the
value of the previously discussed spatiotemporal parameter K,
which dynamically values with different time periods. The corre-
sponding parameter calibration is shown in Section 3.2.

2.6 Accuracy metrics
Three criteria are selected to verify the prediction accuracy of
the D-ST-KNN model, namely, mean absolute error (MAE), mean
absolute percentage error (MAPE) and root-mean-square error
(RMSE). These indicators depict the essential characteristics of
errors from different perspectives. The RMSE indicates a fluctua-
tion in the error of the prediction model, and the MAPE indicates
the difference between the predicted and the actual traffic data. In
contrast, the MAE and RMSE provide a measure of the similarity
between the predicted and the actual traffic data [12]. The MAE,
MAPE, and RMSE are defined as follows:

MAE =
1

M × N × S
M∑
i=1

N∑
j=1

S∑
s=1

����volLjtc+1 (s) −
�

vol
Lj
tc+1 (s)

���� (13)

MAPE =

√√√√√√√√√ 1
M × N × S

M∑
i=1

N∑
j=1

S∑
s=1

(
vol

Lj
tc+1 (s) −

�
vol

Lj
tc+1 (s)

)
�

vol
Lj
tc+1 (s)

(14)

RMSE =

√√√
1

M × N × S
M∑
i=1

N∑
j=1

S∑
s=1

(
vol

Lj
tc+1 (s) −

�
vol

Lj
tc+1 (s)

)2
(15)

where M is the number of buckets M = 6, N is the number
of predicted road segments, S is the number of test samples,

vol
Lj
tc+1 (s) and �

vol
Lj
tc+1 (s) indicate the actual traffic data and the

predicted traffic data at the next time step of the jth predicted
road segment at the current time step, and s indicates the sth test
sample in the ith bucket.

3 EXPERIMENTS
3.1 Data preparation
In this study, two different data sets are used to evaluate the
performance of the prediction model. The first data set is PeMS,
which is a high-quality data set with open access. PeMS is exten-
sively applied in the field of traffic prediction. The traffic speed
data from 59 consecutive locations on the US 101 freeway from
PeMS were downloaded for a total of 60 days; the time period
is August 15, 2016, to October 14, 2016 and time interval is 5
min (as shown in Table 1). Each detector represents a position;
the positional distribution is shown in Fig. 2. The second data
set is the floating car trajectory data obtained from the Beijing
road network, which is generated from more than 50,000 vehicles
equipped with GPS. The frequency of data acquisition is 5 min,
and the time period is March 1, 2012, to April 30, 2012 (as shown
in Table 1). In this study, a representative region that contains
30 road segments is used for the experiment with the position
distribution shown in Fig. 2. In the two data sets, the last ten
days are used as the test data to evaluate the accuracy of the
model. The remaining days of data are employed as training data
to construct the historical database of the predicting model.

In addition, we normalize the original traffic data and use the
ratio of the average traffic speed to the maximum speed limit of
each road segment to express the traffic conditions of the road
segment. The formal expression is as follows:

v̂i,t =
vi,t
fi,max

, i ∈ [1,N ], t ∈ [t0, tc ] (16)

where v̂l,t is the normalized speed of the ith road segment at
time step t,vi,t is the real average speed data of the road segment,
and fi,max is the speed limit for the ith road segment.

Table 1: Description of the experimental data sets

Data set PeMS Beijing
Time span 8/15/2016-10/14/2016 3/1/2012-4/30/2012

Time interval 5 min 5 min
Number of links 59 30

Figure 2: Spatial distribution of traffic data in the Beijing
and PeMS data set.

3.2 Variable estimation
3.2.1 Determining the optimal distance function. The distance func-
tion is used to measure the similarity among the spatiotemporal
state matrices to obtain the historical spatiotemporal matrix,
which is similar to the spatiotemporal state matrix of the target
road segment. Fig. 3 shows the performance differences of the dis-
tance function constructed with different weights. The traditional
method directly calculates the Euclidean distance between two
spatiotemporal state matrices, which treats the elements in the
space state matrix equally. The influence of the historical traffic
conditions of different time and space distribution on the pre-
diction of future traffic conditions is difficult to describe, which
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yields the lowest performance. The distance function constructed
by the Gaussian function assigns weights in the time dimension
and space dimension; thus, the performance of the prediction
model is significantly improved. However, this method requires
additional introduction of the time-weighted parameter α1 and
the space-weighted parameter α2 in the construction process,
which makes calibration of its parameters and the global optimal
combination of parameters difficult. We adopt a similar strategy
that uses the linear time distribution weight in the time dimen-
sion and the spatial correlation between the surrounding road
segments and the target road segment to assign weights in spatial
dimensions. Then, a dynamic spatiotemporal weight assignment
method is constructed that does not require any additional pa-
rameters. The dynamic weight distribution has the lowest MAPE,
RMSE and MAE, which reflects the high efficiency of the method
compared to that of the other two weight distribution methods.
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Figure 3: Comparison of different distance functions

3.2.2 Determining the optimal predictive function. Based on the
discussion in the previous sections, we transform four types of
weight distribution methods, including equal weight, inverse
distance weight, rank-based weight, and Gaussian weight, which
are used to integrate the candidate neighbors to obtain the final
predicted value. In the process of cross-validation, we fix the other
parameters of the model, such as Kbki and abki , and calculate
the influence of different weight distribution methods on the
prediction accuracy of the D-ST-KNN model to obtain the average
error of the entire test data set for different weight distribution
methods. The results are shown in Fig. 4. The MAPE, RMSE and
MAE of the Gaussian weight method are lower than the MAPE,
RMSE and MAE of the other three weight distribution methods.
In the D-ST-KNN model, we employ the Gaussian function as
the weight distribution method for candidate neighbors.
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Figure 4: Comparison of different weight allocation meth-
ods.

3.2.3 Calibrating hyper-parameters In the D-ST-KNN model,
the hyper-parameters primarily include the number of candidate
neighbors Kbki and the Gaussian weight parameter abki . In the
parameter calibration process, to find the best combination of
Kbki and abki that enables the prediction model to obtain the
minimum MAPE, we set the range ofKbki to [1, 40] and the range
of abki to [0.001, 0.04]. We apply the cross-validation method to
obtain the optimal combination of the parameters for each bucket.
The effect of parameter variation on the prediction accuracy of
the D-ST-KNN model can be tested by fixing other parameters of
the model. For example, we can fix the values of abki and test the

performance of the prediction model changes with Kbki (refer
to Section 2.4). Because the impact of parameter Kbki on the
prediction performance was discussed in Section 2.4, this section
focuses on the calibration of parameter abki .

Fig. 5 shows the impact of changes in abki on the performance
of the D-ST-KNN model in different buckets. The trend in Fig. 5
reveals that the value of abki has a significant influence on the
prediction performance. For the minimum abki , the prediction
error of the model attains the maximum abki . As abki increases,
the prediction error gradually decreases and begins to stabilize.
We compare the variation of the parameters among the different
buckets. For example, in bucket 1, the optimal value of abk1 is
0.017, whereas the optimal value of abk2 in bucket 2 is 0.015. The
value of abki also changes dynamically over time. Considering
that Kbki also changes dynamically with time, the parameters of
the D-ST-KNN model change with time. The calibration results of
the entire model are listed in Table 2, and the values of Kbki are
shown in Fig. 5. In this analysis, setting the global fixed param-
eters is unreasonable when constructing the prediction model.
We propose the concept of the data bucket, and the prediction
model is constructed in different time periods, which causes the
model parameters to change with the time period to adapt to the
dynamic nature of traffic.

Table 2: Calibration results of the model parameters

Bucket Parameters
Kbki abki

Bucket 1 27 0.017
Bucket 2 23 0.015
Bucket 3 28 0.011
Bucket 4 18 0.017
Bucket 5 17 0.014
Bucket 6 25 0.019
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Figure 5: Impact of the weight parameter abki on MAPEs
for different data buckets.

3.3 Accuracy evaluation
3.3.1 Overall results. Based on the variable estimation, we compare
our model with several existing traffic prediction models, includ-
ing the historical average model (HA), Elman neural network
(Elman-NN) [9], traditional KNN model (Original-KNN), and spa-
tiotemporal KNN model (ST-KNN). Fig. 6 shows the prediction
performance of different models. The HA model, the Elman-NN
model, and the Original-KNN model regard the problem of the
traffic prediction as a simple time series problem and disregard
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the influence of the spatial factors on the predicted road segment.
Therefore, their prediction performance is lower than the predic-
tion performance of the ST-KNN model and the D-ST-KNN model
proposed in this paper by comparing the values of MAPE. The ST-
KNN model introduces the spatiotemporal state matrix, which
improves the prediction performance of the model. However,
this matrix ignores the spatial heterogeneity and the temporal
non-stationarity of the road network and cannot describe the
essential characteristics of the traffic dynamics using a static
ST- KNN model (including global fixed spatiotemporal matrix
and global fixed parameters). The D-ST-KNN model constructs
models for different time periods by introducing the concept
of data buckets. Simultaneously, the dynamic space neighbor,
dynamic time window, dynamic spatiotemporal weight, and dy-
namic spatiotemporal parameters are introduced to construct the
D-ST-KNN model, which can adequately adapt to the dynamic
changes of traffic conditions. The experimental results indicate
that the D-ST-KNN model proposed in this paper is superior to
other models.
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Figure 6: Accuracy comparison of different models in the
Beijing data set.

3.3.2 Local results. To further evaluate the performance of the
D-ST-KNN model, we compare the MAPEs of different models in
different data buckets by averaging the prediction performance
of different road segments in a single bucket. The experimen-
tal results are displayed in Fig. 7. In terms of overall trends, the
performance of different models corresponds to the degree of con-
gestion of the traffic conditions. For example, in bucket 1, bucket
3, and bucket 6, all models have a lower MAPE than other buck-
ets because the time periods that correspond to the three data
buckets are midnight-6:30 am, 10:00-13:30, and 20:30-midnight.
The traffic in Beijing during these three time periods belongs
to the flat peak period, and road traffic has low congestion and
exhibits regular changes. In buckets 2, 4, and 5, all models achieve
a relatively poor performance. Bucket 2 corresponds to the time
period of 6:30-10:00, bucket 4 corresponds to the time period
of 13:30-17:00 and bucket 5 corresponds to the time period of
17:00-20:30. These time periods correspond to the peak period in
Beijing. The changes of traffic conditions during these time peri-
ods are more complicated than the traffic conditions of the other
buckets. In addition, in terms of the performance of different
models in a single data bucket, the prediction trend of different
models was similar to those of the overall results. For example,
in bucket 1, the ST-KNN and D-ST-KNN models perform better
than the HA, Elman-NN, and Original-KNN models, which is due
to the benefits of the introduction of spatial factors. However,
the D-ST-KNN model considers the spatial heterogeneity and
temporal non-stationarity of road networks to adapt to the dy-
namic characteristics of traffic, making the model performance
better than other models in all time periods, especially in the peak
period. This also explains why the D-ST-KNN model is superior
to the other models in the overall result.
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Figure 7: Accuracy comparison of the D-ST-KNN model on
MAPEs for different data buckets.

3.4 Generalization ability evaluation
To evaluate the generalization ability of the D-ST-KNN model,
we fix all parameters of the model and compare the performance
of the different methods with the test data set from PeMS; the
experimental results are shown in Fig. 8. The results indicate
that the prediction accuracy of the D-ST-KNN model on the
PeMS data set is significantly improved compared with that of
the Beijing floating car data set. The data quality of the PeMS
data set is relatively complete, and the data collection area is
the expressway. Compared with the traffic conditions of the
urban road network, the traffic mode is relatively simple with
minimal changes, which enables the prediction model to easily
represent the regular traffic pattern characteristics. However, the
D-ST-KNN model maintains the same prediction trend; in all
predicted models, its MAPE, RMSE, and MAE are lower than the
other models, which exhibit excellent predictive performance
and generalization ability.

1

2

3

4

5

6

7

8

M
A
PE
(%
)

HA

Elman-NN

Original-KNN

ST-KNN

D-ST-KNN

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

R
M
SE

HA

Elman-NN

Original-KNN

ST-KNN

D-ST-KNN

0.010

0.020

0.030

0.040

0.050

0.060

0.070
M
A
E

HA

Elman-NN

Original-KNN

ST-KNN

D-ST-KNN

1

2

3

4

5

6

7

8

M
A
PE
(%
)

HA

Elman-NN

Original-KNN

ST-KNN

D-ST-KNN

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

R
M
SE

HA

Elman-NN

Original-KNN

ST-KNN

D-ST-KNN

0.010

0.020

0.030

0.040

0.050

0.060

0.070
M
A
E

HA

Elman-NN

Original-KNN

ST-KNN

D-ST-KNN

Figure 8: Performance comparison of different models in
the PeMS data set.

4 SUMMARY AND FUTURE WORK
In this paper, we propose a D-ST-KNN model for short-term traffic
prediction. The proposed model considers the spatial heterogene-
ity and temporal non-stationarity of road networks to adapt to
the dynamic characteristics of traffic, including dynamic spatial
neighbors, time windows, spatiotemporal weights, and spatiotem-
poral parameters. With cross-correlation and autocorrelation
function computation, the automatic selections of spatial neigh-
bors and the time window are realized, which efficiently solve
the dimensionality disaster problem encountered in the existing
KNN models. The spatiotemporal weights are integrated into
a distance function to help identify candidate neighbors. Time
variable parameters are also introduced, including the dynamic
number of candidate neighbors and dynamic weight allocation
parameters, to further adapt to the dynamic and heterogeneous
nature of road networks.
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Using real traffic data collected from city roads and inter-city
expressways, we calculate the number of spatial neighbors and
the time window size of each road segments, which reflects the
distinct heterogeneity and non-stationarity of urban road traffic.
Then, we validate the performance of the proposed D-ST-KNN
model with comparisons to HA, Elman-NN, traditional KNN and
spatiotemporal KNN models. The experimental results indicate
that the D-ST-KNN model has a higher accuracy on short-term
traffic prediction than the existing models. In addition, we ex-
plore the local performance of different models in different data
buckets and find that all models correspond to the degree of traf-
fic congestion, and the D-ST-KNN model performs better than
other models in all time periods, especially in the morning pe-
riod and evening peak period. To summarize, compared with the
existing models, the proposed D-ST-KNN model significantly im-
proves the accuracy of short-term traffic prediction. Furthermore,
we compare the performance of different models using the ac-
tual traffic data collected from PeMS. The D-ST-KNN model also
achieves the best performance, which verifies the generalization
ability of the proposed model.

In the follow-up study, the following problems need to be
investigated to further improve the D-ST-KNN model. The D-
ST-KNN model behaves slightly differently in peak and off-peak
time periods. Further improvement of the model performance
during peak hours will be a constant challenge. Moreover, a multi-
threaded approach could be used to improve the efficiency of
D-ST-KNN. A parallel P-D-ST-KNN model on an existing parallel
computing framework is expected to alleviate the pressure of
real-time computation.
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