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Abstract 
In this paper, we demonstrate how argumentation theory can be used to explore cer-

tain aspects of the development of discovery proof-events in time. The concept of proof-event 

was introduced by Joseph Goguen, [10], who understood mathematical proof, not as a purely 

syntactic object, but as a social event, that takes place in specific place and time and involving 

agents or communities of agents. Proof-events are sufficiently general concepts that can be used 

to study besides the “traditional” formal proofs, other proving activities, such as incomplete 

proofs, purported proofs or attempts to verify a conjecture. Since argumentation is inseparable 

from the process of searching for a mathematical proof, we suggest a modified model of the 

proof-events calculus, initially suggested by Vandoulakis and Stefaneas [32], based on the 

versions of argumentation theories advanced by Pollock [26], Toulmin [28] and Kakas and 

Loizos [14]. We claim that the exchange of arguments and counterarguments set forward to 

clarify eventual gaps or implicit assumptions occurring in the course of a proof-event can be 

formalized by appealing to argumentation theories. Additionally, we highlight the connection 

between proving, human reasoning, cognitive processes and creativity. 
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 Introduction 
The concept of mathematical proof has undergone significant changes in the 

20
th

 century. Proof, particularly formalized proof, was initially identified in philoso-

phy of mathematics with truth. However, many mathematicians dealing with real 

proofs did not accept the paradigm of formalized proof. Goguen [10] suggested the 

broader concept of proof-event, which is actually a social event that takes place in 

specific place and time and involves public communication. The concept of proof-

event is designed to embrace any proving activity, such as incomplete proofs or at-

tempts to verify a conjecture. Vandoulakis and Stefaneas [31] described proof-events 

as activity of a multi-agent system incorporating their history, insofar as they form 

sequences of proof-events evolving in time. Thus, they modelled certain temporal 

aspects of proof-events, using the language of the calculus of events developed in 

Kowalski’s and Event Calculus [19]. 

Our approach combines proof-events with logic-based argumentation to study 

in a more adequate way the categories of purported, faulty or incomplete proofs, setting 

forward the concept of dialogue between agents with the use of arguments and counter-

arguments. Hence, we extend the calculus of proof-events through argumentation theory 

by depicting the relevant stages of a discovery proof-event (incomplete or even false 

proofs, ideas, valid or invalid inference steps, comments, etc.) in a form of a dialogue of 
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agents that use arguments and counterarguments or counterexamples in their attempt to 

clarify the validity of a purported proof. 

Many researchers claim that the role of argumentation is central in mathe-

matics. Mathematicians do much more, than simply prove theorems. Most of their 

proving activity might be understood as kinds of argumentation [2]. Lakatos’ Proofs 

and Refutations [20] is an enduring classic that highlights the role of dialogue be-

tween agents [a teacher and some students) by attempts at proofs and critiques of 

these attempts. The comparison between argumentation supporting an assumption or a 

purported proof and its proof is based on the case that proof can be regarded as a spe-

cific argumentation in mathematics [22]. 

A methodological tool that has been widely used to examine argumentation 

is Toulmin’s model [28], in which argument is constituted by “claim”, “data”, and 

“warrant” that are considered the substantial elements of applied arguments. The pro-

cedure by which mathematicians evaluate reasoning resembles to argumentation, as 

various researchers, such as Alcolea [6], Aberdein [0], Pedemonte [22,23], Aberdein, 

Dove [4] tried to show by adapting Toulmin’s model to mathematical examples. We 

propose to integrate argumentation theory into the calculus of proof-events. By doing 

so, we can depict all the relevant stages that we go through when proving, from the 

statement of a problem until its validation or rejection by the relevant community that 

uses arguments and counterarguments or counterexamples in checking the validity of 

a purported proof.  

To combine the proof-event calculus with argumentation theory, we use the 

basic structure of Toulmin’s model for the representation of an argument and Pol-

lock’s logic-based argumentation theory. We rely on Pollock’s view of defeasible 

reasoning and we associate the procedure of human reasoning with proving. Defeasi-

ble reasoning has a non-monotonic character. Pollock presented in his work the con-

cept of an argument in the form <Φ,α>,  where Φ is a set of data and α is a claim [25]. 

He separated the rebutting and undercutting defeat and presented one of the first 

monotonic logics with concepts of argument and defeat, even though he did not ex-

plicitly distinguish between them [24]. 

In this paper, we proceed from a comparison of proof-events and argumenta-

tion. Then, we suggest a formalization of proof-events involving argumentation theo-

ry. We model the argument moves and the calculus of the temporal predicates. The 

aforementioned calculus is analyzed through the levels of argumentation. In the last 

section, Fermat’s Last Theorem as a proof-event is investigated as a case study illus-

trating the concepts introduced. 

 

1. Proof-events vs. arguments. 
Comparison of the basic elements of proof-events and argumentation theory 

shows similarities in the structure, the sequence of events, the agents, the layers of 

communication, and the levels of argumentation.  

Arguments and proof-events have three common fundamental components: a set 

of premises for a task or problem, a method of reasoning and a conclusion. Moreover, 

each proof-event has temporal extension and, thereby history: it has a starting point 

and a termination point and what is posed to be proved, emerges often out of the his-

tory of provings (sequences of proof-events or sequences of arguments and counterar-

guments) [31]. A sequence of a proof-event is complete when the community in-



 

volved in it concludes that they have understood the proof and agree that a proof has 

actually been given or that a proof is invalid, based on a suggested counterargument 

(or counterexample). 

Proof-events presuppose the existence of at least two agents: a prover and an in-

terpreter [31]. Similarly, argumentation involves agents or group of agents, enacting 

the roles of supporter and opponent of an argument [17]. The layers of communica-

tion, understanding, interpretation, and validation that agents use to disseminate their 

knowledge, are common in both approaches. An agent is a proactive and intelligent 

system that enacts a specific role. We may consider some software systems as agents, 

if they possess these characteristics. Argumentation has encouraged its adoption as a 

technology for multi-agent systems developments. The main concept advanced in 

agent-based approaches is that of autonomy: agents operate as independent individual 

entities trying often to collaborate and coordinate with others [13]. However, the steps 

that an individual agent wants to perform in order to accomplish a mathematical proof 

may interfere with the steps attempted or already performed by other agents. A num-

ber of significant questions appear from these processes of inter-agent debates, such 

as the systematization of atomic agent contributions as phases in a goal-directed plan 

(such as proving) and the review in the formalization of logic-based languages in 

terms of both syntactic and semantic aspects [16]. 

 

2. Argumentation models 
Argumentation models generally contain the following main elements: an under-

lying logical language with the definition of the concepts of argument, conflict be-

tween arguments and counterarguments, and status of argument. We will outline for-

malizations of proof-events based on argumentation theory, using a list of structures, 

which represent arguments and counterarguments. Our approach suggests a multi-

agent system, enacting the roles of provers and interpreters. An argument has premis-

es, sentences, and conclusion. In the definition of an argument given in this section, 

the knowledge grounds and claims are formulae in classical logic and the method of 

inference by which a claim follows from a set of formulae is deductive inference and 

is denoted by ⊢. A proof-event е can be represented as a communicated argument 

〈   〉 [26] designated by the pair  〈   〉: 
                      , 

where Φ is the Data of the argument, c is the Claim that refers to a fixed problem 

(proposition), specified by certain conditions (predicates) and w are the inference 

rules (Warrant) which allow Φ to be connected with c, so that: 

•      

•   ⊢    

•                                ⊢ c.  

Counterarguments are represented by the corresponding pair        , where Ψ 

is the data that the claim β (that refers to the same fixed problem (proposition), speci-

fied by the same conditions (predicates)) of the counterargument is based. 

Argumentation may require chains (or trees) of reasoning, where claims are 

used in the assumptions for obtaining further claims [8], so that a proof-event could 

be an atomic argument or a sequence of arguments (fluent). Fluents f are sequences of 

proof-events (proving instances) evolving in time that refer to a fixed problem, speci-



fied by certain conditions [30]. Let R be a set of rules of inference. A fluent f is a 

formula of the form e1,e2,e3 →e, where   〈     〉,   〈     〉   〈     〉 is a finite, 

possibly empty, sequence of arguments, such that the conclusion of proof-event ei is 

the claim ci, i.e.:                                        for some rule 

        →      [33]. Accordingly, the meaning of the three substantial components 

of the argument based on Toulmin’s model [28], which abbreviated by corresponding 

prefixes, are defined as follows for the notion of fluent:  

 

                                                  (1) 

                           (2) 

                                                       (3) 

 

where: 

c (Claim): the statement communicated by the speaker. 

Φ (Data): facts as the ground of the claim. 

w (Warrant): the inference rules, which allows data to be connected to the claim. 

The aforementioned elements are frequently used to define a consequence rela-

tion between the arguments and/or the counter-arguments.  

 
2.1 Argument moves 

In the course of a proving procedure, we pass through various inference 

stages, such as attempts, impasses, confirmed or unconfirmed steps, false suggestions 

or implicit assumptions, intuitive ideas, intentions, etc. Arguments can then be speci-

fied as chains of reasoning leading to a conclusion with consideration of possible 

counterarguments at each step. With the explicit construction of the chain of reason-

ing (a chain x0, x1,.. , xn where the argument xi attacks the argument xi−1 for i > 0), 

distinct concepts of defeat can be conceptualized. When an agent has gained control 

of an argument, he must select which argument-move to apply. Gordon [11] refers to 

“argument moves” as analogs of three roles for legal cases. This term was also previ-

ously used by Rissland [27], Asley and Aleven [7], Pease et al [21]. We reserve the 

term “argument moves” for specific, active tactics or strategy that a prover can choose 

to support his claim. We present four fundamental relations that indicate links and 

conflicts at the sequence of proof-events. The possible argument moves could provide 

support or attack the claim. 

Given a claim c and and an argument communicated during the proof-event 

e, possible argument moves, which provide support for c [12] include: 

Equivalent: an argument for a claim, which is equivalent to (or is) c; 

Elaboration: an argument for an elaboration of c, and 

Argument moves, which oppose c [26] include: 

Rebutting: an argument for a claim which disagrees with c; 

Undercutting: an argument for a claim which disagrees with a premise of c. 

 

2.1.1. Argument moves that support the claim: 

 

                                     (4) 

when Φ=Φ΄, c=c΄ (although it might be w≠w ), 



 

where the proof-event e1 is equivalent with the proof-event e2, whenever it has the 

same data and the same conclusion (although different warrants). Thus, equivalent 

proof-events can have different ways of proving. For instance, the Pythagorean Theo-

rem has been proved in numerous ways, such as by Euclid’s geometrical proving or 

by James Abram Garfield algebraic proving. 

                                  →         ,  (5) 

 

where  〈   〉,  is a proof-event and S is a set of sentences which elaborate or em-

bellish upon e, iff    ⊢  . 

These moves are used for backing our claim and supporting our proving, so that 

             →                                   (6) 

 

2.1.2. Counterargument moves that attack the claim: 

                            →           (7) 

where a counterargument communicated during the proof-event e*<Ψ,β> attacks 

(rebuts) the conclusion of an argument communicated during the proof-event e<Φ,c>, 

iff ⊢β ↔ ¬c, 

                                   →          (8) 

where a counterargument communicated during the proof-event e*〈   〉 under-

cuts (attacks) some of the premises (defeasible inference) of the argument communi-

cated during the proof-event  〈   〉, iff ⊢  ↔                {        }    

Given an argument communicated during the proof-event e<Φ,c>, a coun-

terargument communicated during the proof-event e* 〈   〉attacks the argument 

communicated during the proof-event e, at time t, iff e* rebuts e or e* undercuts e. 
Therefore: 

             →                            (9) 

 

2.2 Temporal predicates  

Even though proof-events can be regarded as taking place instantaneously, the 

Event Calculus is actually neutral with respect to whether events have duration or are 

instantaneous [19]. RAC is concerned with the study of how fluents change when new 

information is acquired and how this view of the problem is affected by the observa-

tion of some events remaining active or terminated at a particular time. The language 

in RAC [16] uses causal propositions (c-propositions), of the form “A initiates F 

when C” or “A terminates F when C”, which in this paper are represented in more 

detailed and specific form with the arguments’ and the counterarguments’ moves that 

initiate or terminate a fluent. In most cases, we will take into consideration only the 

starting point of a proof-event, with the exception of those proof-events that termi-

nate, or when duration plays a significant role. In these cases, we mention both the 

starting and termination points.  

We apply the abovementioned operators combined with the basic temporal pred-

icates from [32]: Happens(e,t),Initiates(e,f,t), Terminates(e,f,t), ActiveAt(f,t), 

Clipped(t1,f,t2.)  

 



 Happens(e,t), which means that a proof-event e occurs at time t. (10) 

               t1            t1 →            t1  
          t1   

        t1  
(11) 

which means that if a proof-event e occurs at time t, then there are no counter-

arguments that attack the validity of the outcome of the proof-event and there is ade-

quate support for our claim at the specific time t1. 

        (         )   e1   
  t1  [                        

         
    ]   [      (              →           

    )]   

            

(12) 

 

which means that a proof-event clips when there is no proof-event e2 that attacks the 

counter-argument   
  attacking the proof-event e1 between t1 and t2. 

                         
     [        

     →          

         ]  [ (              →               )]    

           

(13) 

 

which means that a fluent terminates when there is a counterargument attacking our 

sequence and there is no proof-event e2 that Happens in time t2, with t1<t2, to defend 

our claim. The termination of a sequence of proof-events may be caused by the proof 

of the falsity of the problem (there are counter-arguments that attack the conclusion of 

the proof-event), or the undecidability of the problem (there is a lack of adequate 

warrants to prove the desideratum). 

 

                                       →           
       

          
                            

(14) 

which means that a fluent is active, if there is an argument to support our claim for 

every counterargument attacking our claim,. This means that for every counterargu-

ment e*<Ψi,βi>, i= 1,…,n, nϵ , there is a proof-event en+1(Φn+1, cn+1), which Hap-

pens(en+1,tn+1) and defeats the attack of the counterargument en*<Ψn,βn>, for tn+1>tn. 

From the above-mentioned, we can conclude that: 

                                                        
→                 

(15) 

which means that a fluent remains active at time t2, if a proof-event e has taken 

place at time t1, with t1<t2 and has not been terminated at a time between t1 and t2. 

     [                                            ]
→                                   

(16) 

which means that a fluent could consider valid at time tn, if it is active and there is 

no counter-arguments to terminate it at time ti for every i=1,…,n, nϵ . 

 



 

3. Levels of argumentation 
In order to define the warranted premises that are justified by a set of arguments 

in the sequence, we need a mechanism, which by recursion could examine the repre-

sentation of the arguments. Pollock introduces defeasible reasoning where arguments 

are chains of reasoning that may lead to a conclusion, whereas additional information 

may destroy the chain of reasoning. Kakkas and Moraitis [17] presented three levels 

of arguments: Object level arguments, which represent the possible decisions or ac-

tions in a specific domain. First-level priority arguments, which express justifications 

on the object-level arguments in order to resolve possible conflicts. Then, higher-

order priority arguments are used to deal with potential conflicts between priority 

arguments of the previous level until all conflicts are resolved.  

We can apply the same levels in mathematical proving, in order to under-

stand the history of proof-events, starting from the statement of a problem until its 

validation or rejection, including attempts or failures [32]. The data and the claim of 

the initial proof-events constitute the object-level arguments. Proof-events constitute 

the first-level priority arguments, in which we have preferences and justifications in 

the object-level arguments. The proof-events that have fulfilled their purpose termi-

nate, while the rest of them continues to the higher-order priority arguments. As 

proof-events continue from lower levels to higher, they constitute fluents. In the ex-

ample below, we describe the possible steps and conflicts for the justification of a 

proof-event e through the levels of argumentation. 

 

Object level arguments 

                                     (17) 

 

     [                →           
             ]

→                     
(18) 

for i=1,….,m, mϵ , ti≤tm<t. 

In the object level arguments, we have our claim and the initial representa-

tions of arguments. The proof-events that are not attacked constitute the fluent fo and 

continue to the first level priority arguments.  

 

First-level priority arguments  

                           
            

            
                         

 t, 

(19) 

for every iϵ  that we have: 

           
      [           

       

→                        ]   

           
    [                                     

→             
       ]

→                         
 ] 

(20) 

 



so that the proof-events that have been attacked and could not resolve the conflict, 

terminate in this fluent. The rest of them remain active, so we have:  

                       
             ≠       (21) 

and continues to the second-level priority arguments. 

The same pattern continues for n-level priority arguments and for n fluents fn, 

that deal with potential conflicts between priority arguments of the previous level until 

all conflicts are resolved or our claim proved invalid. In the final level we have: 

 

Higher-order priority arguments 

If the proof-events fail to resolve all the conflicts, our claim cannot be proved and 

it clips:  

                                               (22) 

If the proof –events manage to deal with all the attacks and: 

        [        (               )                      ] →

                                         , 
(23) 

 then our claim is proved valid. 
 

4. An example using the Fermat’s Last Theorem 

 
We use the famous Fermat’s Last Theorem to illustrate our approach. Fer-

mat's Last Theorem was formulated in 1637 by Pierre de Fermat, who stated that there 

are no three distinct positive integers a, b, and c, other than zero, that can satisfy the 

equation a
n
+b

n
=c

n
 , whenever n is an integer greater than two (n> 2). The statement of 

the problem marks the starting-point of a proof-event. Even though Fermat claimed to 

have proved this theorem, it actually took 358 years and numerous attempts undertak-

en by many famous mathematicians and amateurs to prove it until its final proof by 

Andrew Wiles in 1995. Thus, Fermat’s alleged proof cannot be included in the initial 

proof-event, since it was never communicated. Fermat communicates the Theorem 

only for the cases n=3 and n=4 in his letters and gives a solution for the latter case. 

The statement of the problem marks the beginning of a sequence of proof-events that 

evolved in time for 358 years. This sequence of proof-events was evolving in time, 

since many famous mathematicians and amateurs (agents) were involved in various 

distinct proof-events that took place in different places and times in their attempt to 

solve the problem posed. 

We cannot expose here the whole sequence of such proof-events. We confine 

ourselves to select some of these historical attempts (proof-events) until the proof-

event that includes the communication and validation of the final proof of the theorem 

and demonstrate how argumentation is involved in the process of search for proof.  

The first attempts to prove the Theorem were proofs for specific exponents. 

The case n = 3 was first explored by Abu-Mahmud Khojandi (c. 940 - 1000), but his 

attempt has not survived (and thereby cannot be considered as a proof-event) and it is 

conjectured that it was incorrect. Leonhard Euler gave a proof for n = 3 in 1755 and 

for n=4 in 1747, but his proof of the former case contained a basic fallacy [9, p.39-

40]. Many other mathematicians proved the theorem for n=3 using various methods. 

Gabriel Lamé (1795 –1870) proved it for the case n = 7. In 1847, he communicated a 



 

proof of the Theorem, but it was flawed. Gabriel Lame’s proof failed because it was 

claimed incorrectly that complex numbers could be factored into primes uniquely. 

This gap was indicated instantly by Joseph Liouville [9, p.76-77]. In 1984, Gerhard 

Frey pointed out a connection between the modularity theorem and Fermat’s equa-

tion, but Fermat’s Last Theorem remained to be a conjecture. The Taniyama-

Shimura-Weil conjecture, which was proposed in 1955, was the method that led to a 

successful proof of Fermat’s Last Theorem, when Andrew Wiles accomplished a 

partial proof of this conjecture in 1994 [29].  

Wiles, after spending six years applying various methods that were proved 

unsuccessful, he approached the problem in a new way. He decided to present his 

work in June 1993 at the Isaac Newton Institute for Mathematical Sciences [29]. 

However, during the peer review, it became evident that there was an incor-

rect critical point in the proof. Wiles tried almost a year to resolve this point, firstly by 

himself and then in collaboration with Richard Taylor, but without success [18]. 

When Wiles was on the verge to quit his attempt, he experienced an insight that the 

Kolyvagin–Flach approach and Iwasawa theory were each insufficient on their own, 

but in combination they could be strong enough to overcome this final barrier. In 

1994, Wiles submitted two papers that established the modularity theorem for the case 

of semistable elliptic curves, which was the last step in proving Fermat’s Last Theo-

rem [29]. 

This example illustrates the contribution of the agents in the process of prov-

ing. Firstly, the central aim of the proving itself is to convince the rest of the commu-

nity about the justification and the validity of your approach. Moreover, the other 

agents also contribute significantly in the procedure. So many people had to partici-

pate in order to reach the initial goal, which was the proving of the Fermat’s Last 

Theorem. This participation is depicted with two ways, either with the rejection of 

someone else’s attempt by pointing out a fault and/or inaccuracy (ex. Liouville indi-

cated Lame’s gap concerning complex numbers) or with the dialogue between coop-

erators in order to detect and resolve weak or deficiently supported areas in the prov-

ing (ex. Wiles asked other colleagues’ help, like Richard Taylor, whenever he found a 

dead-end or fault in his attempt). Argumentation is more efficient in more interactive 

contexts, as they let counterarguments to be addressed and stronger arguments to 

surface. An audience with mainly common beliefs will generate less differentiated 

counterarguments, making them easier to address. Thus, a mathematician is in a fa-

vored position if he wants to ask the assistance of a few colleagues in order to point 

out most of the possible counterarguments and resolve them in the final proof. By 

doing this, the proving could be more convincing not only to these few colleagues, 

but probably to the whole community.  

The arguments and the counterarguments also play an essential role in the 

process of proving, contributed equally in the building and the justification of the 

proving. The warranted parts of the initial provings acted as a groundwork for the 

next provings, while the counterarguments that signalize the faults in those unsuccess-

ful provings open the way for better justified provings and in some cases turn the 

interest of the mathematical community in new unexplored areas. Those incomplete 

provings may add more or less to the proof of Fermat’s Last Theorem, but the meth-

ods that were created with them lead to major discoveries and creation of new fields 

in the era of Mathematics like the foundation of modern algebra. Discoveries that are 



even more significant than the proving of the theorem itself and might have not been 

found if it weren’t for the warranted proof-events and the counterarguments emerged 

from the previous attempts of proving. 

In the next part we present a brief representation of this example through the 

levels of argumentation
1
. 

 
Object level arguments – Fermat’s Conjecture 

In the object level arguments, we have Fermat’s conjecture as the initial 

proof-event           and his claim that he has a proving for this conjecture, without 

any claim-counterargument         
   clearly opposes this conjecture. 

                                      
        →                             

 

First-level priority arguments - Proofs for specific exponents 

In the first-level priority arguments, we have proofs for specific exponent n 

of the Fermat’s Last theorem from various mathematicians in different time points.  

For the exponent n=3 (en=3), Leonhard Euler (      ) gave a proof in 1755, so we 

have:                       . 

Many other well-known mathematicians followed with equivalent proofs that support 

the validity of the proof for n=3. Each prover used a different way (warrant) for prov-

ing the conclusion, so their provings are equivalent. 

                →                    , for i=1,…,14 with: 

i=1:(eEuler,t1707), i=2:(eKausler,t1802), i=3:(eLegendre,t1823), i=4:(eCalzolari,t1855), 

i=5:(eLame,t1865), i=6:(eTait,t1872), i=7:(eGunther,t1878). 

                                               [            
      

                ]            →                     , for t1755<ti 

Fermat’s Last Theorem was also proved for the exponents n = 5, 6,7, 10, and 14.  

 

Second-level priority arguments – Lame’s Proving 

In 1847, Gabriel Lame’s proving (eLame) failed because it claimed incorrectly 

that complex numbers can be factored into primes uniquely. This gap was indicated 

instantly by Joseph Liouville (eLiouville*). 

                 
       [                 

        →             ]
               

  [                           →                   
        ]

→                         
  

Third-level priority arguments – Andrew Wiles 

 Andrew Wiles presented his work in June 1993, but it became evident that there 

was an incorrect critical point (eWiles*) in the proving. Wiles tried almost a year to 

                                                           
1  Names of provers and dates are taken from Wikipedia «Fermat’s Last Theorem». Retrieved  from: 

https://en.wikipedia.org/wiki/Fermat%27s_Last_Theorem] 

 

https://en.wikipedia.org/wiki/Joseph_Liouville


 

resolve this point, firstly by himself and then with the contribution of Richard Taylor, 

but without success. 

                             
              

       [                             
                    

     ]   [                          →

              
      ]                   . 

 

 Finally, in 1994, Wiles submitted two papers that combined Kolyvagin–Flach 

approach and Iwasawa theory which was the last step in proving Fermat's Last Theo-

rem. 

                                               →               
         

                                                                    

 
Higher-order priority arguments-Fermat’s Last Theorem 

The proof–event managed to deal with all the attacks and we have: 

 

                                                       ] →
                   ) ,  

at the time t1994. 

Thus, Fermat’s Last Theorem is proved valid by Wiles, with the contribution of the 

other agents that opened the way before him in this ages-long sequence of proof-events. 
 

5. Conclusion 
We have developed a model of the proof-events calculus [32] based on Pol-

lock’s [26], Toulmin’s [28] and Kakas’ argumentation theories, extending the proof-

events calculus with the integration of arguments and counterarguments. The combina-

tion of Vandoulakis’s and Stefaneas’s proof-events-based theory and logic-based argu-

mentation has the advantage of highlighting weak areas in a proof. Proof-events are not 

considered as infallible facts before their ultimate validation, thus enabling the explora-

tion of flawed approaches and proofs to be found and resolved. We focused on the con-

nection between proving, human reasoning, cognitive processes and creativity. We 

presented a calculus for the proof-event argument, argument moves, and temporal pred-

icates and we analyzed them in terms of levels of argumentation. The calculus adds an 

additional dimension and performs a significant role in making these connections suffi-

ciently detailed and specific. In our future work, we can apply this model to express the 

proof-events sequence and history in specific examples of mathematical proving, as in 

the example of Fermat’s Last  
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