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Abstract.

We address the task of learning a dynamic Boolean network model from data
about its state transitions, and constraints regarding the known attractors of
the system. To this end, we propose a learning strategy where such prior
knowledge is compiled into a first-order theory along with axioms describ-
ing the Boolean transitions functions and the language bias for their repre-
sentation. The learning task is then posed as a model-finding task, in that the
Boolean network is obtained as a model of the input first-order theory. With
this framework, we support experimentally the hypothesis that attractor con-
straints reduce the number of state transition examples needed to identify the
target model.

1 Introduction
Recent explorations of molecular and genetic networks have stimulated research into the dynamics of Boolean network
models [6]. Dynamic Boolean models have been proposed for numerous biological processes including cell cycle regulation
or cell differentiation; see e.g. [3] for references to the primary sources. Some classical techniques of dynamic systems
theory such as state-space analysis have been reformulated for the special Boolean domain [4, 1].

A central task in the biological context is to learn a Boolean network from observations of its state-to-state transitions.
This was formalized by [5] as learning a logic program from pairs of successive logical interpretations. While [5] frames
the task in the first-order setting, the learning problem essentially amounts to propositional classification. In particular,
learning examples are truth-value assignments to a finite set of propositional variables at times k and k + 1, for a finite set
of time instants k. The goal is to learn a formula for each variable that determines its truth-value at time k+1 as a function
of the truth values of all variables at time k. It is assumed that the functions are time-invariant, i.e. they do not depend on
k explicitely.

Collecting a data set of state transitions is highly challenging from the biological viewpoint. Although certain kinds of
events captured by Boolean variables are quite amenable to measurement (e.g. the expression of a gene), other important
events are much more difficult to detect (e.g. protein phosphorylation). It is thus likely that such data will be scarce in real-
world biological applications. On the other hand, some global properties of the real system’s dynamics can be observed
easily, yet they have not been so far considered a possible input for learning. For example we may observe that the cell
always ends up in apoptosis if evolving from one of a certain set of initial conditions, or as a result of a certain class of
perturbations. Such observed properties translate readily into inductive constraints positing that the model to be learned has
a specific attractor state. There are likely many other kinds of global dynamic properties that may form useful constraints,
e.g. bounds on the maximum number of different states visited, etc.
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Our specific goal for this initial exploration is to test the hypothesis that by exploiting prior knowledge about attractors
we may reduce significantly the number of transition examples needed to identify the target model. To test this, we need a
learning framework capable to interpret constraints such as the model has exactly one periodic attractor of proper length
2. Such a framework is our secondary contribution. In particular, we design a framework in which the learned Boolean
network can be obtained as a finite model of a first-order logic theory with equality. The theory consists of common axioms
defining the semantics of propositional programs, problem-specific sentences expressing the global attractor constraints,
and finally the known ground transitions.

2 Problem Setting
We consider propositional variables V = {p1, . . . pn}. We are given a finite set of assignments (intepretations) I =
{Ik1 . . . , Ikm} associated with discrete times ki ∈ N , where each Ik : V → {0, 1}. The model we seek consists of n
propositional formulas φi formed with variables in V . The formulas define (synchronous) state transitions, that is to say,
pi is true at time k + 1 iff φi is satisfied under the truth values of all variables at time k. The model thus fits I iff for
any Ik, Ik+1 ∈ I, Ik+1(pi) = 1 iff Ik |= φi. Denoting pi(k) ≡ Ik(pi), we can express the transitions as pi(k + 1) =
φi(p1(k) . . . pn(k)), treating φi as a Boolean function.

In the rest of the paper we assume that the formulas φi are literal conjunctions, and we adhere to the illustrative example
2 from [5], which is as follows

p(k + 1) = q(k) (1)
q(k + 1) = p(k) ∧ r(k) (2)
r(k + 1) = ¬p(k) (3)

This Boolean network has two attractors. One is the stable state where only r is true, and the other alternates between the
state where only q is true and one with only p and r true.

In the sequel, we explore how the model (i.e., the three formulas above) can be identified from I and from prior con-
strains regarding the model’s attractors. The strategy adopted is that the latter two, along with axioms regarding the syntax
and semantics of propositional conjunctions are combined in a first-order theory T . The Boolean networks conforming to
the said inputs are obtained as finite models of T . We next present two different approaches to such axiomatization.

3 Relational Axiomatization
Here, the vocabulary for forming T includes a constant for each propositional variable in V , so for the running example,
the constants are p, q, r. Further, we have a finite number of constants i1, i2, . . . corresponding to interpretations I1, I1, . . .
which we are also going to call states. With the running example, we have up to 8 such constants, depending on the set of
states present as examples in a particular experimental setting. Finally, we have a function symbol s representing the state
succession function. E.g. s(i1) = i2 stipulates that state I2 directly follows state I1. As for predicates, we include pos/2,
neg/2, and true/2 whose meaning we explain through the running example. The meaning of pos/2 is that if for instance
pos(q, p) holds, then q appears as a positive literal in the conjunction for p such as in (1). Similarly, neg/2 indicates a
negative occurrence. Lastly, true(i3, q) means that q is true in (assigned 1 by) interpretation I3.

The first axiom in T defines the semantics of conjunctive transitions. In particular, it expresses that if and only if a
variable is true in the successor of a state S, then all variables with positive (negative) occurrence in the conjunction must
be true (false) in S.

∀S, V true(s(S), V )↔
∀W (pos(W,V )→ true(S,W )) ∧ (neg(W,V )→ ¬true(S,W )) (4)

The second axiom encodes the language bias for the propositional models by restricting the pos and neg relations to the
constants p, q, r.

∀V,W (pos(V,W ) ∨ neg(V,W ))→
(W = p ∨W = q ∨W = r) ∧ (V = p ∨ V = q ∨ V = r) (5)

The remaining formulas in T describe the particular learning instance. Each supplied interpretation Ik is encoded as a set
of ground facts; e.g. true(i1, p) and ¬true(i1, q) express respectively that p (q) is (not) true in I1. Further facts in the form
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s(i2) = s3 postulate the known successions of states. The last group of formulas describe the known facts about attractors.
For example the formula

∃S s(S) = S. (6)

stipulates, under the presence of (4), that the model has an attractor state (a state transiting to itself), whereas

∃S ¬(s(S) = S) ∧ s(s(S)) = S. (7)

has a periodic attractor of proper length 2 (i.e. two alternating states).
In general, T has multiple finite models M , M |= T , which all represent a correct solution to the learning problem. M

identifies the target system (1-3) iff it assigns the following relations to the predicates pos/2 and neg/2:

pos(↓,→)M(p)M(q)M(r)
M(p) 0 1 0
M(q) 1 0 0
M(r) 0 1 0

neg(↓,→)M(p)M(q)M(r)
M(p) 0 0 1
M(q) 0 0 0
M(r) 0 0 0

Here, M(p) stands for the domain element that p is mapped to by M , and analogically so for q and r. The tables do not
show the Cartesian products for other domain elements as they are all 0 due to axiom (5).

4 Functional Axiomatization
Our alternative axiomatization uses no predicates except for the special equality predicate. We introduce two constants t, f
representing the true and false Boolean values, and the following axiom making sure the two are different

¬(f = t) (8)

Conjunctions are modeled through the function conj/9 satisfying the next axiom

∀Pp, Pq, Pr, Np, Nq, Nr, Ip, Iq, Ir conj(Pp, Pq, Pr, Np, Nq, Nr, Ip, Iq, Ir) = t

↔ ((Pp = t→ Ip = t) ∧ (Np = t→ Ip = f)∧
(Pq = t→ Iq = t) ∧ (Nq = t→ Iq = f)∧
(Pr = t→ Ir = t) ∧ (Nr = t→ Ir = f)) (9)

where the P (N , respectively) arguments indicate the presence of the subscripted variable in a positive (negative) lit-
eral in the conjunction, and the I arguments correspond to the truth-values of the subscripted variables. So for example,
conj(t, f, t, f, f, f, t, f, t) = t is a consequence of axiom (9).

To model the transitions (1-3), we introduce three functions p/3, q/3, r/3 and postulate that they must coincide with
some conjunction

∃Pp, Pq, Pr, Np, Nq, Nr ∀Ip, Iq, Ir
p(Ip, Iq, Ir) = conj(Pp, Pq, Pr, Np, Nq, Nr, Ip, Iq, Ir) (10)

The remaining axioms are again specific for a learning instance. The known state transitions are encoded through ground
facts such as

p(t, f, t) = f

where the arguments stand for the truth values of p, q, r in the source state and the function value corresponds to the
truth-value of the indicated variable in the successive state.

The following constraint expresses that there is an attractor state transiting to itself

∃Ip, Iq, Ir p(Ip, Iq, Ir) = Ip ∧ q(Ip, Iq, Ir) = Iq ∧ r(Ip, Iq, Ir) = Ir

To encode the existence of higher-order attractors, we proceed in a spirit analogical to the extension of (6) towards (7).
Any model found for the theory consisting of the above formulas determines the transition rules by a full instantiation

of the p/3, q/3, r/3 functions. The propositional formulas defining the function are determined from the Skolem constants
assigned by the model to the existentially quantified variables in (10).
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Fig. 1. Mean (left) and median (right) numbers of models (in logarithmic scale) found for theories containing different numbers of
observed transitions and different attractor constraints described in the legend. Lower is better.

5 Experiments
All experiments consists of finding finite models of theories T using the model finder Paradox [2], with the aim to identify
the Boolean model (1-3).

All experiments with the relational axiomatization include the common axioms (4-5) in T . Similarly, all the functional
axiomatization experiments use (8-10). For each axiomatization, we considered five classes of theories, differing in the
attractor constraint added to T . The five different constraints are listed as legends in the plots in Fig. 1. For each of the 10
theory classes, we produced a number of theories differing in the number of transition examples encoded in the theory. In
particular, we produced a theory for each subset of size at least 2 of the Boolean state space, which has 23 = 8 elements.

For each experiment (i.e. each theory T ) multiple finite models are found in general. All resulting models of the func-
tional axiomatization have the same domain size 2. The relational axiomatization produces models of different domain
sizes and we discard all models larger than the smallest one.

The resulting model set always contains the model corresponding to (1-3). The success measure of the identification
task is thus inversely proportional to the total number of models found (this corresponds to the chance of picking the right
model from the resulting model set). We report1 the mean and median of the number of models in Fig. 1. It is evident that
a strong attractor constraint reduces the model uncertainty significantly; for the smallest considered number 2 of observed
transitions, this can be almost by an order of magnitude in comparison to using no attractor constraint.

To interpret the results comparatively, note that the learning approach from [5] needs all 8 observed transitions to identify
the model. Complete sets of transitions are also required by other popular approaches to Boolean network learning [1].

6 Discussion and Conclusion
Although only with a simple example, we have found empirical support for the hypothesis that by exploiting for prior
knowledge on the character of attractors of a Boolean network, such a network can be identified with a smaller number of
state-transition examples.

To account for such attractor constraints in the learning process, we formulated a first-order framework for learning
propositional formulas. Here, the learned network model is encoded in a finite model of a first-order theory, which specifies
the learning instance. Interestingly, this setting contrasts with the well known ILP setting of learning from interpretations,
where models represent input data and a first-order theory is searched.

This present framework is strong and allows more complex learning scenarios beyond those exemplified in the preceding
sections. Virtually any part of the input theory can be missing (parts of known state transitions, entire transitions, knowledge
on state successions, etc.) with the only consequence that the theory will allow a greater number of models. Conversely, any
partial knowledge on the structure of the unknown Boolean network (the presence of a certain literal in a rule, entire rule,
etc.) can be easily encoded in the input theory. Similar flexibility pertains to the language bias: while our axioms postulated
conjunctions, they can be straightforwardly extended to DNF’s or other syntactical structures. Also, more interesting and
complex constraints regarding attractors can be specified, which we do not demonstrate here due to limited space.

For this generality, we will likely pay with limited scalability. Although the reported runtimes for the running example
used in this study was typically 0s with the Paradox model finder, the perspectives for larger tasks are rather dire, since the

1 These statistics pertain to the functional approach; the relational one exhibited almost identical trends.
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latter algorithm is based on a reduction to SAT preventing the exploitation of domain-specific heuristics. We thus plan to
develop specialized algorithms for Boolean network learning, yet still able to interpret at least the rich attractor constraints.

On the other hand, the first-order axiomatization approach presented here could scale up to a slightly different flavor of
Boolean network learning tasks, in which one would not aim at identifying a single ground Boolean model. In particular,
using the axiomatization approach we could still reason through lifted inference about the properties of the Boolean net-
work models conforming to prior knowledge (transitions, attractors) without the need to construct specific ground models.
Indeed, such reasoning could be implemented by deriving consequences from the input theory through proof finding.
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