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Abstract Cognitive linguistics has provided compelling evidence that semantic
structure in natural language reflects conceptual structure that arises from our
embodied experience in the world. To capture this conceptual structure, a set of
spatio-temporal cognitive building blocks called image schemas was introduced
by Lakoff and Johnson. Detecting image schemas in natural language can provide
further insights into how embodied experiences are encoded in natural language
and potentially contribute to research on conceptual understanding and symbol
grounding in cognitive systems. Methods for (semi-)automatically extracting im-
age schemas from natural language are an open challenge. We propose a spectral
clustering approach paired with semantic role labeling to semi-automatically ex-
tract image schemas from multilingual text, obtaining a precision of more than
80% on three languages.

1 Introduction

Embodied agents and cognitive systems need to learn spatio-temporal knowledge in
order to be able to interact with the world. Cognitive linguistics and psychology have
introduced convincing evidence that spatio-temporal relations are highly frequent in
natural language [17,37,39]. This is why language represents an important source for
embodied agents to learn spatial relations [1], e.g. for human-robot interaction [16,27],
making agents learn like a baby [10], and basically any mapping between symbols
and objects in the physical world [19]. However, the symbol grounding problem of
how signs are assigned with meaning, relate to real-world objects, and are cognitively
represented remains open.

While human cognition still is a mystery on many levels the latest paradigm shift in
the view of cognition, embodied cognition, provides some new promising insights. Em-
bodied cognition states that all cognition occurs as a consequence of the body’s sensori-
motor experiences with the environment [34]. Image schemas are introduced within the
context of embodied cognition and described as spatio-temporal relations that infants
learn in the early years through repeated exposure to particular events. For example, the
image schema CONTAINMENT is learnt when the child is repeatedly exposed to objects
moving in and out of containers [24].

Extracting image schemas from natural language can provide a principled way to
investigate the connection of thought and language and gain new insights into the cog-
nitive grounding of natural language. To the best of our knowledge, automatically de-
tecting image schemas in natural language is an open challenge. Until recently, many



linguistically-relevant studies on image schemas have focused on the lexical surface
structure of expressions [3,8] or provided manually curated examples [6,12] to support
their claims.

In this paper, we address this challenge by proposing a semi-automated method
to detect image schemas in three languages based on unsupervised spectral clustering
paired with semantic role labeling, extending our previous work on methods in English
[9]. The method builds on findings from research on spatial language (e.g [17,39,42])
in which prepositions were utilized as spatial indicators and verbs as indicators for
motion and temporal change. In the proposed method verb-preposition pairs are clus-
tered with co-occurring nouns as features and their relative frequencies as feature val-
ues. For instance, for “continue-along” the feature vector is [‘route’: 13, ‘road’: 37,
‘path’: 94, ‘lines’: 53]. Verb-prepositions pairs are clustered based on their feature
vectors. The above example is grouped in the cluster [’continue-along’, ’continuing-
along’, ’progress-along’, ’set out-on’, ’set-on’]. We use existing automated tools for
semantic role labeling to separate clusters into spatial or non-spatial based on the main
prepositions senses, e.g. DIRECTION for the majority of prepositions in the above
cluster which we consider spatial. All clusters are then manually annotated with image
schemas, e.g. SOURCE_PATH_GOAL in the above example. The outcome is a reposi-
tory of verb-preposition clusters with their feature nouns and their original sentences in
English, German, and Swedish annotated with role labels and identified image schemas
that carries the potential of improving spatial language understanding and its cognitive
grounding.

The remainder of this paper is structured as follows. First, we introduce image
schemas and some related approaches on extracting spatial information from text. Sec-
ond, we describe the utilized dataset and the proposed method. Third, the results of the
method are presented as well as a summary of the identified image schemas across the
three languages. Finally, we discuss the results and in the conclusion we include a few
remarks on future work.

2 Foundation

As cognitive research started to focus on the sensorimotor experiences as the foundation
of cognition, rather than the classical cognitivist view (i.e. ‘cognition is computation’)
that previously dominated cognitive science [34], image schemas were introduced by
Lakoff [20] and Johnson [13] as a theory to explain certain cognitive phenomena, in
particular the conceptualisation of concepts in terms of spatial language. While image
schemas evolve from concrete sensorimotor experiences, their mental representation is
considered abstract. Psychological support for image schemas comes from how they
offer infants conceptual grounds to make predictions about their surroundings [24,7].
Indeed, work in linguistics (e.g. [6]) and psychology (e.g. [24]) reveal image-schematic
involvement in reasoning and language development.

In developmental psychology, the image schema demonstrates how key concepts are
transferred through analogical reasoning and conceptual metaphors [21]. For example,
if an infant has learned that ‘tables SUPPORT plates’, it can infer that ‘desks SUPPORT
books’. It is proposed that a similar method is applied when language is developed, in



particular when abstract concepts are concerned. Statements such as “to offer SUPPORT
to a friend in need” or “to put in a good word” provide some good examples of
how concrete sensorimotor experiences are transferred to abstract adult communication.
Pauwels [30] went so far as to claim that any abstract use of the word “put” requires the
understanding of CONTAINMENT stressing the importance of verbs in image schema
analyses.

One semi-automated method designed to extract spatial relations between a trajector
and a landmark was introduced by Kordjamshidi et al. [17]. Their method uses machine
learning on word triples by connecting ‘the trajector’ and ‘the landmark’ through a
preposition, or as they call it ‘a spatial indicator’. Prepositions have been demonstrated
to be essential in terms of revealing spatial information [22], yet they do not always
capture motion and temporal change. For this also verbs need to be taken into account
as they play a central role in identifying the relation between trajectors and landmarks
[16], which, however, is not the case in Kordjamshidi et al. [17]. Approaches that have
taken verbs into account, such as [25], instead often rely on handcrafted rules or pre-
defined spatial expressions to extract motion verbs across languages. Most work on ex-
tracting image schemas from natural language has either been done by curating manual
examples [6] or by conducting corpus studies based on specific lexico-syntactic patterns
[3,8]. As image schemas tap into the core of conceptual metaphors [21,26], their identi-
fication in language also opens up new possibilities in not only identifying the concrete,
but also the abstract. But for this it is necessary to abstract away from the lexical sur-
face structure of expressions, which is not possible with lexico-syntactic patterns. For
instance, the expression “to have an empty life” characterizes life as having a feature
that can either be full or empty, directly transferred from physical characteristics of
CONTAINERs, which, however, could never be found when querying for specific verbs
or nouns. We methodologically benefit from this connection to metaphors by building
on clustering approaches for multilingual metaphor detection [36].

3 Dataset

To comprehensively evaluate the occurrences of image schemas in natural language
as well as to efficiently perform clustering, a large natural language corpus is needed.
Additionally, in order to make the results comparable across different languages, the
corpus needs to be parallel. Thus, we decided to use the Europarl corpus [15], which
is aligned across several languages, commonly used in linguistic approaches, and with
its 1,959,830 sentences in English, large enough for our purposes. The corpus contains
sentences extracted from the proceedings of the European Parliament, meaning that the
coverage of the corpus is somewhat limited to topics revolving around governance and
political issues.

4 Methodology

One established exploratory data analysis method is unsupervised clustering [2]. The
chosen normalized spectral clustering algorithm proposed by Ng et al. [28] has been
effectively applied to various lexical acquisition tasks (e.g. [36,41,38] ). We build on



successful methods for conceptual metaphor extraction [36] in combination with find-
ings from spatial language analysis (e.g. [39]) for our method. The combination of verbs
and prepositions as indicators for spatial and potentially image-schematic structures, is
backed by manual corpus-based analyses on image schema detection (e.g. [6]). This
section describes the individual steps from text to image schema depicted in Fig. 1.

Figure 1. Individual steps of proposed method

4.1 Dependency Parsing

Dependency parsing identifies how individual sentential elements depend on each other
by first part-of-speech (POS) tagging each element and then analyzing the structure of
the whole sequence. We parse the dataset for each language and extract verb-preposition-
noun combinations. From each sentence, such as (1), we first extract the preposition
(“along”), its dependent noun (“road”) or noun phrases and search through all their de-
pendency relations for a verb (“continue”) and potential phrasal particle as depicted in
Step (1) of Fig. 1.

(1) This is why Turkey must be encouraged to continue along this road.

Thereby, we obtain verb-preposition pairs and all the co-occurring nouns with their
relative frequencies, which represent the feature vector for our clustering algorithm.
Only verb-preposition pairs that occurred at least ten times with the extracted noun
where considered for the clustering to avoid a distortion of the clusters by rare words or
dependency parsing errors.

For English and German we used the Stanford Dependency Parser [5]. However,
Swedish is not available in the Stanford tool set so we chose Stagger [29] for POS
tagging and the data-driven parser-generator MaltParser [11] for dependency parsing.
We use the Swedish MaltParser Model (swemalt-1.7.2.mco) that was trained on the
Talbanken section of the Swedish Treebank.



4.2 Spectral Clustering

Spectral clustering is particularly attractive since it is reasonably fast and transforms
the data clustering into a graph partitioning problem, partitioning based on the values
of the edges. It takes a similarity matrix and the number of clusters as input. Computing
a similarity matrix depends on the choice of semantic distance measure that is best for
the given data. We tested on Term Frequency-Inverse Document Frequency (TF-IDF)
as one of the most common similarity measures, Positive Pointwise Mutual Informa-
tion (PPMI), and the Jensen-Shannon divergence (JSD), a symmetric and a smoothed
version of the Kullback-Leibler that has successfully been used in conceptual metaphor
clustering [36]. We evaluated each of those similarity measures by generating simi-
larity matrices and submitting them to the algorithm. The results of this process were
analyzed by semantic role labeling and success was defined as the best separation of
information into spatial and non-spatial clusters.

We finally used PPMI for the image schema annotation (detailed in Section 5),
which is why we only discuss this metric further. Pointwise mutual information quan-
tifies the difference between the probability of two textual units occurring together and
the presumed co-occurrence under the independence condition. With x representing the
frequency of a verb-preposition pair and y representing a noun it co-occurs with, we
use Positive Pointwise Mutual Information (PPMI) as defined in Equation 1 to create a
similarity matrix, where PMI(x, y) is set to zero if its value is below zero.

PMI(x, y) = log
p(x, y)

p(x)p(y)
(1)

PPMI =

{
PMI(x, y), if PMI(x, y) > 0

0, otherwise

The similarity matrix captures the semantic distance between verb-preposition pairs
based on their co-occurring nouns, which represent the features of the algorithm. We
tested on unnormalized, normalized according to Shi and Malik [35] and normalized
according to Ng et al. [28] spectral clustering. Algorithm 1 presents the most successful
normalized algorithm by Ng et al. [28], where success is defined as balanced cluster
sizes and correct separation of spatial and non-spatial information. The major problem
with the Shi and Malik normalization [35] for our approach was the strong variation in
cluster size, leading at times to clusters of more than 2,000 verb-preposition pairs.

In Algorithm 1 the difference between the degree and the weighted adjacency ma-
trix leads to the graph Laplacian L. The normalized matrix of eigenvectors of the nor-
malized L is then used as input to the k-means algorithm. We followed von Luxburg
[40] and tested the ε-neighborhood, k-nearest neighbors, and a fully connected graph
building methods on our dataset. The algorithm outputs the number of clusters that was
initially indicated. To optimize this variable, we experimented with different sizes of k
detailed in Section 5. Our assumption for this method was that verb-preposition pairs
co-occurring with similar nouns/noun phrases might exhibit a similar spatio-temporal
behavior. Each cluster groups verb-preposition pairs based on that similarity.



Algorithm 1 Normalized Spectral Clustering [28]
1: Input: Similarity matrix S ∈ Rnxn, number of k clusters

2: Construct a degree matrix D where dii =
n∑

j=1

wij and dij = 0 if i 6= j

3: Construct a similarity graph and its weighted adjacency matrix W
4: Construct a graph Laplacian L = D −W
5: Compute the normalized Laplacian Lsym := D−1/2LD−1/2

6: Compute the first k eigenvectors v1,...vK of Lsym and write them as columns into the matrix
U ∈ Rnxk

7: Compute the matrix T ∈ Rnxk from U by normalizing, i.e., set tij = uij/(
∑

k u
2
ik)

1/2

8: Let yi be the vector corresponding to the ith row of T
9: Cluster the points (yi)i=1,...,n with the k-means algorithm into clusters C1,...,Ck

10: Output: Clusters C1,...,Ck with Ci = {j|yj ∈ Ci}

4.3 Semantic Role Labeling

From experimenting with similarity matrices (TFIDF, PPMI, JSD), cluster sizes k (50,
100, 200, 300), and clustering algorithms we obtained 3,900 clusters for each lan-
guage. This called for an automated method to compare the resulting clusters. We found
that semantic role labeling can effectively be used to separate spatial from other verb-
preposition pairs for each cluster, thus providing us with a first purity estimation of the
individual clusters. Semantic role labeling abstracts away from syntactic variation and
assigns labels to arguments of sentence predicates by means of predefined relations.

In semantic role labeling, the determiner for spatial information is the preposition
sense that is assigned based on the verb and noun the preposition relates to. Thus, we
take the verb-preposition pairs of each cluster and query existing tools for the prepo-
sition sense using the feature nouns of each pair, e.g. “continue-along-road” is a DI-
RECTION. Second, we accumulate all labels obtained for a specific verb-preposition
pair, e.g. one of them being the above DIRECTION with the noun “road” for “continue-
along”. The most frequent label of those accumulated labels is assigned to the pair. We
classified all preposition senses as either spatial or non-spatial. If most verb-preposition
pairs in a cluster have spatial labels, we consider the whole cluster spatial such as the
one in Fig. 1. As the example shows, we did not perform lemmatization (“continue”
and “continuing” are in the cluster) and we considered phrasal verbs, such as “set out”
as well as noun phrases.

The evaluation of the purity of a cluster is estimated based on verb-preposition role
labels and their frequency in a cluster. We differentiate between spatial (>80% spatial
labels), mixed (>30% spatial labels), and other (<30% spatial labels) clusters. Semantic
role labeling is language-specific, which means we had to find different solutions for
each language.

For English, we employed a semantic role labeling tool called Curator [31], which
follows the notation of the PropBank project [14] and its fine-grained labeling of prepo-
sition roles. Curator provided highly accurate as well as detailed semantic role labels for
the whole English dataset, including annotations for verb, noun and preposition senses.
The preposition sense annotation was a main motivator for choosing Curator, since
other tools frequently only tag prepositions as "prepositions" without specifying their



sense in detail. We classify all role labels into either spatial or non-spatial, where the
former for our case are: Location, StartState, EndState, Source, Destination, Direction,
PhysicalSupport, and Journey.

For Swedish we relied on the preposition senses provided with the Swedish Tree-
bank model of MaltParser, which differentiates between spatial (RA), temporal (TA),
and several other types of adverbials, providing a less fine-grained and less accurate,
but still viable, estimation of which cluster setting to analyze for image schemas.

For German, semantic role labeling is a challenging endeavor since many parsers
[4,32] focus on valency-bound complements. We could not find any parser that pro-
vided equivalent preposition sense labeling results as for English and Swedish and thus
decided to annotate the list of verb-preposition-noun triples extracted from text manu-
ally differentiating spatial and non-spatial labels. This manual annotation was then used
to evaluate the cluster settings.

4.4 Image Schema Annotation

In a final step we analyzed the resulting clusters for their image-schematic content.
Our definition of image schemas was based on definitions obtained from Johnson [13],
Lakoff [20], and Kövecses [18] as exemplified in Table 1.

Table 1. Example of image schemas and definitions

Image Schema Description
CONTAINMENT Boundary, enclosed area or volume, or excluded area or volume [13]
SOURCE_PATH_GOAL Source or starting point, goal or endpoint, a series of contiguous locations

connecting those two, and movement [13,20]
SUPPORT Contact between two objects in the vertical domain [23]

Each cluster was manually analyzed based on those definitions exemplified in Ta-
ble 1 to determine which image schema, if any, was the most dominant in the cluster.
For English, two annotators separately assigned image schemas and upon disagreeing,
a third annotator took the final decision. For Swedish and German there was only one
annotator available for each language, resulting in less reliable results than for English.

Consider, for instance, the triple “bring-into-disrepute” that describes a transforma-
tion from the state of good, or no, reputation to a negative reputation, ‘disrepute’. De-
spite being abstract, there is a clear boundary between the two states and certain events
may cause this state to change, in this case an event ‘brings’ about this transformation.
It can be argued to correspond to the movement ‘into’ a CONTAINER. Annotators eval-
uated each verb-preposition-noun triple in a cluster to decide whether it represents any
image-schematic structure.

5 Results

Due to the size of the corpus, we obtain a large collection of potentially image-schematic
clusters. In Section 4, we explained how spatially relevant and image-schematic clus-



ters are detected from this collection. This section presents quantified results of the best
combination of settings and the number of obtained image-schematic structures. De-
pendency parsing is taken as given even though some verb-preposition pairs might have
been overlooked by the parser and we start with describing the clustering results.

5.1 Clustering Results

We obtained 3,900 clusters from three similarity metrics (JSD, PPMI, TFIDF) to build
the similarity matrices, three algorithms (unnormalized, two normalized), three graph
building methods (knn, ε, fully-connected), and four cluster input sizes k (50, 100, 200,
300) for each language. A comparison in English is illustrated in Table 2 with normal-
ized clustering [28] to exemplify the selection process of the best settings since space
does not permit a detailed description for all languages. A total of 92 (31%) were tagged
as purely spatial, 49 (16%) as mixed spatial and other labels, and 159 (53%) contained
less than 30% spatial labels with knn, PPMI, and k of size 300. This represented the
highest number of spatial clusters, which is why we analyzed this combination of set-
tings for image schemas.

While knn clearly returned the best results for all languages, in German JSD and
TF-IDF with normalized clustering by Shi and Malik [35] returned higher numbers than
PPMI, especially for size 50 clusters. However, upon manually inspecting the clusters,
the clusters turned out to be very large and contain highly mixed information. Thus, we
manually inspected ten clusters of each setting combination, which returned the best
results for the same settings as for English. In Swedish, the role frequency-based ap-
proach equally pointed to other combinations with inferior quality, and also for Swedish
the best settings turned out to be the same as for English.

Table 2. Comparison of setting combinations for English clustering

Algorithm method:
Cluster size (100-300)

PPMI
knn

PPMI
fc

PPMI
ε

JSD
knn

JSD
fc

JSD
ε

100 29% 22% 24% 18% 20% 18%
200 21% 22% 22% 6% 23% 19%
300 31% 29% 24% 8% 23% 24%

We clustered a total of 2,259 English, 3,234 Swedish, 2,739 German unique verb-
preposition pairs based on their feature vectors with an overall frequency above ten oc-
currences in the corpus. The average cluster size for English was 10.40 verb-preposition
pairs, for Swedish 10.78, and for German 9.13. The first language we clustered was
English, were we found that linking devices distorted our results. For instance, for the
verb-preposition “make-of” the by far most frequent noun was “course”, an undesirable
result based on the expression “of course”. Thus, we excluded linkers for the English
clustering data. For Swedish this problem was less prominent, perhaps due to the use of
a different tagger and parser, and in the German data this problem was not observed.



5.2 Semantic Role Labeling Results

As exemplified in Table 2, semantic role labeling provided the basis for choosing the
best parameter settings for the clustering algorithm. The results for the best setting
combination knn, PPMI, and k size 300 with normalized clustering by Ng et al. [28]
for all languages are presented in Table 3, which also shows the absolute frequency
of image-schematic clusters. We analyzed all clusters, spatial and non-spatial, for their
image-schematic content for the chosen 300 clusters. In English, the majority of de-
tected image schema clusters were also labeled with spatial semantic roles, as is the
case for German. In Swedish, however, 34% of all clusters were detected in non-spatial
clusters. We attribute this to the lower accuracy of the semantic role labeler, especially
since a substantially higher number of clusters (66%) were not assigned with a spatial
label.

Table 3. Total number of clusters per label and number of image schema (IS) clusters

English Swedish German
Label Clusters IS Clusters IS Clusters IS
Spatial 92 74 64 59 88 80
Mixed 49 18 38 22 18 13
Other 159 18 198 42 194 10
Total 300 110 300 123 300 103

5.3 Image Schema Identification Results

Our assumption was that the proposed method groups verb-preposition pairs based on
their respective nouns into spatial and potentially image-schematic clusters. Thus, we
are interested in how many of the spatial clusters actually are image-schematic. To cal-
culate the accuracy of our method, we compare the number of obtained spatial clusters
to the number of image-schematic clusters with a spatial label in relation to the total
number of image-schematic clusters, the data of which are presented in Table 3 and 4.
For English, this provides 74 image schema clusters in 92 spatial clusters with a total
of 110 image schema clusters across the whole set of 300, which provides an accuracy
of 80.43% (F-measure: 73.27%). For Swedish, the accuracy is 82.81% (F-measure:
56.38%) which also has the largest number of image schema clusters in the set of non-
spatial clusters compared to the other languages, hence the low F-measure. For German,
the accuracy is 90.91% (F-measure: 83.77%) because most image schema clusters have
a spatial role label. This can be attributed to the manual annotation of the semantic roles
performed only in German.

In English the identification of image-schematic structures was conducted by two
experts with an inter-annotator agreement of 78% on the 92 spatial clusters. For the
20 clusters that were not assigned the same image schema by the two experts, a third
expert was consulted. For Swedish and German we only had one expert annotate each
language for this first experiment.



Table 4. Detected image schema clusters

Image Schemas English Swedish German
Absolute (A) & % A % A % A %
CONTAINMENT 61 55 81 66 57 55
SOURCE_PATH_GOAL 22 20 14 11 27 26
SUPPORT 16 14 21 17 6 6
SURFACE 4 4 0 - 7 7
VERTICALITY 3 3 3 2 0 -
Other 4 4 4 3 6 6
Total Schemas 110 123 103

The most commonly identified image schema in all languages is CONTAINMENT as
illustrated in Table 4. One of the reasons for this is the description provided by Johnson
[13] with the ‘inside-border-outside’ relationship that establishes a rather general ref-
erence which fits many scenarios. To account for the spatial relationships of the image
schemas, as well as their conceptual correspondence, it would provide a more accurate
account to divide this image schema into a family (and idea supported by e.g. [33,3,12]).
While the members of a CONTAINMENT family need to be properly established it is
clear that spatial relations such as “being on the outside/inside”, “degrees of parthood”,
“going in/out” and “going through” are fundamentally different despite all belonging
to CONTAINMENT. To account for these differences in our data, we would have to con-
duct a more detailed analysis considering the context for each verb-preposition-noun
combination, which could be interesting for further investigations.

Swedish has a higher number of CONTAINMENT since its overall count of verb-
preposition pairs is higher than in the other two languages. The second most frequent
image schema is SOURCE_PATH_GOAL, such as “fortsätta-på-väg” (continue-along-
road), with a lower frequency in Swedish. In contrast, Swedish had more SUPPORT
schemas especially in comparison to German, e.g. the German expression “lasten-auf-
schultern” (rest-upon-shoulders). ‘Other’ in the image schema column in Table 1 refers
to the collected occurrences of the image schema structures NEAR-FAR, SPLITTING,
PART-WHOLE, SCALING and CENTER-PERIPHERY. Other than for SUPPORT the num-
bers and types of image schemas are quite comparable across languages.

We would like to point out that the numbers presented in Table 3 and 4 are image
schema clusters containing several verb-preposition pairs with several feature nouns,
e.g. for English we obtain 2.567 image-schematic verb-preposition-noun triples from
the 110 clusters. Table 5 provides one CONTAINMENT cluster for each language to
exemplify the results. While they are not aligned automatically by our method, not
identical and vary in size, they have several features in common, such as all of them
referring to the CONTAINER “hands” as in “play-into-hands” or “lie-in-hands”.

The resulting repository can then be either represented as those verb-prepositions
clusters with the annotated image schema as in Table 5 or in a more detailed way com-
bining pairs with their feature nouns as depicted in Table 6.



Table 5. Cluster example CONTAINMENT

English: ‘concentrated-in’,‘lie-in’, ‘lies-in’, ‘play-into’,
‘played-into’, ‘playing-into’, ‘plays-into’,
‘sit-on’, ‘suffer-at’, ‘suffered-at’

Swedish: f̀innas-i’, ‘föra-till’, ‘föras-till’, ‘förs-till’,
‘noteras-i’

German: ‘fallen-in’, ‘fällt-in’, ‘fällt-unter’, ‘gelangt-in’,
‘herausgenommen-aus’, ‘verbleiben-in’

Table 6. Repository example with annotations

Verb-Prep-Noun Image Schema Role Label Sentence
concentrated-in-areas CONTAINMENT Location ... unemployment is quite

concentrated in particular areas...
plays-into-hands CONTAINMENT Destination ... which plays straight into the

hands of the radicals...
continue-along-road SOURCE_PATH_GOAL Direction ... must be encouraged to continue

along this road ...

6 Discussion

In our corpus the manifestations of image schemas in natural language related to both
the abstract and the concrete. For instance, in “Beziehungen mit neuem Leben erfüllen”
(fill relationships with new life) “relationships” are abstract CONTAINERs while in “sie
füllen ihre Taschen mit Gold” (they are filling their pockets with gold) “pockets” (real
or hypothetical) are concrete CONTAINERs. This juxtaposition of abstract and concrete
concepts makes the corpus a good dataset for investigations into the nature of image
schemas since they offer to ground abstract phenomena in physical sensorimotor expe-
riences. In addition, this analogous relationship between the concrete and the abstract
assists the task of annotating the clusters for image schemas, for if “pockets” is a con-
tainer then “relationships” has to be evaluated against the CONTAINER criteria as well.

The most challenging part of our method was the semantic role labeling of preposi-
tion senses, which had to be approached with different methods for the three different
languages in our study. In fact, we believe that the low F-measure in Swedish might be
attributed to the role labeling, since both the English high-quality labels and the German
manual annotation of semantic roles returned more satisfactory F-measures. Naturally
it would be preferable if similar tools for semantic labeling were available for the in-
vestigated languages. One possible solution would be to follow the method in [36] and
from the beginning manually label the clusters. The consequences this might have had
on our results are of less importance than for studies that aim at providing an in-depth
crosslingual comparison of image schemas, which we intend to do as future work. One
solution could be to crowdsource the spatial role labeling task.

Another important aspect in need of improvement is the manual annotation of image
schemas. It is error-prone and biased by the human evaluators. This problem was high-
lighted through a preliminary crosslingual comparison. For instance, “put-on-market”
was annotated as SUPPORT in English, CONTAINMENT in German, and as none in



Swedish. This disjoint annotation is partly due to individual annotators, but also due to
the different connotations natural languages have and might therefore not be wrong in
itself but provides little confidence in terms of automated cross-lingual comparisons.
To improve the annotation process, we hope to rely on different supervised approaches
based on good examples from the natural language image schema repository we created
for this paper. Alternatively, we might consider crowdsourcing also for this step.

The current analysis extracted image schemas from natural languages pertaining to
the same language family. To really confirm that our method can be used effectively to
extract image schemas from multilingual corpora, we need to test it on other language
families as well, a process that has been started but not finished in time for this paper
due to the time-consuming annotation process.

Regarding the results, the spatial clusters return an overwhelming numbers of CON-
TAINMENT schemas. While CONTAINMENT undeniably is one of the most essential
image schemas, there is room for improvement here. As previously observed [33,12],
image schemas do not always appear in isolation, but rather as families. During the pro-
cess of annotating the image schemas, many kinds of CONTAINMENT schemas could
be detected. Following previous approaches [3,8], it would be interesting to analyze the
elements involved in image schemas (e.g. border, inside, outside of CONTAINMENT)
and their interaction in natural language instead of identifying abstract image schemas
only.

Our results show that findings from investigations into spatial language can effec-
tively be used to extract image schemas from natural languages. They also show that
image schemas are prevalent in natural language, even highly abstract language. Know-
ing that the abstract “relationships” from the above example have the same underlying
image schema of CONTAINMENT as the physical “pockets” can further our understand-
ing of the influence of sensorimotor experiences on language use. It means that we
conceptualize both in certain contexts as containers with a fill level. Our study found
a rather similar distribution of image schemas across three languages. The resulting
repository of multilingual expressions annotated with image schemas provides a good
starting point for a crosslingual comparison, which we intend to do including other lan-
guage families than considered here. Such investigation can contribute to research on
the universality of image schemas.

7 Conclusion and future work

We present a method to semi-automatically extract image schemas from natural lan-
guage, which provides promising results that confirm our assumption that verb-preposition
pairs with their context nouns as features are good indicators of spatial and also image-
schematic language. We exemplify the approach in English, Swedish, and German.

Parts of the method are manual and still in a preliminary stage. Future work there-
fore includes to use the results from this study as examples for a supervised approach to
work towards a method requiring less manual effort. We also intend to broaden the cur-
rent experiment to different language families and test with more feature combinations
than the three word classes used herein.
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