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Abstract. Cities have dense WiFi networks that enable access to the
web on a range of different devices. Although the data collected from
these networks is anonymised, when aggregated, it provides a rich illus-
tration of how cities, public places and urban spaces are used. However,
making use of this data can prove challenging as the data is rarely labelled
and the location accuracy can be questionable. Given these constraints,
we have developed a set of methods that can be applied to anonymous
WiFi location data. Through two use-cases, we show successful examples
of each method, describe insights and intuitions along with an explana-
tion of their application.

1 Introduction

The objective of our work is twofold. First, we investigate a range of techniques
that can be applied to anonymous WiFi data and second, we seek to better
understand how these techniques can support a range of different use cases.
To do this, we are working closely with a team of WiFi engineers that develop
WiFi networks for large indoor and outdoor installations. For example, the team
work closely with a conference centre in Barcelona to establish how best to utilise
WiFi networks during their events while at the same time, working alongside Dun
Laoghaire Library in Dublin to see how WiFi can better support their patrons. In
each situation, the datasets have specific constraints that can only be alleviated
through better network configurations or through the deanonymisation of data.

Collected WiFi signals result in spatiotemporal data that combines geo-
graphic coordinates with a timestamp and mac address of a specific device.
Often this data is gathered through a process of passive probing in which the ac-
cess point connects momentarily to a device, identifies the device and then drops
the connection. Our interest lies in maximising the potential of this data so that
it can support a range of different applications such as urban planning, crowd
management, public security, transportation optimisation and advertisement.

In this paper, we present two use cases in which we use WiFi data to address
a set of common problems. The first investigates how WiFi data can be used
for group identification from data gathered during the FA cup final at Wembley
stadium. The second illustrates a “location accuracy” analysis performed on a
dataset gathered during a conference at the Fira conference centre in Barcelona.



2 Related Work

Given the use cases addressed in this paper, we divide the related work between
group identification and accuracy analysis.

2.1 Group Identification

Due to the constraints of working with unlabelled data, a lot of research on
group identification use unsupervised techniques such as DensityJoin-Cluster [4]
or graph techniques with spatial connectivity features [10]. The difficulty with
this work is that although the algorithm will find groups, the groups may not
necessarily be meaningful or useful. Rarely, are enough labels collected to con-
duct a meaningful analysis with supervised methods. Robol et al. use SVMs
to detect crowds but this is a simple approach focused on finding whether a
group is present or not - essentially binary classification on presence/absence
[12]. Ruiz-Ruiz et al. employ local experts to label 5% of the data and then
label the remaining 95% using a Bayesian Network [13]. The result is evaluated
against national statistics, which provides some indication of success, however,
the method requires a manual process and the need for a local expert (a cate-
gory of individual that is context specific). Nie et al. extract the spatiotemporal
transition features to predict place attributes [11]. Their assumption is based on
flows - how people traverse a thoroughfare illustrates attributes of place. How-
ever, again, the approach cannot be applied to large crowds or events. Similarly,
Zeng et al. classify a shoppers’ state (walking vs standing, fast vs slowly, inside
vs outside) based on flows obtained from indoor WiFi signals but the approach
requires significant signal accuracy and relies on a small indoor experimental
setup [21]. Meneses et al., on the other hand, study motion and flows using spa-
tial connectivity features on different campuses [10]. The analysis is interesting
as it does not rely on labels but looks at how different features suggest different
spatial relationships. A similar approach, based on trajectory similarities, is de-
scribed in [8]. Their evaluation techniques include a set of visual and intuitive
heuristics for spatiotemporal data analysis.

2.2 Accuracy Analysis

Indoor and outdoor WiFi probe requests along with their accuracy indicators
such as RSSI are often used for location-based analytics. Implementation of
these techniques is cost effective and their accuracy is relatively reliable [9].
However, the majority of research focuses on datasets collected from indoor lo-
cations [20], as outdoor WiFi configurations are more challenging to implement
effectively and can result in noisier data [18]. Similarly, there has been a lot
of work in combining smart-phone sensor data, such as the GPS, Bluetooth,
acoustic data [14], accelerometer and magnetic field data [2] in an attempt to
generate better location accuracy. However, there is an additional cost when im-
plementing denser networks and, generally, these points do have restricted access
to the devices’ information. Standard WiFi networks, on the other hand, remain



the least restrictive and cheapest solution, because of their ability to passively
probe closely located devices. There are, of course, numerous applications for
this data, such as queuing time prediction [15] or zone occupancy tracking [5,
17]. Location-based analytics, group identification and accuracy analysis often
use data visualisation as a way to analyse behaviour, identify group structures
and measure signal propagation [9, 16, 3, 6].

3 Use Case 1: Group identification at stadium events

The ability to identify and segment groups has a range of use cases such as
targeted advertising, security management and urban planning. However, many
existing approaches are based on data in which no clearly delineated or a priori
groups exist, nurses versus patients for example [13]. In contrast, the 2017 FA
cup Final event was organised so that supporters from each of the two teams
were provided with their own fan zone outside of the stadium. Arsenal’s fan zone
was in the Arena square and Chelsea’s fan zone was in the Event’s pad. Also, the
supporters arriving from the Olympic way (the main thoroughfare that brings
supporters to the stadium) were separated so that each side of the avenue was
dedicated to the supporters from one particular team (see figure 1). Out aim
was to assess how we could identify these groups based on their behaviours at
different points during the event and verify this identification using the fan-zones
and the Olympic way.

Fig. 1. Map showing Olympic way going to the main entrance and a picture of the
Chelsea (blue) and Arsenal (red) supporters heading to the stadium before the FA cup
final match, the 27th of May 2017. Credit: Guy Bell/Alamy Live News



3.1 Data Description

Each record in the dataset is the result of a triangulation process applied on
multiple probe requests initiated by a single device. Each data point has a MAC
address, a time stamp, a set of geographical coordinates (latitude and longitude),
a geographical zone and a confidence factor (CF) related to the RSSI value. The
CF is a distance representing half the side of a square of which the centre is the
data point itself. This square represents the point’s uncertainty surface, which
shows where the device is located within a 95% confidence interval. The zones
and their respective locations are shown in figure 2.a.

3.2 Methodology

We applied a set of unsupervised techniques for group identification and used a
combination of analysis and visualisation for verification. Because the network
covers a wide area, which can itself impact accuracy, we avoid using a data
points’ location estimations directly and instead focus on associated devices –
two or more devices collocated (same place, same time) and their relationship
with either fan-zone. Associated devices are defined by the number of shared
locations of two or more devices - the larger the number of shared locations, the
greater the similarity between devices. Similarly, the association between two
zones can be defined as the number of shared devices - the greater the number
of shared devices, the more similar the zones. In both definitions, we assume
that the supporters of the same team spend more time in similar locations than
supporters from the opposing team. A group of supporters can be considered as
a group of devices that share the same locations at the same time throughout
the event. By the same reasoning, a group of subzones sharing the same devices
throughout the event will likely form a bigger zone dedicated to a team. This

Fig. 2. (A) Raw data points split by their original zones. (B) Four groups of grid-cells
resulting from the hierarchical clustering of the transformed grid-cells adjacency matrix
between 11h31 and 16h59, taking into account the most 25% accurate devices’ location
and the 20% strongest links between pairs of grid-cells.



approach yields two adjacency matrices, the first, or grid-cell matrix, pools sub-
locations together based on the number of shared devices, whereas the second,
or devices-based matrix, pools devices together based on shared locations.

Clustering the grid-cell matrix: This method seeks to find groups of grid-
cells based on the proportion of shared devices between each pair of grid-cells. In
other words, we cluster grid-cells that have a large proportion of collocated de-
vices. The binary matrix (grid-cells X devices) is multiplied against its transpose
to generate a square (grid-cells X grid-cells) adjacency matrix, which represents
the number of shared distinct devices between each pair of grid-cells. Each cell
of the square matrix is then divided by the total number of distinct devices
that were identified at least once in either one or both grid-cell locations. This
converts the absolute-based matrix into a proportion-based matrix where each
proportion represents the percentage of distinct shared devices against the total
number of distinct devices between the corresponding pair of grid-cells. We as-
sume the bigger the proportion, the closer the pair of grid-cells and vice-versa.
We applied two techniques. First, we convert the proportion matrix into a dis-
tance matrix, apply Ward’s hierarchical clustering to the distance matrix [19] and
reduce the tree to the desired number of groups (3). Second, a fast-greedy mod-
ularity optimization algorithm was applied to the proportion adjacency matrix.
The latter interprets dense sub-graphs as communities. The more relationships
between a group of grid-cells, the more likely to be interpreted as a community
by the algorithm [1].

Fig. 3. Groups resulting from the fast-greedy modularity optimization algorithm ap-
plied on the adjacency graphs of shared devices between pairs of grid-cells (20 x 20
grid). The colours are not consistent in time. Only 75% of the most accurate data points
(Confidence Factor first 0.75 quantile) from 8:00 to 22:00 with a minimum number of
devices per grid-cell equal to its median.



Clustering the device matrix: This method consists in finding groups of
devices based on the proportion of shared locations. As previously, the adja-
cency matrix is divided by the square matrix of weights containing the unique
number of locations shared between devices. The resulting matrix represents the
percentage of distinct shared locations against the total number of distinct loca-
tions where the corresponding pair of devices were seen. We assume the greater
the number of shared locations between two devices, the greater the likelihood
that both devices belong to the supporters of the same team. We apply Ward’s
hierarchical clustering on the distance-matrix. Unlike the groups of grid-cells,
all the devices cannot be directly mapped on a 2D plane as it would suffer from
occlusion.

3.3 Results

Each approach reveals clusters that reflects the topological configuration of the
event. As illustrated in figures 2.b, 3 and 4 both fan zones, the Olympic way
(vertically positioned) and Engineers way (horizontally positioned) are clearly
visible. Four distinct zones are evident in figure 2.b, Chelsea’s and Arsenal’s fan
zones appear in green and blue. In addition, three vertical zones (light blue, red
and grey) appear on Olympic way illustrating different groups separated by Po-
lice. The light blue and red areas represent Arsenal supporters and Chelsea sup-
porters respectively. The grey zone is most likely noise. Figure 3 shows the event
as a set of small multiples with each image representing a time span between 8:00
am to 21:59 pm. Each time span has its own colour signature expressing dense
and high levels of shared devices between grid-cells. The same colour between

Fig. 4. Four groups of devices resulting from the hierarchical clustering of the trans-
formed devices adjacency matrix between 11h00 and 16h59, taking into account the
most 25% accurate devices’ location and the 20% strongest links between pairs of de-
vices. The groups’ proportions are encoded with colours and transparency. The size of
the grid-cells represents the number of distinct devices per location.



two small multiples does not represent the same group. As can be seen, both
fan zones are always defined with different colours and the Olympic Way is sep-
arated vertically in two from 10:27 to 21:59. This supports our assumption that
clustering the adjacency matrix can reveal subzones matching the environment’s
properties.

3.4 Discussion

As evident from the visualisation, we can clearly identify groups that reflect the
order and composition of crowds at the event. The method is flexible and includes
several parameters such as the number of groups and the size of the grid-cells that
can be used to address a range of different scenarios. The difficulty, however, is
that the approach may have limitations when applied to other contexts in which
groups are not as strongly delineated.

4 Use Case 2: Accuracy analysis on large indoor spaces

The geographic location of a device is estimated using a triangulation of loca-
tions from several access points and is expressed as a measure of uncertainty in
regard to that estimation [7]. There are multiple parameters that can impact
this accuracy such as network configuration, number of access points, whether
the connection area is outside and the types of access points (in this case it
is Cisco Meraki). Comparative methods that address accuracy have focused on
unipersonal data points with trajectories using a ground truth [9, 20]. However,
there has been little work on developing and evaluating techniques based on
aggregated data from multiples devices. Generally, zones, or locations that exist
within a specific geographic area, are used to support location based analytics.
Often the topographical configuration of the building, such as a room, a floor,
a street portion, a fan zone, a road intersection, are used to define the zones.
This approach, however, can hinder the accuracy of an estimation and is often
not the most optimal way to configure the network. Zone analysis can evaluate
a network and possibly suggest a better configuration.

4.1 Data Description

The dataset was collected during the ESC congress 2017 which took place in
the Barcelona Fira conference centre. As can be seen in figure 5, the centre is
a multi-room building of which we focus on the two biggest zones called hall 2
and hall 3. The dataset consists of 48 hours of data collected from the 26th to
the 27th of August 2017.

4.2 Methodology

Two approaches are used for conducting accuracy analysis. First, data visualisa-
tion is used to plot the levels of accuracy on a map. Second, the confidence factor
of each data point is used to measure the effectiveness of a zone configuration.



Data visualisation has been used as a tool for analysing subzones’ accuracy
[16]. In this work, we used level plots, with bilinear interpolation, to map confi-
dence factors on a 2D plane. This enabled us to visualise the levels of uncertainty
in the locations’ estimation. Hall 2 and Hall 3 zones are randomly sampled down
to approximately 10 thousand records each and used to compute the correspond-
ing level plots. Figure 6 shows the Hall 2 and the Hall 3 confidence factors’ level
plots. The greener the sub-zone, the more accurate the location’s estimation
and the more likely the point’s estimation to be located there. The redder the
subzone, the less accurate the location’s estimation. Both level plots show sim-
ilar levels of accuracy of between 0 and 50 meters. However, both halls’ border
subzones have a higher level of inaccuracy of up to and between 100 to 150
meters.

The zone’s accuracy indicator is a probabilistic measure of a zone’s ability to
match each point’s inner and outer states between the points’ location estimation
and its unknown ground truth. To reflect reality, a zone’s estimated inner-points

Fig. 5. The red data points are located inside Hall 2 and Hall 3 of the Barcelona Fira
Gran Via conference centre. The black points are located outside the Hall 2 and the
Hall 3.

Fig. 6. Level plots of the Fira Barcelona Gran Via - Hall 2 and Hall 3 - over 48 hours
of conference



should maximise their probability of being real inner-points, and the estimated
zone’s outer-points should maximise their probability of being real outer-points
(1).

max(ZoneAccuracy) =

{
max(P (InsideZone|ZoneInnerPoint)

max(P (InsideZone|ZoneOuterPoint)
(1)

Based on this observation, we assume that the accuracy of a zone is closely
related to its inner and outer points’ average probability to be located inside the
zone. More precisely, the bigger the zone’s inner-points average probability and
the smaller the zone’s outer-points average probability, the better the accuracy
and the more effective the zone’s configuration.

We define uncertainty square as the surface where an estimated point is
located within a 95% level of confidence. Two points’ uncertainty squares are
illustrated in figure 7. As illustrated in figure 7, 60% of the inner-point’s un-
certainty square resulting from its confidence factor is located inside the zone.
This can be interpreted as a 60% likelihood of being a real inner-point and 40%
likelihood of being a real outer-point. Similarly, 35% of the outer-point’s uncer-
tainty square resulting from its confidence factor is located inside the zone. This
can be interpreted as a 35% likelihood of being a real inner-point (instead of an
estimated outer-point) and 65% likelihood of being a real outer-point.

Finally, we assume a zone’s aggregated accuracy indicator can be defined as
the difference between both inner and outer points’ average probabilities (2).
The more accurate a zone configuration, the bigger the average probability of its
inner-points to be located inside the zone and the smaller the average probability
of its outer-points to be located inside the zone.

Fig. 7. The estimated inner-point has 60% chance to correctly be defined as an esti-
mated inner-point and 40% to wrongly be defined as an estimated outer-point. The
estimated outer-point has 65% chance to correctly be defined as an estimated outer-
point and 35% chance to wrongly be defined as an estimated inner-point.



zoneAccuracy = P (InsideZone|ZoneInnerPoint)−P (InsideZone|ZoneOuterPoint)
(2)

Because inner and outer points are computed separately, data points from all
zones are required. First, the data points identified in different floors are removed
and then random sampling is performed on the dataset so that approximately
20 thousand data points were used in the analysis.

After every points’ uncertainty squares are created, the proportion of each
square’s surface located inside the selected zone is computed.The bigger the
inner point’s surface being located inside the zone and the lower the outer point’s
surface being located inside the zone, the more likely the estimation to be true.
The average uncertainty squares’ proportions of inner points and outer points
located inside the zone are computed separately. As can be seen in figure 8, a
large proportion of inner-points’ squares are located inside the zone and a large
proportion of outer-points’ squares are not located inside the zone. Finally, the
aggregated zone’s accuracy indicators are computed (2). The bigger the zone’s
accuracy indicator, the more likely the estimated points’ locations to be truly
inside the zone, and vice versa.

4.3 Results

Both halls’ confidence factors’ level maps (figure 6) provide an indication about
the uncertainty of the location estimation. The aggregated accuracy indicator

Fig. 8. Both distributions of inner and outer points squares’ proportions located re-
spectively inside the Hall 2 and the Hall 3.



was computed for each hall. Based on this metric, Hall 3, with an accuracy
measure of 82.45, outperforms Hall 2 with an accuracy measure of 78.87. This
measure provides a way to assess the effectiveness of zone configuration.

5 Summary and future work

We described a set of techniques that can support a range of use cases when
working with location-based WiFi data. Although we have focused on unsu-
pervised techniques and visualisation methods for verification, we are currently
collecting labelled data to quantitatively evaluate these techniques. In future
work, we aim to advance these methods using labelled data.
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