
Implementations of Natural Logics

Lawrence S. Moss

Indiana University, Bloomington, IN 47405, USA lmoss@indiana.edu

Abstract

We discuss what is known about implementations of logical systems whose syntax is either a small
fragment of natural language, or alternatively is a formal language which looks more like natural
language than standard logical systems. Much of this work in this area is now carried out under the
name of natural logic. Just as in modal logic or description logic, there are many systems of natural
logic; indeed, some of those systems have features reminiscent of modal logic and description logic.
For the most part, quantification in natural logics looks more like description logic or term logic (i.e.,
syllogistic logic) than first-order logic. The main design criteria for natural logics are that (1) one can
be able to use them to carry out significant parts of reasoning; and (2) they should be decidable, and
indeed algorithmically manageable. All of the questions that we ask about the implementation of any
logics can be asked about natural logics. This paper surveys what is known in the area and mentions
open questions and areas.

1 Introduction

This workshop is concerned with Automated Reasoning in Quantified Non-Classical Logics. The spe-
cific contribution in this paper might be called automated reasoning pertaining to human reasoning, but
done in a setting that deviates from the normative frameworks in logic. The specific area of application
is natural language semantics, especially done with an eye towards automated reasoning in formal lan-
guages which approximate natural language. Admittedly, these days formal logic in computer science
is primarily a tool in areas like verification; connections of logic to AI are less prominent. Nevertheless,
the original and primary motivation for logic is (arguably) the study of inference in language, from
Aristotelian syllogisms onward. This is the target area of this paper.

The natural logic program This is a summary of the program of natural logic, taken from papers and
talks:

1. Show the aspects of natural language inference that can be modeled at all can be modeled using
logical systems which are decidable.

2. To make connections to proof-theoretic semantics, and to psycholinguistic studies about human
reasoning.

3. Whenever possible, to obtain complete axiomatizations, because the resulting logical systems are
likely to be interesting, and also complexity results.

4. To implement the logics, and thus to have running systems that directly work in natural language,
or at least in formal languages that are closer to natural language than to traditional logical calculi.

5. To re-think aspects of natural language semantics, putting inference at the center of the study
rather than at the periphery.

ARQNL 2018 1 CEUR-WS.org/Vol-2095

Implementations of Natural Logics Moss

Arist
otle

Church-Turing

Peano-Frege

S

S†

Peano-Frege

S≥ S≥ adds |p| ≥ |q|
R

R∗
R∗(tr)

R∗(tr, opp)
R†
R∗†
R∗†(tr)

R∗†(tr, opp)

FOL

FO2

first-order logic

2 variable FO logic

† adds full N -negation

R + relative clauses

R = relational syllogistic

R∗ + (transitive)
comparative adjs

R∗(tr) + opposites

S + full N -negation

S: all/some/no p are q

Figure 1: Some logical systems in the natural logic area, along with FOL and others.

Goal (4) is the topic of this paper, but goal (3) is also relevant. Most of the work on natural logic
has pursued goals (1) and (3). Concerning (3), there are now a myriad of logical systems which are
complete and decidable and which have something to do with natural language. Some of them are listed
in a chart in Figure 1. Here is a guide to those systems, starting with the three boundary lines.

The line called “Church-Turing” at the top separates the logics which are undecidable (above the
line) from those which are not. FOL is first-order logic. FO2 is two-variable first-order logic; this is
well-known as a decidable logic. This logic is not directly relevant to our study, but since many logics
can be expressed in FO2, they inherit the decidability.

The line called Peano-Frege separates the sub-logics of FOL (to the right) from the one logic on
this chart which is not sub-logic of FOL. These logics are “non-classical”, being unrelated to FOL. And
they deal with “quantity” (but not “quantification” in the usual sense). I would hope that people in the
ARQNL community will find them interesting. I discuss them in Section 3. It should be mentioned that
there are other logics to the left of the Peano-Frege boundary. Space didn’t permit a larger display.

The line called Aristotle separates the logics with a syllogistic formulation from those which lack
such a formulation. This line is much less “firm” than the other lines, for two reasons. First, there is
no accepted definition of what a syllogistic proof system even is. For us, it means a logic with a finite
set of rules, each of which is essentially a Horn clause, and also allowing reductio ad absurdum. The
second noteworthy feature of the Aristotle line is that sometimes a logic L which is provably above the
line has a super-logic L′ which is below the line. That is, sometimes, adding vocabulary to a logical
system enables one to find a syllogistic presentation. This feature has made some doubt whether there
is much of a point to the Aristotle boundary. Be that as it may, there certainly is work to do in clarifying
the line which we name for Aristotle.

2

2

Implementations of Natural Logics Moss

Specific logics We go into details on the syntax and semantics of some of the logics in the chart,
starting with S at the bottom. This is the classical syllogistic. The syntax starts with a collection of
nouns; we use lower-case letters like p, q, x, and y for nouns. The syntax just has sentences of the form
all x are y, some x are y, and no x are y. These sentences are not analyzed as usual in first-order logic.
The sentences of S do not involve recursion. Also, there are no propositional connectives in this tiny
logic.

For the semantics, we consider modelsM consisting of a set M and subsets [[x]] ⊆M for all nouns
x. We then declare

M |= all x are y iff [[x]] ⊆ [[y]]
M |= some x are y iff [[x]] ∩ [[y]] 6= ∅
M |= some x are y iff [[x]] ∩ [[y]] 6= ∅

Please note that we are not rendering sentences like all x are y into first-order logic. Instead, we are
giving a semantics to syllogistic logic.

Then we ask some very traditional questions. For a set Γ of sentences in this language, and for
another sentence ϕ, we say that Γ |= ϕ if every modelM which satisfies all sentences in Γ also satisfies
ϕ. This is the notion of semantic consequence from logic. There is a matching proof system, defining a
relation Γ ` ϕ. For example, here are two rules

all x are y all y are z

all x are z
BARBARA all x are y some x are z

some y are z DARII

One feature of the logics in this area is that frequently there are many rules.
As expected, there is a Completeness Theorem. For the purposes of this paper, the important point

is that the relation Γ ` ϕ (for Γ a finite set) is in NLOGSPACE (see [20]), and it is straightforward to
implement.

We return to the chart to briefly discuss the other logics. The logic R above S adds transitive verbs
(such as see, love, and hate), interpreted as arbitrary binary relations on the universe. The syntax ofR is
bit complicated, so we won’t go into full details. But the following are examples of sentences of it: all
x see some y and no x see all y. In English, sentences like the first of these are ambiguous, and to make
a proper logical study we take just the standard reading, where all has wide scope. Moving up,R∗ adds
terms in a recursive way to R. We present the syntax of two related systems formally in Section 2. So
all (see all (love all dogs)) (hate some cat) is a sentence of R∗; its usual rendering in English would be
all who see all who love all dogs also hate some cat. R∗(tr) adds comparative adjectives such as taller
than, interpreted again as binary relations, but insisting that those interpretations be transitive (hence
the tr) and irreflexive. Adding converse relations such as shorter than takes us up to R(tr, opp). For
example, a logical rule in this logic would be to assume all x are taller than all y and conclude all y are
shorter than all x.

The logics with the dagger † add full negation on all nouns. So in S†, one can say some non-x are
non-y. This sentence is not part of the classical syllogistic. We interpret “non” in a classical way, so
[[non-x]] = M \ [[x]]. If one wanted to be “non-classical” here, one certainly could.

More on natural logic may be found in the Handbook article [15].

Complexity A great deal is known about the complexity of the consequence relation Γ ` ϕ. The
logics at the bottom of the chart, S, S†,R, and S≤ are in NLOGSPACE (see [20]). R∗ is NP-COMPLETE
(see [13]). The logics R†, R†∗, and R†∗(tr) are complete for EXPTIME. It is open to investigate
approximation algorithms for these kinds of logics.

Of special interest for implementations Most of these logics have not been implemented, but of
course it would be interesting to do so. Further, we do not even have approximation algorithms for

3

3

Implementations of Natural Logics Moss

these logics. All of this would be good to do. The smallest logics in the chart have been implemented,
and there are some interesting features. First, once a logic has negation, contradictions are possible.
Perhaps the most natural way to handle these is by adding reductio ad absurdum to the proof system.
However, this complicates the proof search in a big way. And in general, allowing reductio ad absurdum
in syllogistic logics raises the complexity beyond PTIME. To circumvent reductio ad absurdum, one can
use ex falso quodlibet. This principle allows us to derive an arbitrary conclusion from a contradiction.

Another interesting thing about the implementations of logics “low in the chart” is that completeness
and model-building are closely related. Here is how this works. Suppose we are given Γ and ϕ and want
to know whether or not Γ ` ϕ; if this hold, we want a proof, and if not, we want a counter-model. One
proves a kind of conservativity fact about these logics: if there a derivation of Γ ` ϕ, then there is one
with the property that all terms in it are subterms of the premises or of the conclusion. This is a distant
relative of the subformula property, and it make proof search efficient. One simply generates all of the
consequences of Γ and looks for ϕ. If ϕ is not found, then the sentences which are consequences of
it usually gives us a model in a canonical way. The upshot is that one does not need a separate model
finder.

Predecessors There are two main predecessor areas to the work that I am discussing, one from Artifi-
cial Intelligence, the other from Philosophy. In AI, there is a long tradition of thinking about inference
from language. Sometimes this is even taken as a primary problem of natural language processing. But
most of that work does not propose small fragments the way we are doing it here. Still, some early
papers in the area do work (in effect) with fragments, such as [18, 13]. Those papers have observations
that are useful even now. The other background area is Philosophy, especially to those interested in
reconstruction of ancient logical systems such as the syllogistic. For this line of work, see [11, 6, 4, 12].
The main difference between it and what we have mentioned so far is that the syllogistic logics in the
natural logic area are extended syllogistic logics; we are willing to go beyond the ancient systems in
every way.

2 Tableau for Beyond Syllogistic Logic
The most prominent topic for the ARQNL workshop is quantified non-classical logics. I take it that
“quantified” here means “having the standard quantifiers.” In Section 3 below, we consider a different
sense of “quantified”: dealing with quantities (but doing so in a non-classical way). But first, in this
section, I want to suggest another direction. Let us return to the chart in Figure 1. The logics above the
line marked Aristotle can be shown to have no syllogistic proof system, not even one that uses (RAA).
The language that I want to mention in this section is R∗†. It is a term logic; the variables range over
subsets of a model, not individuals. Its syntax comes from [20] and is found in Figure 2. (Actually, I
have changed the original syntax in small ways, and my syntax is closer to that of [14].)

For the semantics, we interpret nouns by subsets of the universe M of a model (as in the previous
section), verbs by relations on M , noun and verb complements classically, and then inductively interpret
terms by

[[r all x]] = {n ∈M : for all m ∈ [[x]], (m,n) ∈ [[r]]}
[[r some x]] = {n ∈M : for some m ∈ [[x]], (m,n) ∈ [[r]]}

In terms of the complexity, the consequence relation for R∗ is CO-NP COMPLETE (see [13]). For
R∗†, the complexity jumps to EXPTIME-complete (see [20], following Pratt-Hartmann [19]). In general,
the addition of full negation is responsible for a number of complexity jumps in the area.

It is possible to construct natural deduction style proof systems for this logic and related ones [14].
People interested in proof calculi for fragments of first-order logic might find this work interesting. But

4

4

Implementations of Natural Logics Moss

Expression Variables Syntax
nouns p, q, x, y
verbs s
unary literal l p | p̄
binary literal r s | s̄
term c, d l | r some c | r all c
R∗ sentence ϕ some b+ d | some d b+ | all b+ d | all d b+

Figure 2: Syntax of R∗†.

nobody has investigated or implemented proof search for the logics in [14]. So from the point of view
of this paper, those systems are less interesting.

Wennstrom [22] provided an analytic tableau system for R∗†. His system is complete. He showed
that for every finite set s of sentences in the language which is unsatisfiable, there is a (finite) closed
tableau, proving the unsatisfiability of s. And if s is satisfiable, then the proof search algorithm es-
sentially provides us with a model. In addition, Wennstrom, provided three different tableau search
strategies for the language. (We should mention that the tableau system is not strongly complete.)
These all have to do with witnesses to existential sentences. In order to have finiteness results of the
kind we mentioned, some care is needed.

Wennstrom also implemented all three strategies. He worked in miniKanren [5], a relational pro-
gramming language embedded in Scheme. He evaluated these on a number of test sets. Evaluation was
done using Petite Chez Scheme on a Windows 7 (64 bit) laptop. To give an idea, here is one of the tests:

{∀(k,m),∃(∀(∀(∃(k, h), s), r),∃(∃(∃(m,h), s), r))}

(The syntax here employs evident abbreviations from what we mentioned in Figure 2. For example
∃(t, r) abbreviates r some t.) The fourfold nesting of the quantifiers means that this example was too
complicated to actually run.

Other tableau systems and implementations Wennstrom [22] was influenced by Pratt-Hartmann
and Moss [20], the paper that put forward most of the systems in Figure 1. But the idea of using tableau
comes from Muskens [17], the primary source on tableau methods in connection with natural language
reasoning. This work was taken up by Abzianidze in his papers [1, 2, 3]. These papers build on [17],
but in addition they implement the ideas. To date, this is the most sophisticated and most successful
implementation effort of the kind reported in this paper. The main reason not to go into more detail
on it in this paper is that I cannot point to so many problems that could interest people at the ARQNL
workshop.

3 Sizes of sets

This section discusses a topic that I think could be of interest at ARQNL, the logic S≤. This logic adds
to syllogistic logic some decidedly non-first order semantics, but with a simple syntax. We add to the
classical syllogistic two extra kinds of sentences: there are at least as many x as y, and there are more
x than y. The semantics is just what one would expect: use set theoretic models, and use the standard
notion of cardinality. In this discussion, we are going to restrict attention to finite models, since this is
most in the spirit of the subject. (But one can work on infinite sets; see [16].)

5

5

Implementations of Natural Logics Moss

Again, we should emphasize that these logical systems do not have quantifiers; for that matter,
they do not have propositional connectives ∧, ∨, or ¬. The only sentences are the ones mentioned.
In a sense, they are the cognitive module for reasoning about size comparison of sets, in the simplest
possible setting.

It might come as a surprise, but reasoning about the sizes of sets does not by itself require a “big”
logical system.

There is a complete proof system. It has 22 rules and so we won’t present them all. But let us show
several of them:

all p are q there are at least as many p as q
all q are p

(CARD-MIX)

there are more q than p

there are more p than q
(MORE-ANTI)

∃≥(p, p) ∃≥(q, q)

∃≥(p, q)
(HALF)

(CARD-MIX) requires that the universe be finite. In the last two rules, we use x as an abbreviation of
non-x. In (CARD-MIX), we use ∃≥(x, y) as an abbreviation of there are at least as many x as y. So,
here is an explanation of the (HALF) rule. If there are at least as many p as non-p, then the p’s are at
least half of the universe. So if there are at most as many q as non-q, then q’s have at most half of the
elements in the universe.

As we mentioned before, the logic does not have reductio ad absurdum, but it has the related princi-
ple of ex falso quodlibet. In more detail, reductio ad absurdum is an admissible rule, but it is not needed.
One can use the following weaker forms

∃≥(p, q) ∃>(q, p)
ϕ (X-CARD)

some p are q no p are q
ϕ (X)

These basically say that anything follows from a contradiction. It is open to construct and implement
meaningful natural logics which are paraconsistent.

3.1 Implementation
The logic has been implemented in Sage1. This implementation is on the cloud, and the author shares
it. See https://cocalc.com/. Other syllogistic logics have been implemented in Haskell.

For example, one may enter in the CoCalc implementation the following.

assumptions= [’All non-a are b’,

’There are more c than non-b’,

’There are more non-c than non-b’,

’There are at least as many non-d as d’,

’There are at least as many c as non-c’,

’There are at least as many non-d as non-a’]

conclusion = ’All a are non-c’

follows(assumptions,conclusion)

1As a programming language, Sage is close to Python. It is mainly associated with CoCalc (https://cocalc.com/);
CoCalc incorporates a lot of mathematical software, all of it open source. It provides Jupyter notebooks and course management
tools.

6

6

Implementations of Natural Logics Moss

We are asking whether the conclusion follows from the assumptions. This particular set of assump-
tions is more complicated than what most people deal with in everyday life, even when they consider
the sizes of sets. This is largely due to the set complements.

As we mentioned, the proof search algorithm basically gives counter-models to non-theorems. In
the case of this logic, this fact takes special work. Returning to our example, the result appears instantly.
(That is, for a set of assumptions of this type, the algorithm takes less than one second, running over the
web.) We get back

The conclusion does not follow

Here is a counter-model.

We take the universe of the model to be {0, 1, 2, 3, 4, 5}
noun semantics

a {2, 3}
b {0, 1, 4, 5}
c {0, 2, 3}
d {}

So the system gives the semantics of a, b, c, and d as subsets of {0, . . . , 5}. Notice that the
assumptions are true in the model which was found, but the conclusion is false.

Here is an example of a derivation found by our implementation. We ask whether the putative
conclusion below really follows:

All non-x are x
Some non-y are z
There are more x than y

In this case, the conclusion does follow, and the system returns a proof.

Here is a formal proof in our system:

1 All non-x are x Assumption

2 All y are x One 1

3 All non-x are x Assumption

4 All non-y are x One 3

5 Some non-y are z Assumption

6 Some non-y are non-y Some 5

7 Some non-y are x Darii 4 6

8 Some x are non-y Conversion 7

9 There are more x than y More 2 8

What about propositional logic? Propositional connectives make complex sentences from sentences.
We did not add the propositional connectives to this particular logic to keep the complexity low, and also
to illustrate the idea that one should find special-purpose logics for topics like sizes of sets. However,
one certainly could add in the connectives. The resulting logic has been explored, but we lack the space
to expand on this. It is open to implement such logics, or to connect the work to SAT solvers.

7

7

Implementations of Natural Logics Moss

4 Reasoning without grammar, and forgetting about completeness
The ultimate goal of the work that I am reporting on is to have working systems that do inference in
natural language, or something close. It is clear that the program of natural logic that I have discussed,
where one works with ever more complicated fragments, has a long way to go. I hope that some of the
languages which we have found so far will be of interest even to people outside of the area. It is equally
clear that for natural language inference itself, the method of fragments has its limitation: to get started
with it, one must have a language with a clear syntax and semantics.

Readers of this paper will be surprised by the title of this section. The standard assumptions in all
areas of formal logic is that logical language come with a precisely defined semantics and especially a
precisely defined syntax. This syntax is usually trivial in the sense that parsing a logical language is a
non-issue. For natural language, the opposite is true. Parsing is a complex matter. (The semantics is
even worse, of course.)

This section loosen this assumption in connection with sizes of sets. It is based on [9, 8]. It calls on
some knowledge of formal and computational linguistics.

We are interested in polarity marking, as shown below:

More dogs↓ than cats↑ walk↓

Most↑ dogs= who= every= cat= chased= cried↑

Every dog↓ scares ↑ at least two↓ cats↑

The ↑ notation means that whenever we use the given sentence truthfully, if we replace the marked
word w with another word which is “≥ w” in an appropriate sense (see below for an example), then
the resulting sentence will still be true. So we have a semantic inference. The ↓ notation means the
same thing, except that when we substitute using a word ≤ w, we again preserve truth. Finally, the =

notation means that we have neither property in general; in a valid semantic inference statement, we can
only replace the word with itself rather than with something larger or smaller. We call ↑ and ↓ polarity
indicators.

For example, suppose that we had a collection of background facts like cats ≤ animals, beagles ≤
dogs, scares ≤ startles, and one ≤ two. This kind of background fact could be read off from WordNet,
thought of as a proxy for word learning by a child from her mother. In any case, our ↑ and ↓ notations
on Every dog↓ scares ↑ at least two↓ cats↑ would allow us to conclude Every beagle startles at least one
animal. In general, ↑ notations permit the replacement of a “larger” word and ↓ notations permit the
replacement of a smaller one.

The goal of work on the monotonicity calculus such as [21, 10, 9] is to provide a computational
system to determine the notations ↑, ↓,= on input text “in the wild”. That means that the goal would
be to take text from a published source or from the internet, or wherever, and to then accurately and
automatically determine the polarity indicators. Then using a stock of background facts, we get a very
simple “inference engine,” suitable for carrying out a reasonable fraction of the humanly interesting
inferences. The system would handle monotonicity inferences [7, 21]. Such a system would not be
complete at all, because many forms of inference are not monotonicity inferences.

We must emphasize that [9] is also not a complete success. The work there depends on having a
correctly parsed representation of whatever sentence is under consideration, either as a premise of an
argument or as the conclusion. And here is the rub: it is rather difficult to obtain semantically useable
parses. We have wide-coverage parsers; that is, programs capable of training on data (probabilistically)
and then giving structure to input sentences. And the parses of interest to us are those in a grammatical
framework called combinatory categorial grammar (CCG). CCG is a descendant of categorial grammar
(CG), and it is lexicalized; that is, the grammatical principles are encoded in complex lexical types
rather than in top-down phrase structure rules. From our point of view, this is a double-edged sword.

8

8

Implementations of Natural Logics Moss

On the one hand, CG and CCG connect syntax and semantics because string concatenation in the syntax
is matched by function application in the semantics, or to combinators of various sorts. On the other
hand, there is no real hope of writing a complete set of rules for logical systems whose syntax is so
complicated as to require a grammar of this form. In effect, we give up on completeness in order to
study a syntax that is better than a toy. For that matter, working with a wide-coverage parser for a
framework like CCG means that some of the parses will be erroneous in the first place. And so the
entire notion of deduction will have to be reconsidered, allowing for mistakes along the way.

The connection to automated reasoning There are several reasons why this topic of automated
monotonicity reasoning deserves mention in a paper on natural logic for the ARQNL community. Given
a set of assumptions in natural language (or even in formal logic), if one has ↑ and ↓ information on the
individual words and the constituent phrases, then a “good deal” of logical inference follows “easily”,
by substitution. Admittedly, we are vague here; see [8]. It is a nice open question to quantify in a mean-
ingful way the amount of logical inference that is due to very simple operations, such as monotonicity
substitution. Beyond this, there are some interesting technical questions about how exactly one would
compute ↑ and ↓ information from parse trees.

5 Conclusion
My feeling is that people interested in the topics like “proof calculi, automated theorem proving systems
and model finders for all sorts of quantified non-classical logics” will find much to like in the topic of
natural logic. Although the systems in the area will be new, and so on a technical level one would be
tempted to see differences, there is a close ideological kinship. Both are about automated reasoning,
both are willing to consider new systems of various types.

We close with a review of the main points in this survey paper for people in the area.
First, first-order logic (FOL) is not the only approach to the topic of quantification: extended syllo-

gistic logics in the natural logic family offer an alternative. That alternative is not nearly as well-studied
as FOL. There are numerous computational problems related to extended syllogistic logics, and there
are also a few working systems.

Even if one prefers FOL for the things that it can do, FOL cannot handle some manifestly second-
order phenomena such as reasoning about the sizes of sets. We mentioned logics which can cover this
reasoning and showed a simple implementation.

An old effort in AI is to study inference from text using automated logic. This topic is currently under
revision, due to the connection with the monotonicity calculus. From the point of view of this paper,
automating monotonicity inference is an important next step in doing automated reasoning concerning
quantification.

References
[1] Lasha Abzianidze. A tableau prover for natural logic and language. In Proceedings of the 2015 Conference

on Empirical Methods in Natural Language Processing, EMNLP 2015, Lisbon, Portugal, September 17-21,
2015, pages 2492–2502, 2015.

[2] Lasha Abzianidze. A tableau prover for natural logic and language. In EMNLP, pages 2492–2502, 2015.
[3] Lasha Abzianidze. Natural solution to fracas entailment problems. In Proceedings of the Fifth Joint Confer-

ence on Lexical and Computational Semantics, *SEM 2016, Berlin, Germany, 11-12 August 2016, 2016.
[4] John Corcoran. Completeness of an ancient logic. Journal of Symbolic Logic, 37(4):696–702, 1972.
[5] William E. Byrd Daniel P. Friedman and Oleg Kiselyov. The Reasoned Schemer. MIT Press, 2005.

9

9

Implementations of Natural Logics Moss

[6] George Englebretsen. Three Logicians. Van Gorcum, Assen, 1981.
[7] Bart Geurts. Monotonicity and processing load. Journal of Semantics, 22(1):97–117, 2005.
[8] Hai Hu, Thomas F. Icard III, and Lawrence S. Moss. Automated reasoning from polarized parse trees. In

Proc. Natural Language in Computer Science (NLCS’18), 2018.
[9] Hai Hu and Lawrence S. Moss. Polarity computations in flexible categorial grammar. In M. Nissim (et al),

editor, Proceedings of The Seventh Joint Conference on Lexical and Computational Semantics, *SEM 2018,
New Orleans, Louisiana, 2018.

[10] Thomas F. Icard and Lawrence S. Moss. Recent progress on monotonicity. Linguistic Issues in Language
Technology, 9(7):167–194, 2014.

[11] Jan Łukasiewicz. Aristotle’s Syllogistic. Clarendon Press, Oxford, 2nd edition, 1957.
[12] John N. Martin. Aristotle’s natural deduction revisited. History and Philosophy of Logic, 18(1):1–15, 1997.
[13] David A. McAllester and Robert Givan. Natural language syntax and first-order inference. Artificial Intelli-

gence, 56:1–20, 1992.
[14] Lawrence S. Moss. Logics for two fragments beyond the syllogistic boundary. In Fields of Logic and Com-

putation: Essays Dedicated to Yuri Gurevich on the Occasion of His 70th Birthday, volume 6300 of LNCS,
pages 538–563. Springer-Verlag, 2010.

[15] Lawrence S. Moss. Natural logic. In Handbook of Contemporary Semantic Theory, Second Edition, chap-
ter 18. John Wiley & Sons, 2015.

[16] Lawrence S. Moss and Selçuk Topal. Syllogistic logic with cardinality comparisons on infinite sets. Review
of Symbolic Logic, 2018.

[17] Reinhard Muskens. An analytic tableau system for natural logic. In Logic, Language and Meaning - 17th Am-
sterdam Colloquium, Amsterdam, The Netherlands, December 16-18, 2009, Revised Selected Papers, pages
104–113, 2009.

[18] Noritaka Nishihara, Kenichi Morita, and Shigenori Iwata. An extended syllogistic system with verbs and
proper nouns, and its completeness proof. Systems and Computers in Japan, 21(1):760–771, 1990.

[19] Ian Pratt-Hartmann. Fragments of language. Journal of Logic, Language and Information, 13:207–223, 2004.
[20] Ian Pratt-Hartmann and Lawrence S. Moss. Logics for the relational syllogistic. Review of Symbolic Logic,

2(4):647–683, 2009.
[21] Johan van Benthem. Essays in Logical Semantics, volume 29 of Studies in Linguistics and Philosophy. D.

Reidel Publishing Co., Dordrecht, 1986.
[22] Erik Wennstrom. Tableau-based model generation for relational syllogistic logics. In International Symposium

on Artificial Intelligence and Mathematics, ISAIM 2014, Fort Lauderdale, FL, USA, January 6-8, 2014, 2014.

10

10

