Specifying the Collaborative Tagging System *

Cédric Mesnage

cedric.mesnage@lu.unisi.ch
Faculty of Informatics
University of Lugano
Via G. Buffi 13
6900 Lugano, Switzerland

The world is the totality of facts, not of things.
(Ludwig Wittgenstein, [9], proposition 1.1)

ABSTRACT

The collaborative tagging system is an interaction between
humans, terms and objects over time which results in a col-
lectively organized knowledge. In this paper, based on the
study of existing software systems, we present the specifica-
tions of the collaborative tagging system written in TLA+.

Keywords
Collaborative Tagging, Specifications, TLA+, precise de-
scription

1. INTRODUCTION

To analyse emergent web applications scientifically, we need
precise abstract definitions of the fundamental elements in-
teracting in the systems in which these applications are suc-
cessful. In this paper, we present the logic specifications
of the abstractions interacting in the collaborative tagging
system.

Long-living software systems grow more complex over time.
The behavior of such systems is not always well-understood
and is often a source of maintenance and extendibility prob-
lems. The Internet, which started as a simple protocol (IP),
is now one of the more complex software systems ever as-
sembled, consisting of millions of components and applica-
tions interacting with millions of users. New applications on
the Internet emerge regularly introducing new concepts and
behaviors. These new concepts interact in sometimes unin-
tended ways with other parts of the Internet making it ever
more difficult to understand the behavior of the Internet. It

*This work is funded by the European Project
“Nepomuk, the social semantic desktop”.
http://www.semanticdesktop.org

Mehdi Jazayeri

mehdi.jazayeri@Iu.unisi.ch
Faculty of Informatics
University of Lugano
Via G. Buffi 13
6900 Lugano, Switzerland

is clearly not possible to formally specify the workings of the
entire Internet. However, to be able to understand, explain,
and extend the behavior of aspects of any complex system,
we need a high-level precise description of those aspects. For
a system as large and complex as the Internet, we should be
able to build such a high-level description incrementally and
independently for different aspects. In this paper, we show
how this can be done for collaborative tagging, one of the
emerging popular applications on the Internet.

Collaborative tagging [7] is an extension of the tagging ac-
tivity introduced in several popular websites such as Flickr
or del.icio.us. It has proven successful in these websites as
a way of sharing resources (i.e. photos, bookmarks).

Collaborative tagging has also attracted the interest of re-
searchers [7] who are trying to understand the foundations of
the activity, its current implementations, and possible role
in the collective intelligence idea. Collaborative tagging is
not merely a computer science problem in that it attempts
to enable the collaboration of large numbers of humans in
collectively reviewing and structuring large amounts of infor-
mation with little restrictions imposed by the system. Many
contributions have been done lately[10, 6, 8, 1, 4]. We refer
primarily to [1] and [4].

This paper has two primary goals: to show a precise de-
scription (specification) of collaborative tagging, and to give
an example of incremental derivation of specifications for
Internet-based services.

1.1 Definitions

Since this paper is about precise descriptions, we start with
a set of definitions in order to avoid misunderstanding on the
meaning of the main terms we use. Many of these definitions
can be found in the Oxford Dictionary. The glossary is given
in Figure 1.

To avoid ambiguity inherent in the use of the word “tag” as
both noun and verb, in this paper we use the word “tag” only
as a verb, that is, the actual act of tagging. For noun usage,
we use “term” to name the keyword used to tag. This avoids
confusion and enhances clearness of the specifications.

The collaborative tagging system is an interaction between
humans, terms and objects over time which results in a col-
lectively organized knowledge. In this paper we present and
explain specifications of this system. The next subsections of

Specification In [2] Michael Jackson claims that

The terminology of software development is
mostly in a chaos that correctly reflects the
chaotic state of the field. Usage of the word

specification is no exception.

(Michael Jackson, page 193)
But here we take as definition

A specification is a written description of
what a system is supposed to do.

(Leslie Lamport, [3], paragraph 4, page 1)

Collaborative produced or conducted by two or more par-
ties working together.

Tagging attach a label to.

System a set of connected things or parts forming a com-
plex whole.

Engineering Engineering requires not just the ability to
use mathematics, but the ability to understand what,
if anything, the mathematics tells us about an actual
system. (Leslie Lamport, [3], page 21)

Behavior The way in which a natural phenomenon or a
machine works or functions.

Abstraction The process of considering something inde-
pendently of its associations, attributes, or concrete
accompaniments.

Trust Firm belief in the reliability, truth, ability, or
strength of someone or something.

Term A word or phrase used to describe a thing or to ex-
press a concept, esp. in a particular kind of language
or branch of study.

Human A human being, esp. a person as distinguished
from an animal or (in science fiction) an alien.

Object A thing external to the thinking mind or subject.

Phenomenon The object of a person’s perception; what
the senses or the mind notice.

Observation The action or process of observing something
or someone carefully or in order to gain information.

Representation A mental state or concept regarded as
corresponding to a thing perceived.

Transcription A written or printed representation of
something.

Memory Something remembered from the past.

Figure 1: Fundamental glossary.

this introduction describe briefly and informally this system
as seen in existing software and present the methodology we
choose to write the specifications. In order to facilitate the
understanding of the specifications, we describe the abstrac-
tions involved in the collaborative tagging system specifica-
tion and first describe the collaborative tagging memory as
a module. We use model-checking to demonstrate the va-
lidity of these specifications. Finally, we propose how our
work can be extended in different directions.

1.2 The Collaborative Tagging System

The collaborative tagging system emerges from many new
software systems (i.e Del.icio.us, Flickr, Technorati, Con-
notea, CiteUlike, RawSugar...). It is a way of categorizing
knowledge by freely assigning sets of terms to objects (often
to web pages or bookmarks).

A fundamentally new concept introduced by the new gener-
ation of Web applications such as collaborative tagging is to
include and trust the user in further evolution of the system
(and its associated information). In fact, anyone can create
new terms in a simple way. The users feel that trust, and
we believe it explains the success of these software systems.

Another important aspect is collaboration. In traditional
software, an expert or a set of experts creates a thesaurus of
categories and takes care of indexing documents themselves.
This avoids the insertion of erroneous data, but also the
insertion of different aspects and viewpoints on the objects.
The collaborative tagging system allows anyone to index any
object without any restriction with meaningful terms. The
notion of meaningfulness is subjective, but the combination
of points of views from many people is more complete than
the one of only a chosen subset (experts). The resulting
taxonomy is often called a folksonomy.

Though simple in terms of software, this system exhibits
complex collective behaviors. As the number of people work-
ing collectively grows, the system of interaction between
them must be simplified. In a democratic political system,
the voting system is an example of a simple interaction to
decide collectively at a large scale. To organize knowledge
together, the interaction system between humans must be
as simple as possible.

Recent fundamental work as been done by analysing Del.icio.us[1]

and Flickr[4] tagging memory. In [1], Golder compares the
tagging system to a typical filesystem organization

In contrast to a hierarchical file system, a non-
exclusive, flat tagging system could, unlike the
system described above, identify such an article
as being about a great variety of things simulta-
neously...

They describe how synonymous and polysemous aspects of
terms can be solved in a collaborative tagging system and
define tagging as

Tagging is fundamentally about sensemaking.

They identified different ways people use terms to tag

e Identifying what (or who) it is about.
e Identifying what it is.

e [dentifying who owns it.

e Refining categories.

e Identifying qualities or characteristics.
e Self reference.

e Task organizing.

in [4] Marlow gives a model of tagging which is represented
as a bipartite graph showing resources (what we call objects
in this paper) on the left hand side and users on the right
hand side. The edges between resources and users carry
some terms and represent an act of tagging (what we call
an observation in the following sections). He also identifies
some aspects of tagging software systems :

e Tagging Rights.

e Tagging Support.

e Aggregation.

e Type of Object.

e Source of Material.

e Resource Connectivity.

e Social Connectivity.

These empirical studies, together with our own understand-
ing of existing software systems have been helpful in writing
the collaborative tagging specifications. In addition to these
two works, there has been considerable research activity in
this area recently [7].

1.3 Writing Specifications in TLA+
The role of specifications is both well-known and contro-
versial in the practice of software development. Here we
are dealing with specifications of a system, as opposed to a
specification of a design or architecture. We are using the
term and the process in the sense of Lamport:

Specifying a system helps us to understand it.

(Leslie Lamport, [3], paragraph 4, page 1)

The specification then can be used as a medium of commu-
nication among people about the system. The specification
may, for example, be used by software architects to design a
particular implementation of the system. The specifications
are thus a bridge between the requirements and the imple-
mentation. They are also a means of defining the relation-
ship between the system and the real world. Thus, specifica-
tions must be specified at a much higher level of abstraction

than implementation-oriented notations. Typically, a logi-
cal notation is most appropriate. For this purpose, we have
chosen to use TLA+ (Temporal Logic of Actions). We do
not discuss here the different values of such languages and
choose to use TLA+4. Any number of equivalent notations
could be used for this purpose. One advantage of TLA is
that it comes with a model checker (TLC), which efficiently
validates the model and its properties.

Temporal Logic of Actions is a first order logic enriched
with temporal operators. We describe in this section the key
aspects of such specifications and the language specifics. We
emphasize that the main purpose of writing specifications is
to understand the system. According to Lamport:

The hardest part of writing a specification is
choosing the proper abstraction.

The art of abstraction is learned only through
experience.

(Leslie Lamport, [3], page 24)

Thus a large part of our effort has gone into deciding the ab-
stractions to specify. We hope to give the reader the benefit
of our experience gained in formulating the specifications.
Note that such specifications may be defined for a system
that is yet to be built (forward engineering) in order to un-
derstand the requirements and help in evaluating the design
alternatives, or for an existing system in order to understand
it better and help in enhancing it (reverse engineering).

In our case, the purpose of the specifications is to formally
define possible behaviors of the studied system. A behavior
is described by Leslie Lamport as

A behavior is an infinite sequence of states.

A behavior describes a potential history of the
universe.

(Leslie Lamport, [3], paragraph 4, page 18)

but for practical reasons, we consider only a subset of the
abstractions which make sense to consider in the study of a
particular system. In Figure 2, we present a behavior of the
HourClock example shown in [3]. In this representation only
two variables are considered, hr the current hour and tmp
the current temperature. Each state is represented by the
values of the variables. The process of writing specifications
is to first identify this kind of behavior and then formally
define the actions which describe a correct behavior.

A specification in TLA+ (despite the declaration of vari-
ables and extensions needed) starts with a predicate which
describes the potential initial state of a behavior. This is
usually a conjunction of expressions describing the possible
values of the considered variables. The following predicate
describes the initial state of the temperature hour clock ex-
ample. The 2 is read “is defined as equal to”.

To describe the evolution from one state to another, one
must define actions which are formulas containing variables

iy = 3]~ Ly = 3]

tmp = 23.5 tmp = 23.5
{hr = 12}_){}”« = 12}4
tmp = 234 tmp = 233
{ hr = 1] .
tmp = 23.3

Figure 2: An example behavior of the Hour Clock,
which also takes care of the temperature.

HCTMPInit =
Ahre{l, .., 12}
A tmp € Reals

enriched with a ’ which represent the value of the variable
in the next state. The following predicate defines the hour
clock main action (which is to go from one hour to another
and to pass to the value 1 after the 12), we don’t consider
the temperature here:

HCini £ hre {1, .., 12}
HCnat = hr' = (hr%12) + 1

A specification is a single formula which should satisfy both
the initial predicate and the next-state actions for any step
of the possible behaviors of the system. That is where we
use the temporal operator O called “box” which expresses
a formula which is “always true”. We can then write the
specifications of the hour clock as follows

HCSpec 2 HCini AOHCnat

But as we have seen in Figure 2, some steps do not change
the value of the variable hr especially if we consider a state
being a state of the whole universe. Temporal logic of ac-
tions here introduce the concept of stuttering steps which
consider the possibility of having one or more variables left
unchanged from one state to another If we consider the vari-
able hr as the stuttering variable, we write it as follows:

HCSpec = HCini A D[HCnzt]s,

We now have the HCSpec formula which, if satisfied by a be-
havior, validates the behavior of the described system. This
short description of the TLA+ language should be enough to
enable the reader to understand the following system spec-
ifications. The language is described fully in [3] which is
also available on the TLA Web page'. The TLA system is
accompanied by a model checker, TLC, that may be used
to validate properties of well-defined specifications.

2. THE COLLABORATIVE TAGGING SYS-
TEM SPECIFICATIONS

To explain the specifications we first need to go back to the
abstractions of the collaborative tagging system. The col-
laborative tagging system is an interaction between humans,
terms and objects. In Figure 3 we give a graphic represen-
tation of this interaction which we explain in this section.

The environment of the collaborative tagging system is the
set of all phenomena emerging from the real world. The

"http://research.microsoft.com/users/lamport /tla/tla.html

phenomena are observable facts. Differing from typical se-
mantic systems, the facts are considered outside of the sys-
tem. Only the human perceptions of the facts are considered
valuable. We do not have direct access to the facts, neither
can we formulate them. We can feel an object, but we do
not know what it really is.

Through the senses, humans perceive the phenomena. The
resulting observations are the data of our system. Indeed
the only thing that is known are the observations. Obser-
vations are subjective, therefore different humans will have
different observations of the same phenomenon. Some per-
ceive the color, some others the shape or any other aspect.
A fundamental premise of collaborative tagging is that the
combination of all these observations is the best picture we
can get of the real phenomenon which occurred.

When a human observes a phenomenon, he thinks a mental
representation. This helps him to reason about the phe-
nomenon. Depending on the aspects he perceived in his ob-
servation, he mentally associates terms to the phenomenon.
These terms may be different for each human who observed
the phenomenon so we need to consider them all.

To be able to combine the mental representations of differ-
ent humans, we first need humans to express them. They
can not directly express their representations so they share
observations together with the terms they use in their men-
tal scheme. This we call transcription. In the collaborative
tagging system, humans write their observations by tagging.

When one assigns a tag to an object, the system stores the
observation in a memory. This memory is the set of all tran-
scripted observations. A written observation is the associa-
tion of the human (the writer), the object of the observation,
the term of his representation and the date when he wrote
it.

Other humans can then retrieve these observations from the
collaborative tagging memory. When reading the observa-
tions of other humans, the reader changes his representa-
tions of the object as he now perceives the observations made
by different humans.

Reading and writing are the two operations of the memory,
tagging and retrieving the two operations of the collabora-
tive tagging system. We present in the next subsections the
specification of the memory and of the whole system.

The abstractions and the specifications presented here re-
flect our understanding of many existing software systems
and of an ideal one. We try to be as generic and general as
possible to specify the collaborative tagging system and not
a collaborative tagging software system.

Phenomena

" Observation .._

. ' {human2, object1, "red", 2/1/06} !
v + (humand, object2, "pyramid", 5/2/086) '

i} r ——
\ {human3, object?, "yellow", 5/2/06) «— 189 ~
\ I y

e Representation
.'/ . N\
," "‘r/'_r-_--___ ’,’ - o e . ‘1\\ \‘\
4 J L sphere ,*” __“ N \
' * ~~ Transcription " (pyramid,).
g - . T Yellow : k
fetrieue L "\“ \\‘
.~ Collaborative retrieve —#>
Tagging ,
/ ! Memory | ". \
g ‘ | '. | Object
i~ tag :‘ {humani, object, "sphere", 1/1/08} E ! ! i o

' IJ II. Ill
r [}
L}
f
1

.

Figure 3: Diagram of the collaborative tagging system and its environment.

The phenomena are the environment of the system. Observations are the human perceptions of the phenomenon.
The representations are the mental association of terms to the observations. The transcription is the process of
writing the observations, what we call tag. The collaborative tagging memory stores observations.

2.1 The Collaborative Tagging Memory

We define a module to specify the collaborative tagging
memory. The full specification of this module is presented
in Figure 5. The predicate on line 4 defines the initial state
of this system. We need to consider the time, represented
by the variable now which is initially any value in the Time
set(line 5). The Observations is the variable which stores
the data of our memory(line 6). In any initial state, the
observations set may contain any observation that has been
done in the past. One particular observation is defined as
a record which consists of values for a human, an object,
a term and a date. Records allow us to write expressions
like observation.human which represents the value of the
human in this particular observation. The set observation
in the initial state is a subset of the set of all records for any
human, object, term and date of the past(line 7-8). The
variable buffer is a function which for any human returns a
set of observations he requested. In the initial state this is
set to the empty set for any human as no one has requested
anything yet(line 9).

From the definition of the initial predicate, we can deter-
mine the constants and variables we use. The constants
can be seen as parameters of the system. When using the
TLC model checker, the constants are set to particular val-
ues. On line 3 we define the constants Humans(the set of all
humans interacting with the memory), Terms(the set of all
terms used in the memory), Objects(the set of all objects ob-
served), Time(the set of all values of time considered). This
is a tradeoff as new humans might enter the system during
its lifetime, new terms could be created as new objects de-
fined, and the time passes without stopping. In a realistic
system, these constants would be variables. The reader can
understand constants as types.

The variables defined on line 4 represent what change during
the life of the system. In this case the behavior is represented
by the value of the Observations(the set of all observations
written so far), now the time of now in number of seconds,
buffer(the state of the requests made by readers).

The type invariant property on line 16 defines that the be-
havior must respect the Typelnvariant for every state. The
type invariant (line 10-15) is quite straightforward as the
variables now and Observations must be in any state allowed
by the initial predicate. The function buffer must respect
that for any reader, the set of observations requested is a
subset of the stored observations(line 15).

This system being a memory storing the result of transcrip-
tions, its fundamental operations are defined as read(line
19) and write(line 17). The write operator defines the next
state of the variable Observations as being the union of the
current value of it and of the new observation that is written.

The read operator is a bit more complex as it takes a reader
and a set of requests. It defines the value of the next state
of the function buffer and changes the value associated to
the human reader. It sets this to the set of all observations
which satisfy at least one request(line 20-22). Each request
is a record consisting of a type(either human, object, term
or date) and a value that is requested for that type. The
reader can then feel free to read the buffer prepared for him.

The next state actions of the memory are defined as Write(line
23), Read(line 27) and NeztNow(line 31). A Write action
occurs if there exists a human, an object and a term such
that the operation write for the time of now is true(line
24-25). A write action leaves the variables buffer and now
unchanged(line 26).

The Read action occurs if there exists a human, an object or
a term such that the operation read is true for the human as
the reader and the requests on the term and the object(line
28-29). The read operation changes the buffer but leaves
the variables now and Observations unchanged(line 30).

The NextNow action adds a second to the now variable if
the resulting value is still in Time. It leaves the variables
buffer and Observations unchanged(line 32).

We now define the next state action of the whole memory
NextCollaborative TaggingMemory as being the disjunction
of the actions Write, Read and NextNow(line 33-34).

The specification of the memory is defined by the predicate
Collaborative TaggingMemorySpec which is the conjunction
of the initial predicate and the temporal expression which re-
flects that for all states, the next state action is true. There
can be stuttering steps which leave the value of the variables
unchanged(line 37).

We now have the full specification of the collaborative tag-
ging memory. In the following subsection we show how we
used the model checker to verify it.

Model Checking The Collaborative Tagging Memory

Module

The TLA+ language comes with a model checker, TLC. We
used it all along the writing process and it has been valuable
in the refinement of the specifications. The model checker
takes a configuration file which give values to the constants
and states the properties to be checked. Figure 4 shows the
configuration file we use to model check the collaborative
tagging memory.

CONSTANTS
Humans = {"human:bob", "human:alice"}
Objects = {"object:1","object:2"}
Terms = {"term:1","term:2"}
Time = {1,2}
SPECIFICATION CollaborativeTaggingMemorySpec
PROPERTY TypelnvariantProperty

Figure 4: The configuration file used to model check
the collaborative tagging memory specification.

The model checker generated 66307 states and found 65792
distincts states without errors. The difference reflects the
number of ways which reach states with same values. It
means that the type invariant property is respected for any
state and that the specification permits to cover all these
states.

MODULE Collaborative TaggingMemory

1 EXTENDS Naturals, TLC
2 CONSTANTS Humans, Terms, Objects, Time
3 VARIABLES Observations, now, buffer

4 InitCollaborative TaggingMemory 2

5 A now € Time

6 A Observations €

7 SUBSET {[human — human, object — object, term — term, date — date] :

8 human € Humans, object € Objects, term € Terms, date € {t € Time : t < now}}
9 A buffer = [human € Humans — {}]

10 Typelnvariant =

11 A now € Time

12 A Observations €

13 SUBSET {[human — human, object — object, term — term, date — date] :

14 human € Humans, object € Objects, term € Terms, date € {t € Time : t < now}}
15 AV reader € Humans : buffer[reader] € SUBSET Observations

16 TypelnvariantProperty EN=! Typelnvariant

17 write(writer, object, term, date) 2 ’Writing adds a new observation.

18 Observations’ = Observations U {[human — writer, object — object, term — term, date — date]}
19 read(reader, requests) 2 ’Reading puts the requested observations in a buffer for the reader.
20 buffer’ = [buffer EXCEPT ![reader] = {

21 observation € Observations : A request € requests :

22 observation[request.type] = request.value}]

23 Write =

24 Jhuman € Humans : term € Terms : 3 object € Objects :

25 A write(human, object, term, now)

26 A UNCHANGED (now, buffer)

27 Read =

28 Jhuman € Humans : Iterm € Terms : 3 object € Objects :

29 read(human, {[type — "term”, value — term], [type — “object”, value — object]})

30 A UNCHANGED (now, Observations)

31 NextNow =

32 (now + 1) € Time A now’ = now + 1 A UNCHANGED (Observations, buffer)

33 NextCollaborative TaggingMemory 2 | A next state is defined by either reading, writing or passing the time.

34 Read v Write V NextNow

35 Collaborative TaggingMemorySpec 2
36 A InitCollaborative TaggingMemory
37 A O[NegtCollaborative TaggingMemory] now, Observations, buffer)

Figure 5: The CollaborativeTaggingMemory specification

2.2 The Collaborative Tagging System

Figure 7 presents the full collaborative tagging system spec-
ifications. According to Figure 3, the collaborative tagging
system contains a collaborative tagging memory that we
specified in the previous subsection. We instanciate the
memory module (line 4) and define as constants and vari-
ables the same one of this module. We introduce a new vari-
able Representation which represents the state of the mind
of each human. The initialization predicate consists of the
initialization of the memory and the definition of the repre-
sentations variable(line 11-12). A representation is a record
which consists of a human, an object and a term; initially,
the representations is any subset of all possible representa-
tions. We explain line 13 at the end of this subsection.

The two actions shown in Figure 3 are tag(line 21) and
retrieve(line 19). These are both interfaces to the collab-
orative tagging memory.

The next state actions are defined as Tag and Retrieve pred-
icates on lines 30 and 23. The Retrieve action occurs if the
reader has a representation which can help him to read ob-
servations from the memory which change his representation
(lines 25-29). The Tag action occurs if the writer has a rep-
resentation that he can write as an observation(lines 31-33).

The next state action Nezt is defined as the disjunction of
the NextNow action from the memory and for any human
either the Tag or the Retrieve action(line 34-36).

The full specification predicate is shown on lines 37 and 38.
It is the conjunction of the Init predicate and for all states
of the Next action.

We introduce here a theorem that is implied by the specifi-
cation: “Humans know something about the world”. This
is defined on lines 5 to 8 as being equals to: for all humans
there exists a representation owned by the human. Every-
one knows at least something about the world, otherwise he
could not tag, neither retrieve anything and the property
Consistency would never occur. The consistency property
is defined as eventually every human has the same represen-
tation(line 14-18).

Model Checking The Collaborative Tagging Specifica-
tion
To model check the theorem presented previously, we need

to check that the property ConsistencyProperty is respected.
We introduce in the Init conjunction the predicate

HumansKnowSomethingAbout The World. Otherwise the prop-

erty never occurs. This is called an implied init. Figure 6
presents the configuration file used to model check the col-
laborative tagging system.

The data given as argument to the model checking is the
same we used to model check the collaborative tagging mem-
ory. TLC found 65792 distinct states and 329216 states were
generated. The number of distincts states is the same as
with the collaborative tagging memory, which sounds natu-
ral as we use the same data and that the tag and retrieve
actions are mappings to the read and write actions. This
gives us confidence in the validity of both specifications as

CONSTANTS
Humans = {"human:bob", "human:alice"}
Objects = {"object:1","object:2"}
Terms = {"term:1","term:2"}
Time = {1,2}

SPECIFICATION CollaborativeTaggingSpec
PROPERTIES ConsistencyProperty TypelnvariantProperty

Figure 6: The configuration file used to model check
the collaborative tagging system specification.

we obtain the same results.

3. FUTURE WORK
3.1 Possible next steps

Given a valid specification of collaborative tagging as pre-
sented here, there are several ways that it can be exploited.
The most concrete step is to use it as a guide in design and
architecture of an implementation. For example, the spec-
ification can be used to guide the choice of data structures
and representations for observations. We discuss this in the
next subsection.

Another possibility is to explore enhancements to collabo-
rative tagging in a semantic way. For example, what is the
effect of associating several terms at the same time with an
object? Is that different from assigning each of the terms
separately?

Third, we could define other Internet services such as col-
laborative search and then explore the interaction of these
services with collaborative tagging. This, indeed, can be the
way to gain control over the ever-expanding set of services
and understand their implications as they are introduced.

3.2 Implementation proposals

We are currently working on the implementation of these
specifications in the Gnowsis semantic desktop [5], defined
as:

“A Semantic Desktop is a device in which an individual
stores all her digital information like documents, multime-
dia and messages. These are interpreted as Semantic Web
resources, each is identified by a Uniform Resource Identi-
fier (URI) and all data is accessible and queryable as RDF
graph. Resources from the web can be stored and authored
content can be shared with others. Ontologies allow the user
to express personal mental models and form the semantic
glue interconnecting information and systems. Applications
respect this and store, read and communicate via ontologies
and Semantic Web protocols. The Semantic Desktop is an
enlarged supplement to the user memory.”

In the specifications, we did not care if the tagging memory
is distributed or centralized, for implementation purposes
in the case of a desktop software system, we propose to
implement this memory as distributed amongst users and
shared through the use of RSS (Really Simple Syndication)
using the XML format of Figure 8.

MODULE Collaborative Tagging

W N =

EXTENDS Naturals, TLC

CONSTANTS Humans, Terms, Objects, Time
VARIABLES Observations, Representations, buffer, now
INSTANCE Collaborative TaggingMemory

0~ O Ot

10
11
12
13

HumansKnowSomethingAbout The World 2 Everyone has at least one representation of something.

YV human € Humans :
Jrepresentation € Representations :
representation.human = human

Init 2 ’The memory is initialized, every human has representations.

A InitCollaborative TaggingMemory

A Representations € SUBSET {[human — human, object — object, term — term] :
human € Humans, object € Objects, term € Terms}

A HumansKnowSomethingAbout The World

14

15
16
17

18

Consistency 2 Eventually everyone has the same representation of every object.
Y human € Humans : V other € (Humans \ {human}) :

{(r.object, r.term) : r € {r € Representations : r.human = human}} =
{(r.object, r.term) : r € {r € Representations : r.human = other}}

ConsistencyProperty = <& Consistency

19
20

21
22

retrieve(reader, requests) 2 ’The retrieve action is defined as an interface to reading from the memory. ‘

read(reader, requests)

tag(writer, object, term, date) = ’The tag action is defined as an interface to writing to the memory. ‘

write(writer, object, term, date)

23

24
25
26
27
28
29

30

31
32
33

34

35
36

. A
Retrieve(reader) = ’When someone retrieves observations, it changes his representation.

UNCHANGED (now, buffer, Observations, Representations) N
V representation € Representations :
A representation.human = reader
A retrieve(reader, {[type — “object”, value — representation.object], [type — “term”, value — representation.term|})
A Representations’ = Representations U
{[human +— reader, object — observation.object, term +— observation.term] : observation € buffer[reader]}

Tag(writer) 2 ’When someone has representations, he can write them. ‘

UNCHANGED (Representations, buffer, now, Observations) A
V representation € Representations :
representation.human = writer A tag(writer, representation.object, representation.term, now)

Next = ’The time passes or humans can either tag or retrieve. ‘

V (NextNow A UNCHANGED (Representations, buffer, Observations))
V (Y human € Humans : Tag(human) V Retrieve(human))

37
38

Collaborative TaggingSpec 2
Init A O [N€$t} (now, Observations, Representations, buffer)

39

THEOREM Collaborative TaggingSpec = HumansKnowSomethingAboutThe World N\ ConsistencyProperty

Figure 7: The CollaborativeTagging system specification

The specifications of the collaborative tagging system helped
us to understand the least data needed in order for a soft-
ware system to behave like the collaborative tagging system.
In these specifications, an observation is a relation between
a human, an object, a term and a date. If we consider the
human and the object being identified by URIs (Uniform
Resource Identifier) as they are all considered as resources
in current systems, the term as a string, and the date as
a date, we can determine the collaborative tagging XML
schema which defines Collaborative TaggingMemory consist-
ing of one or more observations as follows. (This schema
will be documented and available soon on the collaborative-
tagging.org website.) :

<xs:schema
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
targetNamespace=
"http://collaborativetagging.org/schema"
xmlns:xct="http://collaborativetagging.org/schema">
<xs:complexType name="observation">
<xs:attribute name="human" type="xs:anyURI"/>
<xs:attribute name="object" type="xs:anyURI"/>
<xs:attribute name="term" type="xs:string"/>
<xs:attribute name="date" type="xs:date"/>
</xs:complexType>

<xs:complexType name="CollaborativeTaggingMemory">
<xs:element type="observation"/>
</xs:complexType>
</xs:schema>

Figure 8: The XML Schema of the collaborative tag-
ging observations.

The specifications lead to an understanding of the services
provided by both the collaborative tagging system and the
collaborative tagging memory. This simplifies the writing
of WSDL(Web Services Description Language) documents
describing these services. We plan to do it lately together
with the implementation of these services within Gnowsis.

4. CONCLUSION

This paper contributes to the emerging collaborative tagging
field with the formal specifications in TLA+ of both the
collaborative tagging memory and the collaborative tagging
system. We gave confidence in the validity of these by using
the TLC model checker. It results in a better understanding
of possible software systems respecting these specifications.
We enunciated a theorem resulting from this understanding.
We proposed an XML schema to uniformly represent the
collaborative tagging observations.

We hope that others will enhance and continue to validate
the properties of the collaborative tagging system specifi-
cation. Over time, modular and incremental specifications,
such as given here, are the only way to understand and ex-
plain how complex, interacting, evolving systems work. We
hope that a collection of such specifications about impor-
tant services on the Internet will enable us to reason about
the interactions of existing and emerging services and their
behaviors.

5. REFERENCES
[1] Scott Golder and Bernardo A. Huberman. The
structure of collaborative tagging systems. Journal of
Information Science, 32(2):198-208, April 2006.

[2] Michael Jackson. Software requirements €
specifications: a lexicon of practice, principles and
prejudices. ACM Press/Addison-Wesley Publishing
Co., New York, NY, USA, 1995.

[3] Leslie Lamport. Specifying Systems: The TLA+
Language and Tools for Hardware and Software
Engineers. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2002.

[4] Cameron Marlow, Mor Naaman, Danah Boyd, and
Marc Davis. Position Paper, Tagging, Taxonomy,
Flickr, Article, ToRead. In Collaborative Web Tagging
Workshop at WWW2006, Edinburgh, Scotland, May
2006.

[5] Leo Sauermann, Ansgar Bernardi, and Andreas
Dengel. Overview and outlook on the semantic
desktop. In Proceedings of the 1st Workshop on The
Semantic Desktop at the ISWC 2005 Conference, 2005.

[6] Patrick Schmitz. Inducing ontology from flickr tags. In
Collaborative Web Tagging Workshop at WWW2006,
Edinburgh, Scotland, May 2006.

[7] Frank Smadja, Andrew Tomkins, and Scott Golder.
Collaborative web tagging workshop. In WIWW2006,
Edinburgh, Scotland, 2006.

[8] Jennifer Trant and Bruce Wyman. Investigating social
tagging and folksonomy in art museums with
steve.museum. In Collaborative Web Tagging
Workshop at WWW2006, Edinburgh, Scotland, May
2006.

[9] Ludwig Wittgenstein. Tractatus Logico-Philosophicus.
Routledge, 1922.

[10

Zhichen Xu, Yun Fu, Jianchang Mao, and Difu Su.
Towards the semantic web: Collaborative tag
suggestions. In Collaborative Web Tagging Workshop
at WWW2006, Edinburgh, Scotland, May 2006.

