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Abstract. In typical categorization tasks, humans are presented with a sequence 

of instances and report whether each instance is a member of a given category 

or not. In the current study, we examine the relationship between the reaction 

times (RTs) of human participants and the position of the instance in the con-

ceptual space. Our main hypothesis is that instances closer to the boundary of 

the two categories, which are harder to be categorized, will require longer cog-

nitive processing, resulting in longer RTs. Human subjects categorized images 

of novel objects to one of two given categories (represented by images of their 

prototypes); the selected category, RT and confidence rating for each trial were 

recorded. For trials with longer RTs people responded with less confidence and 

were more prone to making errors than for trials with shorter RTs. Moreover, 

people responded faster to stimuli with high similarity to at least one of the pro-

totypes of the given categories than to stimuli that were distant from both proto-

types, and hence closer to the boundary of the two categories, confirming our 

main hypothesis. 
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1 Introduction 

In typical supervised and semi-supervised learning settings of machine learning, hu-

man teachers are presented with a series of elements and are asked to report for each 

element whether it is a member of a given category or not, usually by assigning a 

positive or a negative label to the element. Similarly, in psychophysics experiments, 

participants are given a series of stimuli and are asked to decide for each stimulus in 

which of the given categories it belongs. In such experimental designs, even if the 

task does not explicitly require a positive/negative label, the given categories are usu-

ally two well defined and complementary concepts, making the task analogous to the 

supervised learning training setting of machine learning. For example, Graf and 

Wichmann [5] implemented a gender categorization task with visual images of human 

faces, where participants had to categorize images to males and females. If we assume 

that the two categories of males and females are complementary (i.e., each face is 

either male or female), then the task would be logically equivalent to assigning posi-
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tive and negative labels w.r.t. one of the categories (even if, psychometrically speak-

ing, changing the instructions of the task could possibly alter the results). 

Certain previous approaches combined empirical psychophysics results and ma-

chine learning, aiming at a better understanding of human categorization processes. 

On the contrary, the main purpose of the present work is towards the opposite direc-

tion. Instead of using input from machine learning techniques to explain the experi-

mental psychophysical results, our aim is to examine how the use of additional input 

coming from human teachers could presumably improve the existing machine learn-

ing techniques. 

Existing predictive models of supervised and semi-supervised classification use la-

bels produced by human teachers as a training set to classify future observations. We 

posit that considering reaction times (RTs) as an indicator of instance typicality in 

conceptual spaces, and incorporating RTs in the training material of the machine 

learning procedures, could possibly lead to better classification algorithms. As a first 

step towards this direction, in the current work, we examine the relationship between 

the RTs and the position of the instance to be categorized (target) in the conceptual 

space. Given that (i) RTs are found to provide a good approximation of distance be-

tween the element to be classified and the SH [5–7], and that (ii) in experimental set-

tings it is easier to measure RTs than distances, which are internal representations of 

human minds, we argue that “considering RTs in addition to the labels given by hu-

man teachers in supervised and semi-supervised settings, could potentially provide 

valuable input for more efficient learning algorithms”. Specifically, based on previ-

ous experimental results, we suggest that targets closer to the boundary of two catego-

ries are harder to be categorized, in the sense that they require longer cognitive pro-

cessing, which is manifested by longer RTs.  

Although we are unaware of any previous work trying to examine the above hy-

pothesis, there has been work that examined an analogous hypothesis using the self-

reported confidence of the users (confidence rating; CR). Ji and Lu [11] developed 

SVMAC, a novel support vector machine with automatic confidence, which is found 

to be significantly more accurate for gender classification than other traditional algo-

rithms. Conceivably, one could also consider additional information from the teach-

ers, including for example an explanation regarding their judgments, beyond their CR, 

to gain even more quantitative input about their decisions. If the improvements of 

such additional requirements are significant, then it might be worthwhile sacrificing 

some of the teacher’s time for better machine learning performance.  

Unlike Ji and Lu’s [11] suggestion towards more efficient classification algo-

rithms, the approach we suggest does not require any extra effort or time by the 

teachers, since the value of the RT is automatically recorded along with the teacher’s 

response. As an extension of our approach, we could also consider other types of 

passive sources of information, acting as valuable input for our algorithms. For 

example, using some eye-tracking techniques during an image categorization task, we 

could track the visual processing of the stimuli. Examining the parts of the image 

where the eye is focused for longer time periods we could gain some valuable insight 

about the features, or the parts of the images, that guided the teacher’s decision. 

Combining quantitative results coming from RTs with qualitative information coming 



 

from eye-tracking techniques could give us some valuable insight into the cognitive 

processing and the factors that guided the decision making for each label. 

The experiment of this paper is part of a longer research path towards our goal. The 

next step is to practically test whether the use of such additional input in the 

implementation of learning algorithms accelerates the learning process and improves 

the efficiency of the algorithms. The use of additional input could be implemented in 

several ways. One way is to filter the responses based on certain criteria and exclude 

the responses that do not meet these criteria from the training data. For example, 

excluding the responses for which the RTs are shorter than a minimum value (to 

avoid instances selected without any processing of information), or ignoring the 

responses for which the RTs are longer than a maximum value (implying less typical 

instances of a category) could be some types of filtering. Another way is to implement 

some already established techniques for using additional information such as the 

LUHI [18] and the LUPI [17] paradigms. In such techniques, the additional 

information is only provided during the training phase and is not available during the 

testing phase. 

In the following sections, we demonstrate current empirical work on categoriza-

tion, followed by a detailed description of the experimental design and the stimuli we 

used. We provide a detailed explanation of why we chose such a setting, and point out 

which methodological gaps of previous studies we are trying to fill. We then provide 

a more detailed description of the method we used regarding the participants, the 

materials used, the experimental design, and the procedure we followed. After pre-

senting and discussing the results, we conclude our findings and we suggest the next 

steps to be taken. 

1.1 Current Empirical Work on Categorization 

Previous studies [5, 6] have reported lower RTs for correct responses than for incor-

rect ones, indicating that people respond faster when their response is correct. There is 

also experimental evidence [5, 6] that for higher metacognitive judgments of confi-

dence the RTs are lower, indicating that people respond faster when they are more 

confident about their response. Moreover, participants of classification tasks were 

found to have metacognitive abilities, since their self-reported CR is negatively corre-

lated with the classification error (CE; Eq. (1)); i.e., people are more confident about 

their choice when their response is correct [5]. Altogether, the above findings imply 

that longer RTs indicate classification cases in which people respond with less confi-

dence and are more prone to making errors. In other words, cases that are more ‘diffi-

cult’ to be classified by humans require longer processing of information by the hu-

man brain. But which are these ‘difficult’ cases to be classified? 

Taking it a step further, Graf and his colleagues [5–7], in order to better understand 

human classification processes, compared psychophysics results to machine learning 

techniques. They asked human participants to classify images of human faces to 

males and females, and correlated the human responses to the distance between the 

stimuli and the separating hyperplane (SH), as provided by several learning algo-

rithms. What they found is that people are more accurate, respond faster, and report 



higher confidence for their judgments when they classify human faces that are farther 

from the SH, than for those closer to the SH. Hence, one could argue that the ‘diffi-

cult’ cases to be classified come from the stimuli closer to the SH, while stimuli that 

are farther from the SH are classified easier. 

However, using the above experimental designs, human responses about categories 

(as well as the corresponding RTs and CRs) might be affected by (i) participants’ 

prior knowledge and personal interpretation of the given categories, and (ii) previous-

ly presented stimuli from the same category acting as exemplars of the category, a 

phenomenon known as the “old-items advantage effect”. 

In the present paper we are going to explore the relations between input from hu-

mans performing a categorization task and the similarity between the stimulus to be 

categorized (target) and the prototypes of the candidate categories. At the same time, 

we will try to limit potential effects arising from the nature of previous experimental 

designs, and check whether results are replicated. In the following paragraphs, we 

describe a new experimental design that addresses the above effects.  

1.2 Introducing our approach 

In the experimental design we used, participants were presented with three images of 

novel objects and were asked to categorize the image on the left part of the screen (the 

target t) in one of the two given categories, represented by two images a and b, on the 

right part of the screen (Fig. 1). After their selection, they were asked to report their 

confidence about their decision, on a scale from 1 (unsure) to 3 (sure). For each trial, 

we recorded three values: (i) the selected category, (ii) the reaction time (RT), and 

(iii) a self-reported confidence rating (CR) about the response. The experiment com-

prised eighty trials, which were presented sequentially to the subjects in random or-

der. 

 



 

Fig. 1. A screenshot of a trial of the experiment with images of (i) the target t to be categorized 

(left), (ii) the prototype a of the category A (top right), and (iii) the prototype b of the category 

B (bottom right) and the confidence level rating window, which was presented after a category 

was selected. 

The nature of the stimuli (images of novel objects) as well as our experimental de-

sign (presenting randomly-created triplets of images in each trial) resulted in a less 

straightforward categorization task. In some cases, the item to be categorized (target) 

could not easily fit to any of the given categories, while in some other cases the target 

could almost equally fit to both given categories. The purpose of such a setting was 

twofold. First, to test our hypothesis, we needed a range of possible arrangements of 

the target and the prototypes of the two categories in the conceptual space. Second, 

we argue that using a setting where the items to be categorized are not always clearly 

members of one and only one category better simulates more realistic situations. For 

example, everyday objects could be members of more than one category (e.g., a 

smartphone is also a camera), images might depict more than one object or concept 

(e.g., a picture of a beach view depicts the sea, the sun, the sky and maybe more con-

cepts all at once), excerpts of text do not always have a unique style to be character-

ized (e.g., a text might be characterized as scientific and educational at the same 

time), and users’ reviews might involve more than one emotion (e.g. a buyer might be 

angry and also disappointed by a product). In such cases, where there is not only one 

unique category where the instance fits, considering additional input such as the RTs 

could give us some more insight about the most dominant or representative category 

among all the candidate categories. In the following two sections we introduce some 

more technical benefits arising from our experimental design and we explain how our 

design limits potential effects that might be present in the standard classification 

tasks. 

Limiting possible prior knowledge effects for concept representation 

Human categorization of instances in commonly known categories such as males 

and females inevitably triggers effects arising from individual differences based on 

participants’ prior knowledge related to the given categories. Such differences might 

arise either by individual experiences or by other social or geographical factors (e.g., 

Asian male faces significantly differ from Caucasian male faces). Human information 

processing and decision-making depend on personal pre-existing mental representa-

tions of the category, whether the category is represented by a prototype, a set of ex-

emplars, or even by a set of rules of necessary and sufficient conditions. Even if ex-

perimenters explicitly ask participants to ignore any prior knowledge about the cate-

gory and base their judgments only on some given prototypes or rules, it is not guar-

anteed that such effects of the prior knowledge will be successfully inhibited.  

To avoid any pre-conceived categories, in our experiment we use a categorization 

task of unfamiliar objects coming from the NOUN database [9, 10], a collection of 64 

images of novel objects specially created for experimental research studies. Since 

participants are not familiar with the visual stimuli of the task, and hence they have no 



a priori knowledge of the target images and the categories represented
1
, we argue that 

the prior-experiences that might influence participants’ behavior are being limited.  

Moreover, experiments in previous studies make space for individual representa-

tions of the categories based on prior knowledge, allowing participants to use their 

own prototypes of the category. In our experiment, instead of naming the given cate-

gories, we represent categories with images coming from the NOUN database. This 

way, we explicitly define the prototype of each category by an image, preventing any 

possible subjective interpretations of the categories. Participants, having no other clue 

to base their decision, are somehow ‘forced’ to use the given image as the category’s 

prototype. 

Controlling the use of exemplars 

Considering the interaction between the prototype-based and the exemplars-based 

categorization processes [1, 3, 4, 12, 13, 19], shorter RTs do not necessarily indicate a 

lower distance between the stimulus and the prototype. Experimental psychology 

results [14–16] have shown that stimuli that are found to be similar to previously 

encountered exemplars of the category are categorized more easily (i.e., faster and 

more accurately) than non-familiar stimuli that are equally typical (or even more typi-

cal) members of the category. Moreover, when there is a pre-encountered exemplar of 

the category corresponding to the stimulus to be categorized, the categorization pro-

cess is based on the similarity between the stimulus and the known exemplar rather 

than between the stimulus and the prototype. This privilege of the exemplar w.r.t. the 

prototype is known as the “old-items advantage effect”. To highlight even more this 

effect, Hahn et al. [8] reported that exemplar similarity was dominant even in cases 

where basing categorization on a given rule would lead to perfect performance. 

Even if in our experiment we use a categorization task of novel objects, according 

to the “old-items advantage effect”, previously-encountered targets of a category 

could favor the categorization of new targets to the same category. This is why in our 

experimental design the candidate categories change between trials, instead of being 

fixed throughout the experiment. This way, we ensure that the only representation of 

the categories that will be used by the participants will be the prototype, as it is de-

fined by the experimenters for each trial. 

However, since the available images from the NOUN database were limited, some 

of the images would inevitably be presented more than once throughout the experi-

ment (either in the form of a target or in the form of a prototype of a category). To 

control any sequential effects caused by previously presented images, we randomized 

the order of the trials for each participant. 

Overcoming the obstacles caused by using unspecified concepts 

                                                           
1 Please note that even if the novelty of the objects implies that the categories are not well-

defined a priori, this does not imply that the categories of such objects are not pre-defined in 

the sense of Barsalou’s ‘ad hoc’ categories [2], which are categories of known familiar ob-

jects. 



 

Given that in our experiment the two categories of each trial are represented only 

by an image, and that the two categories differ from trial to trial, we only have two 

points in the conceptual space for each trial (acting as a prototype of the category). 

Therefore, the boundary between the two categories cannot be computed. In other 

words, the use of unspecified concepts implies the absence of an explicit boundary 

separating the two given categories. 

To overcome this obstacle, we approximate the notion of distance between the tar-

get to be categorized and the boundary of the two categories, by using the notion of 

distance between pairs of images (i.e., the target and the prototype of each category). 

For images of the NOUN database, the empirically derived distance between all pairs 

of images is provided (see Materials section). This is one more reason why we decid-

ed to use the NOUN database. 

Using the above approximation, we make the following assumptions. First, com-

paring the two distances (i.e., the distance between the target and the prototype of 

each category), we can prescribe the expected categorization of the target (which we 

are going to consider as the 'correct' label). Second, looking at the value of the two 

distances, we could get an idea about the position of the target in the conceptual space 

w.r.t the boundary separating the two categories. When the target is distant from both 

categories, we suppose that it is close to the boundary of the two categories. On the 

contrary, in cases where the target is close to one prototype and distant from the oth-

er one, we suppose that the target is distant from the boundary, lying on the side of 

the closest prototype. Under these assumptions, we are going to examine whether our 

experimental results are consistent with previous work, despite the methodological 

differences between the two experimental settings.  

2 Empirical Method 

Participants 

Our data derived from a human sample of 40 adults (25 males, 15 females), aged 

22 to 66, who participated voluntarily to the study by completing an online experi-

mental task. Participants were naïve to the purpose of the experiment and received no 

financial or other compensation for their participation. They reported to have a normal 

or corrected-to-normal vision and provided informed consent. All participants com-

pleted all trials of our experiment. 

For the descriptive analysis, we used the entire data set, while for the remaining 

part of our analysis we excluded two participants who were identified as outliers 

based on their RTs (see Results section). 

Materials 

In our experiment, we use the NOUN database [9, 10], a collection of 64 images, 

specifically designed for experimental research, especially for categorization studies. 

The objects depicted in the images are naturalistic, complex, multipart and 

multicolored, three-dimensional real objects [9], which in some respects resemble 

everyday familiar objects but at the same time are distinct and novel. 



Sixty of the images were used in our experiment due to their higher quality, while 

the remaining 4 images were used only in the practice session. All images that we 

used were resized to 300×300 pixels, to ensure fast loading during each trial of the 

experiment.  

Additionally, the NOUN database comes with a similarity matrix, providing a 

similarity rating for each pair of images. To obtain these ratings, Horst & Hout [9] 

performed an experiment, based on the spatial model of similarity. In their experiment 

participants completed a task of spatial arrangement, comprising 13 trials. In each 

trial, participants were given 20 images of the NOUN database and they were asked to 

arrange the images in the two-dimensional space, based on their perceived similarity 

(i.e., more similar items placed closer). Following the participants’ ratings, the exper-

imenters calculated all pairwise similarity ratings using multidimensional scaling 

(MDS) on the Euclidean distance for each pair of images. Lastly, Horst & Hout rank-

ordered all pairs of images into four quartiles, based on the distances between their 

elements. Pairs belonging to the first quartile were the most similar pairs, while pairs 

of the fourth quartile were the most dissimilar ones. In our experimental design, we 

group the pairs of images to similar and dissimilar, based on the given quartiles of 

Horst & Hout. 

Experimental design 

For our experiment, we created ordered triplets (t, a, b) of images, one for each tri-

al, where (i) t is the target to be categorized, (ii) a is the prototype of category A, and 

(iii) b is the prototype of category B. Using the 60 of 64 images of the NOUN data-

base, we created 205,320 = 60∙59∙58 ordered triplets of different images (t ≠ a ≠ b), 

by creating all possible permutations of 60 without repetition. 

We then characterized the above triplets based on the similarity ratings of each pair 

(t, a), (t, b), (a, b) of images, as provided by the creators of the database using a mul-

tidimensional scaling analysis [9]. To limit the number of our experimental condi-

tions, we created two groups of pairs; pairs of similar items (by merging the first and 

second quartiles), and pairs of dissimilar items (by merging the third and fourth quar-

tiles). Subsequently, we named the families of triplets w.r.t. the similarity between the 

elements of each pair (t, a), (t, b), (a, b). Pairs (t, a) and (t, b) were characterized as 

High (H) when their elements were similar, and as Low (L) when their elements were 

dissimilar. Similarly, pairs (a, b) were characterized as Similar (Sim) or Dissimilar 

(Dis) when the prototypes a, b of categories A, B were similar or dissimilar, respec-

tively. Based on the above terminology, we ended up with the following families of 

triplets: LL-Sim, LL-Dis, LH-Sim, LH-Dis, HL-Sim, HL-Dis, HH-Sim, HH-Dis, 

which consisted the eight conditions of our experimental design (Table 1, Fig. 2). 



 

 

Fig. 2. Percentages of triplets produced for cases of similar (left) and dissimilar (right) pairs of 

prototypes (a, b). The blue and orange circles represent all similar pairs (t, a) and (t, b), respec-

tively. 

In examining the families of triplets produced, we made some surprising observa-

tions. Presumably, one would not expect to find any HH-Dis pairs, since this would 

imply that the target t is highly similar to both the prototypes a and b, while a and b 

are not similar to each other. Similarly, LH-Sim and HL-Sim families of triplets were 

also unexpected, since in such scenarios the target t would be similar to only one of 

the two prototypes a and b, while a and b are similar to each other. However, such 

families of triplets, that we considered as less possible, were also created, in smaller 

proportions (Table 1, Fig. 2). 

Regardless the size of the produced families of triplets, we balanced our final ex-

periment across conditions. Hence, the final experiment consisted of 80 trials in total, 

10 trials for each condition, which were selected uniformly at random. The pool of the 

final selected triples was fixed for all participants, but trials were presented in random 

order for each participant, to avoid any sequential and order effects.  

Table 1. Multitude of triplets created for each condition. 

 Sim Dis Total 

LL 32,150 (16%) 19,458 (9%) 51,608 (25%) 

LH 18,902 (9%) 32,150 (16 %) 51,052 (25%) 

HL 18,902 (9%) 32,150 (16 %) 51,052 (25%) 

HH 32,706 (16%) 18,902 (9%) 51,608 (25%) 

Total 102,660 (50%) 102,660 (50%) 205,320 (100%) 

Procedure 

Participants were personally invited to participate in our study. Before initializing 

the procedure, we had a personal session with each participant, to make sure all ex-

perimental criteria were met. First, we made clear that a desktop or laptop is needed 



for participation (no mobiles, tablets, or other smart devices were allowed). In case 

they reported the use of a laptop, we imposed the use of a mouse (instead of the lap-

top’s trackpad) for submitting their answers. Even if the web interface was light 

enough to ensure flawless loading between trials, we also made clear that an average 

Internet connection speed is necessary during the experimental task. Finally, we 

strongly recommended that participants were in a quiet environment with no distrac-

tors, while completing the experiment. 

After making sure that all above criteria were met, we sent to the participants a first 

link to one of the experiment’s trials (from the practice phase) to calibrate their 

browsers. We guided them to zoom in / zoom out their browsers so that the frame 

surrounding all three images of the trial would cover most of the surface of their mon-

itor. After everything was set, we sent them a second link directing them to the web 

interface of the experiment and invited them to start. 

On the first screen of the experiment, participants were informed about the study 

and completed an electronic consent form. A screen with detailed instructions fol-

lowed, where participants were informed about the task, the timing and the self-

reporting rating about their confidence for each response. Regarding timing, partici-

pants were advised to answer as fast as possible without sacrificing accuracy, so that 

we ensure that their decisions involved not only perceptual but also conscious cogni-

tive processing. At the end of the instructions, participants were informed that a prac-

tice phase will follow, to ensure that the procedure is clear.  

The practice phase consisted of four trials, identical to the trials of the actual exper-

iment, during which no responses were recorded. Images that were presented in the 

practice phase were excluded from the actual experiment. After the practice was com-

pleted, participants were informed that the experiment begins.  

In each trial of the experiment, a triplet (t,a,b) was randomly selected from the pool 

of the pre-selected triplets of the experiment. To record the RTs, time started counting 

by the time all three images t, a, and b were presented on the screen and stopped as 

soon as the participant clicked on one of the two images a, and b. After their selec-

tion, a smaller window appeared and participants had to evaluate their confidence 

about their previous response. Participants selected one, two, or three stars, to report 

their confidence level and then they had to click on the “Show next” button to proceed 

to the next trial. To control the distance between the position of the mouse when ini-

tializing a trial and each category image a, b, we placed the “Show next” button in a 

position equidistant from both category images. Eighty trials (ten trials from each 

condition) sequentially appeared in random order for each participant. After complet-

ing all trials of the experiment, we thanked participants and redirected them to the 

webpage of our lab. 

3 Results 

3.1 Descriptive statistics 

Since our experimental design and the nature of the stimuli did not allow for an “ob-

jective truth”, ‘correct’ responses were considered only for the families of triplets for 



 

which the target t was similar with one of the prototypes and dissimilar with the other 

one (i.e., for the LH-Sim, LH-Dis, HL-Sim, and HL-Dis families). For these less ‘am-

biguous’ families of triplets, we considered as ‘correct’ response the prototype a or b 

that was similar to the target t. For example, for trials coming from the family of tri-

plets LH-Sim, the ‘correct’ response was the image b (i.e., the one positioned on the 

bottom right of the screen), while for trials from the family HL-Sim, the ‘correct’ 

response was the image a (i.e., the one on the top right of the screen). 

Based on the number of ‘correct’ and ‘wrong’ responses given by participants for 

each trial, we calculated the variable classification error (CE) by dividing the number 

of wrong responses to the number of the valid responses given for each trial (1). The 

CE value could only be calculated for the families of triplets where the ‘correct’ re-

sponse could be defined (i.e., for the less ‘ambiguous’ families). 

 

𝐶𝐸 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑟𝑜𝑛𝑔 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠+𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑟𝑜𝑛𝑔 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠
 (1) 

 

Descriptive statistics for CE, RT, and CR are shown in Table 2, Table 3, and Table 4, 

respectively.  

Table 2. Descriptive statistics for CE. 

Triplets 

family 

# of 

trials 
n/a (%) 

‘Correct’  

responses 

‘Wrong’  

responses 
CE 

LL-Dis 400 400 (100%) 0 0 - 

LL-Sim 400 400 (100%) 0 0 - 

LH-Dis 400 0 181 219 54,75% 

LH-Sim 400 0 199 201 50,25% 

HL-Dis 400 0 244 156 39,00% 

HL-Sim 400 0 289 111 27,75% 

HH-Dis 400 400 (100%) 0 0 - 

HH-Sim 400 400 (100%) 0 0 - 

Overall 3200 1600 (50%) 951 649 40,56% 

Table 3. Descriptive statistics for RTs (milliseconds). 

Triplets 

family 

# of 

trials 
Mean SD SE 

 95% CI 

 Lower Upper 

LL-Dis 400 4907 3737 187  4539 5274 

LL-Sim 400 5366 4186 209  4955 5778 

LH-Dis 400 4689 4198 210  4276 5102 

LH-Sim 400 5104 3894 195  4722 5487 

HL-Dis 400 4788 3960 198  4399 5177 



HL-Sim 400 4460 3562 178  4110 4810 

HH-Dis 400 4247 3301 165  3923 4572 

HH-Sim 400 4719 3730 187  4353 5086 

Overall 3200 4785 3842 68  4652 4918 

SD = standard deviation; SE = standard error; CI = confidence interval. 

Table 4. Descriptive statistics for CR (stars). 

Triplets  

family 

# of 

trials 
1 star (%) 2 stars (%) 3 stars (%) Average 

LL-Dis 400 173 (43,25%) 156 (39,00%) 71 (17,75%) 1,745 

LL-Sim 400 203 (50,75%) 136 (34,00%) 61 (15,25%) 1,645 

LH-Dis 400 135 (33,75%) 162 (40,50%) 103 (25,75%) 1,920 

LH-Sim 400 161 (40,25%) 159 (39,75%) 80 (20,00%) 1,798 

HL-Dis 400 150 (37,50%) 167 (41,75%) 83 (20,75%) 1,833 

HL-Sim 400 144 (36,00%) 165 (41,25%) 91 (22,75%) 1,868 

HH-Dis 400 119 (29,75%) 179 (44,75%) 102 (25,50%) 1,958 

HH-Sim 400 123 (30,75%) 174 (43,50%) 103 (25,75%) 1,950 

Overall 3200 1208 (37,75%) 1298 (40,56%) 694 (21,69%) 1,839 

 

3.2 Correlations between RT, CR, and CE 

Bivariate correlations between (a) RT and CE, (b) CR and CE, and (c) RT and CR 

were also calculated. Correlations (a) and (b) were calculated only for triplets where 

the CE could be calculated (i.e., only for the non-‘ambiguous’ families of triplets; 

N=1600), while correlation (c) was calculated for the entire dataset (N=3200). 

According to the results, (a) there was a significant correlation between the RT and 

the CE, r = .077, p (one-tailed) < .01, indicating that people spent more time for trials 

for which they selected the wrong category, (b) there was a significant correlation 

between the CR and the CE, r = -.097, p (one-tailed) < .01, indicating that people 

were less confident for trials for which they selected the wrong category, and (c) there 

was a significant correlation between the RT and the CR, r = -.143, p (one-tailed) < 

.01, indicating that people spent more time for trials for which they were less confi-

dent. 

 

3.3 Screening data and testing assumptions 

All participants fully completed the experiment, and hence there were no missing 

values in our dataset. For each condition of the experiment, we tested our data for 

normality. Since normality assumption was violated, we checked for cases identified 

as outliers (i.e. participants with high RTs compared to the sample’s mean RT). Two 

participants were identified as outliers in most of the experiments’ conditions (6 of 8 

and 7 of 8 conditions, respectively), and a third one only in 3 of 8 conditions (HH-



 

Dis, HH-Sim, and LL-Sim). The first two were excluded from the sample, whereas 

for the third one we used winsorization to limit extreme values. Hence, for the rest of 

our analyses, our final sample consisted of 38 participants (n=38). After the above 

corrections, the assumption of normality for RT was met.  

3.4 Examination of the RTs 

To examine the RTs among the eight families of triplets, we considered the variable 

Target Position, with four levels (HH, HL, LH, HH), and the variable Categories Sim-

ilarity, with two levels (Sim, Dis), and we conducted a two-way repeated measures 

analysis of variance for these two within-subjects factors (Fig. 3). 

Mauchly’s test indicated that the assumption of sphericity was not violated for both 

the Target Position factor (𝜒2(5) = 1.90, 𝑝 > .05), and for the interaction of the two 

factors (𝜒2(5) = 6.10, 𝑝 > .05). The results show that there was a significant main 

effect for both the Target Position (𝐹(3,111) = 9.53, 𝑝 < .01), and the Categories 

Similarity (𝐹(1,37) = 8.47, 𝑝 < .01), as well as for their interaction (𝐹(3,111) =
2.82, 𝑝 < .05). 

 

Fig. 3. Two-way repeated measures ANOVA for Reaction Times (RTs). 

Further analysis of pairwise comparisons revealed that there was a significant dif-

ference of the average RTs only between the (HH,LH), (HH,LL), and the (HL,LL) 

Target Positions (𝑝 < .01). There was also significant different between the Similar 

and Dissimilar triplets (𝑝 < .01).  

Even if the mean RTs between the HL and LH Target Position were not found to 

be significantly different, we observed that participants did not behave the same in 

these two cases, which was unexpected. To further explore this trait, we had to con-

sider some additional factors. One possible interpretation could be that the ten triplets 



selected for each of the families of triplets were not balanced. Another interpretation 

could be that the position of the two prototypes a and b also influences the RTs, and 

hence the decision-making process. 

To check our first assumption, we examined whether the pairs consisting the tri-

plets of the HL-Sim, HL-Dis, LH-Sim, and LH-Dis families were biased w.r.t. their 

similarity ratings. The mean similarity rating for the low similarity pairs was 540,15 

and 406,05, for the HL and LH cases respectively. The mean similarity rating for the 

high similarity pairs was 1440,05 and 1481,80, for the HL and LH cases respectively. 

This is an indicator that triplets were balanced between HL and LH cases.  

To examine the second assumption, we ignored the analysis of the participants’ re-

sponses w.r.t. the ‘correct’ response and we only examined the responses w.r.t. the 

position of the selected image (i.e., top right of the screen or bottom right of the 

screen). Results show that for trials where the ‘correct’ response was at the bottom 

(LH-Dis, LH-Sim), participants’ accuracy was not better than a random selection, 

whereas for trials where the ‘correct’ response was at the top, people tended to select 

the ‘correct’ response, regardless its position (Table 5). 

Table 5. Statistics of the dependent variables, based on the position of the selected category for 

each family of triplets.  

 

Triplets 

Ex-

pected 

Users who selected top  

prototype 
 

Users who selected bottom  

prototype 

family selection 
% 

Average 

RT 

Average 

CR 
 % 

Average 

RT 

Average 

CR 
LL-Dis n/a 42 4957 1.71  58 4870 1.77 

LL-Sim n/a 36 5688 1.62  64 5183 1.66 

LH-Dis bottom 45 5018 1.80  55 4417 2.02 

LH-Sim bottom 50 5517 1.77  50 4688 1.83 

HL-Dis top 61 4703 1.85  39 4921 1.81 

HL-Sim top 73 4305 1.95  27 4864 1.66 

HH-Dis n/a 62 4168 1.95  38 4373 1.97 

HH-Sim n/a 46 4975 1.81  54 4499 2.07 

Overall n/a 52 4830 1.83  48 4737 1.85 

* Underlined values indicate statistically significant differences (p < .05) between the 

means of RTs and CRs of the two independent groups. 

4 Discussion 

Our results replicate previous findings exploring the meaning of RTs in categorization 

tasks while limiting potential effects arising from the nature of previous experimental 

designs. For trials with longer RTs people responded with less confidence and were 

more prone to making errors than for trials with shorter RTs, which is consistent with 



 

previous work. Moreover, people responded faster for targets with high similarity to 

at least one of the prototypes of the given categories (HL and LH conditions) than for 

targets that were distant from both prototypes (LL), and hence closer to the boundary 

of the two categories, confirming our main hypothesis. 

The shortest RTs were found in the HH-Dis family of triplets, where the target t 

was similar to both prototypes a and b, but the two prototypes were dissimilar. Alt-

hough we expected that trials from this family would require longer processing in 

order to choose the best option, the experimental results showed that this was the case 

where participants responded faster. Additionally, we also found the highest average 

CR for this family of triplets, with most people reporting they were almost confident 

about their selection (self-rated their confidence with 2 stars out of 3). One interpreta-

tion of this phenomenon could be that participants, as soon as they identified one 

fitting category for the target, did not spend any extra time for checking whether there 

is a second fitting category or trying to decide which is the most appropriate one 

among the two. Hence, lower RTs do not always indicate instances typical for one 

category and not typical for the other, as we initially assumed. This could be a very 

useful finding for cases where targets could be members of more than one category, 

since lower RTs do not always imply excluding the categories which were not select-

ed by the participant. 

Finally, the fact that the HL and LH conditions were not symmetrical, highlights 

the need for a further examination of other factors, such as the position that appear the 

candidate categories. 

5 Conclusion 

The above results, though preliminary, are very promising. First, they replicate previ-

ous findings exploring the meaning of RTs in categorization tasks, while limiting 

potential effects arising from the nature of previous experimental designs. We consid-

er that replicating previous results even with the use of novel images that form un-

specified concepts, indicates that our basic hypothesis is primitive w.r.t the basic pro-

cesses of human categorization. Second, the experimental design we used, combined 

with the findings of the present study, uncover many hidden aspects of previous stud-

ies, opening the way to future work towards multiple directions. 

We are currently investigating possible bias effects arising from the position of the 

prototypes (top / bottom) or by any other presentation effects. Eye-tracking 

techniques can also be used to better interpret findings from RTs, as a quantitative 

method of the cognitive processes involved in the task, as well as a tool for exploring 

other possibe effects and revealing biases. Future work could also involve experimen-

tation with more familiar stimuli, such as (i) images of familiar objects, (ii) images 

depicting more than one objects, or (iii) excerpts of text, which could be characterized 

by multiple labels, etc.  
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