
Applying the Semantic Web as a Writer's Tool

Rick Thomas
Independent Software Developer

+1 404-966-5658

saaw2006@evenview.com

ABSTRACT

The process of writing and the practice of Semantic Web (SW)
annotation are similar: each takes ideas and interprets them
into progressively refined symbols. Drawing on this parallel,
they may be mutually improved, conceptually and by the use
of software tools. As an adjunct to writing, the SW will be more
than a distributed data scheme and will be part of the creative
process. Supported by the Semantic Web (SW), writing can be
more flexible and include richer, non-linear structure.

The key insight is that the basic operation of dividing a re-
source and commenting on the relations exposed by the divi-
sion recurs throughout the process of writing. This operation
is rich enough semantically to serve as the basis of interpret-
ing and annotating text for use in the SW.

This paper describes an experimental tool that supports this
operation for a writer. Intentionally, the tool is minimal. The
writer produces text while organizing it at the paragraph level
into related, web-addressable boxes. The spatial relations of
these boxes express a few general semantics, such as list mem-
bership, likeness and currency. Thus the writer annotates with
informal structure, which enhances the use of annotation tools
by giving identities to and relations among more narrowly fo-
cussed portions of text. The notes and relations established are
useful for the writer's access to the text and provide a scaffold
for revisions.

In this basic use, overt URIs and RDF are avoided, as is embed-
ded markup for data and links. In the implementation, though,
boxes also contain the normally hidden RDF/N3 that describes
box properties and relations. For the writer comfortable with
RDF, the boxes can be used for full annotation.

Looking forward, this approach lends itself naturally to sup-
port for finer-resolution collaboration. Perhaps such a tech-
nique will help writers to discover and formulate relations and
thus allow texts to interoperate in the future SW.

1. INTRODUCTION

We often think of the Semantic Web as a database of metadata
describing resources. This view will be challenged, though, as
we progressively divide those resources and model their inter-
nal relations. For text resources, metadata will outgrow the text
itself as we first treat paragraphs as resources and incremen-
tally represent the explicit meaning of sentences.

Explicit language semantics has been pursued in many efforts:
for translation, for literary studies, for legal argumentation and
in computational linguistics. But there have been no common
standards by which these techniques could interoperate. The
SW, extended for the task, may serve this purpose and become
the “data bus” for modeling text. But the SW is not yet able to
serve this role. Its expressivity has been circumscribed to
avoid logical undecidability. And its method of reference
would be quite unwieldy if used at the word level.

As a step toward this future, this paper sketches an approach
for generating and using ontologies in writing. Basically, the
writer’s division of a text into paragraphs is a key opportunity
to capture the meaning of the work-in-progress. Each such di-
vision implies relations among the paragraphs that may be
made explicit. This structure, plus the writer’s comments about
the divisions, become a scaffold for semantic annotation.

Use of this technique depends on software that can manage the
newly explicit relations in the text, while hiding the technical
details. Such a tool will offer direct benefits to the writer for
organizing the work-in-progress while revealing resources that
may be usefully addressed by the SW.

2. WRITING AND THE SEMANTIC WEB

A written work is meaningless in the SW until semantic anno-
tations describe its otherwise opaque content. Metadata may
describe its author and related documents; keywords and refer-
ences may be extracted and indexed for easy access; commen-
tary can be added to paragraphs in the text. But only with the
use ontologies specific to the domain of the text can it be said
to have meaning in the SW.

There is a gulf between SW annotation and writing: Annotation
works with macro-scale resources and ontologies that are
general-purpose and fixed. Writing addresses micro-scale re-
sources and needs ontologies that are content-specific and for-
mative.

Ontologies for annotation come from many processes:
1) conventional data ontologies describe embedded data
within a resource such as people and places; 2) annotation on-
tologies associate comments and bookmarks with general re-
sources; 3) general content ontologies mark the relations
among portions of the work; 4) generic ontologies are used to
label resources freely, which is one way to think of social tag-
ging; and 5) emergent ontology models the domain with
structure generated incidentally from some mass process.

These ontologies are similar in that they are external to the
work and fixed relative to it. (This assumption is relaxed
below.) On the other hand a formative ontology is initially im-
plicit in the work and must be drawn out to model the content
as it is developed.

The work is annotated incrementally, starting with basic on-
tologies and by gradually developing and applying more spe-
cialized ontologies. This modularity is the great strength of
the SW. Data-oriented ontologies stand with ontologies that
model the work directly. Multiple ontologies describe differ-
ent views of the same resources, and they work together be-
cause they describe a network of relations linked by these piv-
otal resources. More classes of resources and more relations are
distinguished among the resources, forming a network of
meaning.

But if we require that the writer does nothing with explicit on-
tology, how can we capture structure that can be formed into
peer ontologies? The premise here is that as the writer divides
the initial opaque text and comments on the divisions, the
significant structure of the work is revealed. The comments
and relations are then used to guide the formation of provi-
sional ontologies and the application of SW annotations.

If this process of revealing implicit meaning is to be guided
by SW technologies, we need a combination of natural lan-
guage and the SW that offers the best of both and makes them
mutually supportive. Three areas must be addressed: expres-
sivity, reference and usability.

A writer commands natural language, a system of unlimited
combinatorial expression. Language freely mixes resources,
statements, meta-statements, and ontology, though awkwardly
and unsystematically. The process of writing depends exten-
sively on knowing the provenance, standing and relations of
statements at a detailed level. The language of the SW is, by
contrast, limited to a subset of first order logic. Resources are
separate: statements and ontology are about resources, while
the conventions to treat statements as resources are ad hoc.

But this approach to using the SW for writing immediately re-
quires friendly reification. The writer divides the text and
comments on the now explicit relation between two para-
graphs. In other words, the elemental structure involved is
statements about statements. While this brings the expressiv-
ity of the SW in line with language's all-in-one nature, it com-
promises the logical design of the SW. Yet much can be done
without the use of inference and perhaps in practice the use of
reification can be isolated.

Reference in natural language is highly constrained because
its origins are verbal, thus linear. Expressing complex struc-
ture clearly is difficult: reference is either relative and brittle

or precise and unwieldy. Pronouns are ambiguous, clause
structure is confusing, and cross reference is ugly and incon-
venient. The SW solves these problems by using universal
identifiers, URIs. This consistency allows for ubiquitous defi-
nitions, relations, comments and paraphrases (once its over-
head is accepted). The SW is good with structure, but inelegant
(to say the least) for linear expression. The approach here is to
present the writer with local reference like natural language,
but to undergird it with absolute URIs.

Writers cope with many fragments and much iteration on the
way to a finished, linear work. The SW can easily represent the
complexity, but this would be of little use without ways of ma-
nipulating writing-specific structures. This design must pre-
sent views of the work that are clear and persistent, yet reflect
the detailed structure of the content.

3. ANNOTATION + WRITING = SCIENCE

Before discussing design, it is helpful to explore the flexible
and dynamic use of ontology by analogy with the scientific
method. This analogy will expose the implicit activities in an-
notation and writing. In turn, that will illuminate the synergies
between writing and the SW to guide the design of software.

The scientist works in several phases: observation, hypothesis
formation, prediction of results and experimentation to test the
predictions. Observation begins by selecting a manageable do-
main and collecting data that characterizes it. Hypotheses are
formed to describe the regularities within the observations.
Predictions project the data and hypotheses to new outcomes
and experiments test the hypotheses and contribute to the
stock of observations.

Consider the parallel with annotation. Annotation starts with
an interest in a domain of resources (Observation). Ontologies
are chosen that will structure that domain (Hypotheses). Anno-
tation is applied and presupposes that the annotation is correct
(Prediction), and that is confirmed by a consensus on its accu-
racy or usefulness (Experiment).

The analogy brings out a lot that is implicit in the simple act
of annotation. It first requires an active choice of resources.
This selection, which may be incorrect and incomplete, colors
all the annotation. It requires a distinction to be made and jus-
tified by the annotator.

Annotation requires a choice of ontologies. Ontology is usu-
ally taken to be fixed prior to its use in annotation. Sometimes
though, the annotator may not find an ontology that fits well,
or may find competing ontologies, or may be working in an
emerging domain, or may just prefer a casual approach. As an-
notation proceeds the ontology is tested, and may require
changes to refine terms and add new relations, or may be re-
placed altogether. Thus ontology is formative in general. Like-
wise, each annotation is conditional and subject to revision.

All these steps depend on the care, clarity and curation of the
annotator. In other words, the ontologies, the annotations, and
the users’ expectations are a system that must be kept tuned.
These stand as important criticisms of the SW, but this is not
intended to be dismal. Many domains are intuitive and stan-

dard, but fundamentally, semantics are negotiated in a process
of annotation where divisions are made and conventions about
those divisions are formed. Thus SW implementations should
support revisability.

This potential for variation helps to understand writing, which
is by comparison unstructured. The writer reorganizes and re-
writes, iteratively. Source materials and drafts are associated
and ranked, and are folded together with the writer's thoughts.

Compared to science then, writing begins with a selection of
sources as context and inspiration (Observations). A plan for
the work defines terms, states themes and sketches arguments
(Hypotheses). The writer then drafts text to support the plan,
drawing support from the context (Prediction). Reading the
draft is the test that leads to a revised plan and a new draft
(Experiment). (Editors and readers are essential participants,
but the focus here is on the sole writer.)

The analogy illuminates the planning and testing phases of
writing. In planning, the writer intuitively organizes the do-
main with borrowed, discovered and invented regularities. It is
like ontology, but it initially has only one instance - the text
itself. It is not necessarily explicit or shared. If it is explicit, it
is expressed informally within the text.

Each new draft influences this intuitive ontology, which in
turn influences the next draft. This formative understanding of
the domain in effect carries the work's meaning from version to
version: text is held constant while the writer ponders mean-
ing; meaning is held constant while language is changed. This
is a process of interpretation, where the meaning is represented
with one set of symbols and then recast to new symbols - more
clear, more familiar, more appropriate. This evolution is central
to writing. As for general annotation, the process generates
distinctions that are the basis of formative ontology and may
also be incorporated into the text.

This is not to suggest that a writer will model the work explic-
itly (though for some works, like technical papers, this may be
feasible and desirable). Even so, a tool can help manage the
distinction between plan and text. If the outlines of the intui-
tive ontologies are revealed by the writer's actions, they can be
caught, refined and support the fluid process of writing.

4. AN INTERFACE FOR WRITERS

The strategy for the design is simple: 1) Provide a way to par-
tition the text of a work-in-progress into small resources. 2)
Describe the resources in terms of a simple ontological struc-
ture. 3) Capture the structure of the relations among the re-
sources and use it to guide semantic annotation.

The interface is simplified to one primary element - a box,
which contains text (and hidden RDF) and which is presented
on a page with other boxes. As far as possible the interface is
limited to editing text in a box and positioning boxes to indi-
cate relations.

The writer reorganizes, ranks and associates text using the
boxes as proxy, and then rewrites within boxes while referring
to related text. This provides a frame for the iterative writing
process.

Boxes serve four purposes in the design: text editing, SW re-
source identity, spatial relations representing semantics and
spatial relations to engage the user's visual thinking.

4.1 Text editing

Text editing is in a series of vertically stacked boxes, some-
what like writing in the cells of a spreadsheet or outliner. These
boxes are in a list relation. In addition, boxes may be moved
freely within the page. Two boxes may be related, which en-
compasses their spatial relation and a comment.

One of the goals of the design is to understand the interplay
between text editing in boxes and short-range reorganization
of boxes. Boxes outside the linear flow of text provide a con-
venient way to store snippets, but the mechanics of editing are
still less convenient than a text editor. Support for moving
text between boxes based on box relations would be helpful.

4.2 Semantic Web resource identity

Boxes are optimized for a division of text to the paragraph
level, but not finer to the word level. The box is a proxy for its
contents and so only relations to the box are available repre-
sent relations to the content. This compromise avoids refer-
ences directly into the text - a text that is frequently changing.
This limits modeling of details and may be ambiguous, but
this is moderated by the limited scope of the box. (RDF within
the scope of the box may be used but this is not supported by
the interface and may be difficult to maintain.)

On the other hand, at the paragraph level, relations addressing
the whole resource may be accurate enough, so the need for
links embedded in the text is reduced. Giving up precise loca-
tion of reference yields a simpler, consistent structure and eas-
ier editing. The reference is narrower than, say, the page refer-
ence in a book index, but not as narrow as we are accustomed to
with an embedded hypertext link target.

As the primary resource in this SW application, boxes have
URIs, but they don't appear in the user interface. The writer rec-
ognizes a box by its text and its individual appearance - shape,
position on its page and relation to other boxes - and refer-
ences a box by gestures toward this visual representation.

4.3 Spatial relations for semantics

Persistent spatial relations of boxes on pages are associated
with logical relations. These relations are made by user ges-
tures. Two boxes are related by their relative position, and a
comment applied to the relation in the form of a third box.
These relations are simple and general in the interest of refin-
ing the user interface gestures and learning how expressive a
simple interface can be.

There are two relations: List and Like. List locates a box in a
sequence of boxes. Visually, boxes are connected bottom to
top down the page, making explicit the normally implicit rela-
tion between paragraphs. Like is shown by proximity and
stands for any relation between boxes (other than List). Unlike
graphs that depict RDF there are no arcs that show the relation.
Instead, pairs of like boxes are be highlighted together and a
third box commenting on the relation is shown. The comment

text can say anything (and its RDF may detail the semantics).

The comment box (which may also be used with the List rela-
tion) is the key to capturing the structure of the work as a scaf-
fold for annotation. The relation between boxes is a stand-in
for any possible RDF statement. The comment is a stand in for
any possible ontology.

It is worth noting that the boxes provide a context for both
text and RDF, useful for controlling scope for search and infer-
ence as well as for text indexing.

4.4 Spatial relations for thinking

Boxes are arranged on a page, implemented as a web browser
tab. Pages are organized as notebooks in the order that they are
created. The page is a neutral presentation area for boxes for
assembly of the work. It is also a boundary for cognitive
scope, a working context. The unique visual layout of its
boxes engages the writer's spatial memory and reasoning.
Boxes also give the text a stronger identity by location. Even
if the text scrolls within its box, the box gives a better spatial
cue than remembering that a paragraph is, say, two thirds
through the document. It adds an additional, natural means of
recall and orientation.

The original impetus for this application was to import the
content of handwritten notebooks into the computer. Scanning
and transcribing is easy, but capturing the relations intended
by sketches and side notes lead to this approach. The spatial
relations of these notes imply semantic relations.

When the box layout represents a physical page the number of
relations is limited and the layout can be fixed until the user
changes it. This persistence is important for later recall.

On the other hand, this annotation approach leads to the use of
many more relations than resources. To work within the page,
temporary layout transforms are needed. Managing these
transforms is the most difficult part of this design.

Here are several cases: 1) With a large number of small boxes
there may not be enough room to see the text when editing. In
this case the current box is enlarged while surrounding boxes
keep their same relative positions. 2) A box may be in more
than one List and have many Like boxes so the relations would
be obscured if they are shown all together. Temporary or per-
manent selective views allow focus. 3) Comments on relations
between boxes are placed on a different plane and are shown
only when the boxes are addressed, unless the box is “reified”
as a permanent box on the page. 4) A query of either box text
or RDF yields a collection of boxes that are displayed to-
gether, on a new page if needed. 5) Importing data presents a
similar problem, for example, a directory of links and files
with associated metadata.

5. IMPLEMENTATION AND DEMO

A prototype of the user interface is implemented using Java-
script in the Firefox browser. Python in a local server imple-
ments the RDF processing and text indexing.

The text is formatted with a plain text markup syntax, which is

extended to carry RDF/N3. Preprocessing is used to reduce re-
peated syntax, to expand references to box and page, and to
convert some simplified notations to RDF/N3.

Current implementation is experimental, though useful, and is
being used to refine the user interface design and concept.

6. CONCLUSION

This project takes a step toward a SW for less structured activ-
ity. The concepts and prototype serve to explore how SW ma-
chinery can stay invisible and still help the writer.

The key insight is that the basic operation of dividing a re-
source and commenting on the relations exposed by the divi-
sion recurs throughout the process of writing. This operation
is rich enough semantically to serve as the basis of interpret-
ing and annotating text for use in the SW.

Looking forward, this approach lends itself naturally to sup-
port for finer-resolution collaboration. Perhaps such a tech-
nique will help writers to discover and formulate relations and
thus allow texts to interoperate in the future SW.

7. REFERENCES

The influences for this work are too numerous and diffuse to
acknowledge in a small space. Also, important prior work has
no doubt been neglected. In the interest of correcting these
omissions and continuing to improve these ideas, online refer-
ences are available at http://www.evenview.com/saaw2006/

Topics include: Emergent and formative ontologies; Contexts
and reification; Merging and ontology; Tools for writers; Evo-
lutionary epistemology.

8. ACKNOWLEDGEMENTS

Thanks are due to the reviewers of this paper. They have sug-
gested important corrections and clarifications.

