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Abstract. The paper presents an algorithm for finding the maximum
independent set in an undirected graph with absolute estimate of the
accuracy. Special notions are indroduced and theoretical results in the
area of deviation of approximate solution from the exact one are pre-
sended. Also the paper presents results of computational experiments on
the complementary graphs DIMACS.
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1 Introduction

The problem of the maximum independent set of vertices in an undirected graph
(MIS Problem) has applications in many areas. So, for example, the vertices of
the social graph can be interpreted as users accounts. In this case, the inde-
pendent set will correspond to different accounts, and the clique in the comple-
mentary garph will correspond to fake ones. Another example is the location of
enterprises. In this context, the independent set will correspond to the optimal
location. Thus, the relevance of the research does not cause doubts in terms of
practical significance.

MIS Problem is a classical NP–hard. In complexity theory 3-satisfiability
problem (3-SAT) reduces to it, which in turn reduces to the standard hard sat-
isfiability problem (SAT). This effect indicates that the problem under consid-
eration have special scientific interest. As it is known, for today the problem of
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equality of classes is not solved and there is no polynomial algorithm for any hard
problem. In this connection, approximate and heuristic algorithms are develop-
ing actively. The disadvantage of approximate algorithms is that estimates of the
accuracy obtained are usually greatly overstated. So, for example, in [1] there
was developed 2-approximate algorithm for vertex cover problem which guaran-
tees the deviation of not more than 2 times. However for problems with known
exact solution this estimate is measured by units of vertices. Another approxi-
mate algorithm from [2] implements a greedy approach for the same problem and
allows to obtain the estimate O (log n), which often leads to significant quality
losses. Heuristic algorithms are very effective but any estimates are absent for
them. For example, in [3]–[5] algorithms for maximum clique problem (MCP)
were developed. Note that MCP mentioned above is the dual NP–hard for MIS
Problem.

In [6] an inference algorithm for monotone Boolean functions with absolute
estimate of the accuracy was developed. The additive criterion has the advantage
for solving large-dimensional problems. If the solution include many non-zero
components then the deviation measured by units of components does not lead
to significant losses for practical purposes. In this paper, this idea was continued
to solve MIS Problem.

2 The Maximum Independent Set in the Graph

Let us consider an undirected graph G = (V, E), in which

V = {vi , i = [n]}

is the set of vertices, and

E = {e = (vi, vj) , i, j ∈ [n]}

is the set of edges.

Definition 1. For an integer k ∈ [n− 1] we call a vertex v ∈ V of the
graph G = (V, E) a k–vertex if |N (v)| = k and the neighborhood of this vertex is
the complete induced subgraph.

Definition 2. For integers k ∈ [n − 1] and m we call a vertex v ∈ V of the
graph G = (V, E) a (k,m)–vertex if k = |N (v)| and in the neighborhood of this
vertex there are absent m edges to be the complete induced subgraph.

Proposition 1. If the vertex v is a k–vertex in the undirected graph G = (V, E)
then there exists the maximum independent set of vertices S ⊆ V such that
v ∈ S.

Proof. Let us consider the arbitrary maximum independent set S of the graph
and the k–vertex v ∈ V . It is easy to see that among elements of the set {v} ∪ N (v)
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there is vertex u such that u ∈ S. Indead otherwise one could find an indepen-
dent set S′ ⊆ V such that S′ = {v} ∪ S and |S′| > |S|.This contradicts the
maximality of the independent set S.

Now let us consider two possible cases.
1) If v ∈ S then we are done.
2) If v 6∈ S and u ∈ S for some vertex u ∈ N (v) then for S one can find the

set
S′ = S − {u} ∪ {v}

which is also the independent set by definition of k-vertex. By construction we
have |S′| = |S|. Thus we obtained the maximum independent set S′ such that
v ∈ S′ as was to be proved.

Note that Proposition 1 underlies the idea of developing the heuristic algo-
rithm with the absolute estimate of the accuracy.

3 The Algorithm for MIS Problem with Absolute
Estimate of the Accuracy

We denote the set of all independent sets of the graph G as S (G) and the set
of all maximum independent sets of the graph G as Smax (G).
Let maxS (G) = |S|:S ∈ Smax (G) be the cardinality of the maximum indepen-
dent set of the graph G.

Proposition 2. Let two graphs G1 = (V1, E1) and G2 = (V2, E2) are such that
V1 = V2, and E1 ⊆ E2. Then

Smax (G2) ⊆ S (G1) .

Proof. Consider an arbitrary independent set S ∈ S (G2) of the graph G2. By
the definition of the independent set we have:

∀ u, v ∈ V2:u, v ∈ S (u, v) 6∈ E2 .

By the hypothesis of the proposition, we have E1 ⊆ E2 and V1 = V2. As a
consequence for any S ∈ S (G2) we have

∀ u, v ∈ V2:u, v ∈ S (u, v) 6∈ E1 .

and thus
S ∈ S (G1) . (1)

Then for any set of vertices of the graph G such that S ∈ S (G2), the inclu-
sion (1) holds, that is,

S (G2) ⊆ S (G1) .

At the same time by definition of the maximum independent set of the graph, we
have that any maximum independent set of the graph is clearly the independent
set of the graph, so

Smax (G2) ⊆ S (G2) ⊆ S (G1) ,

as was to be proved.
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Corollary 1. Let G1 = (V, E1) and G2 = (V, E2) be graphs such that E1 ⊆ E2.
Then

maxS (G1) ≥ maxS (G2) .

Proof. Let us consider the maximum independent set S ∈ Smax (G2). According
to Proposition 2 we have S ∈ S (G1). By definition for any S ∈ S (G1) there
exists S′ ∈ Smax (G1) such that |S′| ≥ |S|. Then

maxS (G1) = |S′| ≥ |S| = maxS (G2) ,

as was to be proved.

The following proposition underlies the absolute estimate of the accuracy of
the approximate solution.

Proposition 3. Let G =
(
V, E

)
be a graph in which vertices v and u are not

adjacent. And let G′ = (V ′, E ′) be a graph in which V ′ = V and E ′ = E∪{(v, u)}.
Then

maxS (G) ≥ maxS (G′) ≥ maxS (G)− 1 . (2)

Proof. The inequality maxS (G) ≥ maxS (G′) follows from Corollary 1 since
E ⊆ E ′. Let us prove the inequality maxS (G′) ≥ maxS (G) − 1. Let S be the
maximum independent set of the graph G.

1) Suppose that v 6∈ S and u 6∈ S. Then S ∈ Smax (G′). Indead otherwise
we would obtain that there exists the maximum independent set S′ ∈ Smax (G′)
such that |S′| > |S|. According to Proposition 1, we obtain that S′ ∈ S (G), but
this contradicts the maximality of the set S under consideration. Thus, in this
case, we have:

maxS (G) = |S| = maxS (G′) ≥ maxS (G)− 1 .

2) Suppose that v ∈ S and u 6∈ S. If the edge (v, u) is added, then
S ∈ Smax (G′) as was shown above.

3) Suppose that v ∈ S and u ∈ S. If the edge (v, u) is added, then we obtain
S 6∈ Smax (G′). In this case we can find a set S′ such that S′ = S − {v}. Then
S′ ∈ Smax (G′) and

|S′| = |S| − 1 .

by construction. By the definition of the maximum independent set of the graph,
we have:

maxS (G′) ≥ |S′| = |S| − 1 = maxS (G)− 1 ,

as was to be proved.

Corollary 2. Let {e1, . . . , ek} be a subfamily of k vertex pairs that are not edges
of the graph G = (V, E). And let the graph G′ = (V ′, E ′) is such that V ′ = V
and E ′ = E ∪ {e1, . . . , ek}. Then

maxS (G) ≥ maxS (G′) ≥ maxS (G)− k .
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Proof. For proof it suffices to apply Proposition 3 k times.

Proposition 4. If the vertex v is a (k,m)–vertex in the graph G = (V, E) then
there exists a maximal independent set S ⊆ V such that v ∈ S and

|S| ≥ maxS (G)−m .

Proof. According to definition there are missed m edges in the neighborhood
of the vertex v to be the complete induced subgraph. Suppose these edges are
{e1, . . . , em}. Then the vertex v is a k–vertex in the graph G′, which is obtained
from the graph G by the addition of these m edges {e1, . . . , em}. According to
Proposition 1 there exists S′:S′ ∈ Smax (G′) such that v ∈ S′.

According to Corollary 2 we have:

|S′| = maxS (G′) ≥ maxS (G)−m .

It follows from Proposition 2 that S′ ∈ S (G). By definition there exists a max-
imal independent set S such that |S| ≥ |S′| and, as a consequence

|S| ≥ |S′| ≥ maxS (G)−m ,

as was to be proved.

Based on Proposition 4 one can propose an efficient recursive algorithm for
solving MIS Problem. Let us define some features of this algorithm.

On the input of the algorithm B (G) the graph G = (V, E) is given. For
example, it could be given by the adjacency matrix. It is clear that each iteration
of the algorithm leads to the update of the adjacency matrix, when a certain
vertex is included in S and removed from V0 together with neighborhood.

In arrays k[v],m[v] (of length n) the values of parameters k and m are stored
for corresponding vertices. These values are also updated at each iteration of the
algorithm.

The function MinMaxParam (v) returns consequentially the vertex v with
the minimum value of the parameter m and with the maximum value of the
parameter k. In other words, at first vertices are ordered by increasing m. Then
among selected vertices with the minimum m the vertex with the maximum k is
selected. For example, if among vertices of the initial graph there is a unique ver-
tex with the value 0 of the parameter m, then the function MinMaxParam (v)
will return this vertex, regardless of the value of the parameter k.

So the algorithm allows to find the independent set S and to calculate the
absolute estimate (maxS (G)− |S|).

Algorithm B (G): for solving MIS Problem with an absolute estimate of the
accuracy

Require: undirected graph G = (V, E)
Ensure: the independent set S (S ⊆ V ) and the estimate Est for deviation from

the exact solution
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1: V0 ←− V {the current set of vertices consists of applicants for inclusion in
the independent set}

2: S ←− {}
3: Est ←− 0
4: while V0 6= {} do
5: for all v ∈ V0 do
6: calculate k[v]
7: calculate m[v]
8: end for
9: v0 ←− MinMaxParam (v)

10: S ←− S ∪ {v0}
11: Est ←− Est + m[v0]
12: V0 ←− V0 − {v0} − N (v0, V0){remove from the set of applicants the

selected vertex together with neighborhood}
13: end while

This algorithm was implemented and used to find the maximum indepen-
dent set in complementary graphs DIMACS. It is clear that in the initial graph
the solution obtained will correspond to the clique. Then it became possible to
compare results with other effective algorithms.

3.1 Properties of the Algorithm

The following corollary shows that in some cases the Algorithm B (G) allows to
find the exact solution of the MIS Problem.

Corollary 3. If Est = 0 then the independent set S found by Algorithm B (G)
is the maximum.

Proof. If Est = 0 then m[v] = 0 for all v ∈ S. This means that all these vertices
are k–vertices. Thus, according to Proposition 1 the independent set obtained is
the maximum.

It is clear that Est = 0 is not always satisfied. This motivates to study
particular classes of graphs for which the condition of the Corollary 3 hold.

Proposition 5. For any connected graph G = (V, E), where |V | > 2, there exists
the maximum independent set that contains all hanging vertices of this graph.

Proof. Consider the connected graph G = (V, E), where |V | > 2. Let v ∈ V be
hanging vertex. Implementation of the algorithm B (G) allows different states of
V0. Let’s consider each of them in detail.

1) The vertex v is a hanging and unique k–vertex. Then S ←− S ∪ {v} as
required.

2) The vertex v is a hanging and not unique k–vertex. Consider the vertex
u adjacent to the hanging vertex v. The vertex u can not be included in the set
S at the first step, since the neighborhood of the vertex u is not the complete
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induced subgraph. Indead the vertex v is hanging and adjacent to u, that is
the vertex v is in the neighborhood of the vertex u. The graph G = (V, E) is
connected, then in the neighborhood of the vertex u (in the first step, when V0

coincides with V ) there are also other vertices . But the vertex v can not be
adjacent to any of them, since deg (v, V0) = 1 and the vertex adjacent to v is the
vertex u. Thus, the vertex u is not a k–vertex and will not be included in S on
the first step of the algorithm.

A similar situation occurs at any step if at least one vertex remains in the
neighborhood of the vertex u except for the hanging vertex v. Vertices in the
neighborhood of the vertex u will still not be adjacent, and therefore the vertex
u will not be a k–vertex.

Let at some step all vertices adjacent to u be removed except for the hanging
vertex v. This can happen when vertices adjacent to vertices from the neighbor-
hood of the vertex u will be included in S. In this situation the vertex u becomes
a k–vertex and can be included in S. However, the vertex v can also be included
in S, which does not reduce the cardinality of S.

Indeed, let s: |S| = s be the cardinality of S at some step. And let the vertex
u be included in S and the vertex v be not included, then

S ←− S ∪ {u} =⇒ |S| = s + 1 .

Now suppose that the vertex v be included in S and the vertex u be not
included, then

S ←− S ∪ {v} =⇒ |S| = s + 1 ,

that is, one can include the hanging vertex without decreasing the cardinality
of the independent set. Note that if the above situation occurs, then all vertices
which are included in S are k–vertices. Thus, according to Corollary 3 there exists
the maximum independent set of vertices which contains the hanging vertex v.

Arguing similarly for each hanging vertex we get what was required to prove.

Thus, we can formulate a more general proposition about the Algorithm B (G).

Proposition 6. The Algorithm B (G) implemented in the class of trees allows
to find the exact solution of the MIS Problem.

Proof. According to Corollary 3 the independent set found by the Algorithm B (G)
is maximum if Est = 0. In the case when initial graph is a tree at each step its
hanging (or isolated) vertices could be included in S. In this
way Est =

∑
v∈S

m[v] = 0 and the independent set S is the maximum as required.

Note that Proposition 6 is the property of the Algorithm B (G). In addition to
this algorithm, the method of dynamic programming from [7] can be effectively
used to solve the MIS Problem in the class of trees. However, there are still
structural distinctions between these two approaches.
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3.2 Complexity of the Algorithm

Let us discuss the algorithmic complexity of the Algorithm B (G).
For each vertex v it is necessary to find the number of vertices in the neigh-

borhood and the number of edges that should be added. We remove the vertices
v ∪ N (v, V0) and the edges e ∈ G〈{v} ∪ N (v, V0)〉 until V0 becomes empty. Let
n and m be the number of vertices and the number of edges of the initial graph
respectivle.

Then we obtain the following estimate. The common number of iterations is
less than or equal to n. Each iteration needs no more than O (n ·m) actions to
calculate parameters and no more than O (m) actions to remove selected vertex
together with neighborhood. Thus, the complexity of the Algorithm B (G) is
O (n · n ·m + n ·m) = O

(
n2 ·m

)
.

4 Computational Results

The table below shows the results of computational experiments with comple-
mentary graphs DIMACS. The table gives the results of the comparison with
effective algorithms from [3]–[5].

In the column ω (G) there is maximal clique of the coresponding graph, and
the exact solution (maximum clique) is highlighted in bold. In the column B (G)
the results for proposed heuristic algorithm are given.

Table 1. Computational results with complementary graphs DIMACS

It can be seen that the best–known solutuion was obtained in some cases only
but the approximate solution is rather close to the best–known or exact ones.
Furthermore, the algorithm shows high efficiency in terms of time complexity of
calculations.
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5 Conclusion

The paper presents the algorithm for MIS Problem with the absolute estimate of
the accuracy of the approximate solution. Special notions were indroduced and
theoretical results of research were presended. The properties of the algorithm
are investigated and, in particular, its convergence in the class of trees is shown.
The results of computational experiments on complementary graphs DIMACS
are presented, which demonstrate rather good results in terms of the quality of
the approximate solution and high efficiency in terms of the time complexity of
the calculations.
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