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Abstract. The article is intended to fill the recent review of Ortiz-
Astorquiza, C. at al. (2017) on multi-level facility location problem
(MLFLP). The article presents the results of some publications, infor-
mation about which is missing in this review. We are talking about the
construction of polynomial exact algorithms for solving some subclasses
of the network MLFLP. Namely, the design of polynomial time algo-
rithms for the multi-level FLP on a chain graph and the two-level FLP
on a tree graph are discussed. We also show that the a known result of
Trubin V. A. and Sharifov F.A. (1992) for the general multi-level FLP
on a tree is incorrect.
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1 Introduction

In the multi-level network facility location problem (MLFLP) we are given a
set of customers that have some product demands and a set of potential facilities
partitioned into p levels. The problem is to open a collection of facilities, such
that the customers are assigned to one or multiple sequences of opened facilities,
one from each level p, p−1, . . . , 1, while minimizing the total transportation cost
and the cost of opening the chosen facilities.

The most common application of the MLFLP is the design of a production-
distribution system, where the distribution of a product is for example handled
through the system of production plants, warehouses, and retailers [7]. Another
popular application field refers to the telecommunication systems and network
design, where it is required to effectively connect the terminals into a network
building a system of routers and multiplexers [9].

The MLFLP in general is NP-hard even in the case of the one-level setting
[1]. In 1977 Kaufman, Eede, and Hansen in [7] first introduced the two-level FLP
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as a warehouse and plant location problem. Since then, the generalizations and
modifications of the problem have been extensively studied, various heuristics
and approximation algorithms are designed as well as the exact approaches such
as branch-and-bound [7, 10, 12] and branch-and-cut [8] methods. We refer the
reader to the recent survey paper [9] for a detailed overview of this kind of
algorithmic results for the MLFLP. The purpose of the article is to supplement
this review with some of the results of earlier publications not mentioned therein.
In addition, we recall the advisability of a more compact formulation of the
MLFLP using the so-called assignment vectors as decision variables.

Let’s give a mathematical formulation for the p-level Network MLFLP. In
the network statement of the MLFLP it is assumed that we are given a weighted
graph G(N,E), where the set of nodes N = {1, . . . , n} represents the set of
customers; Mr ⊂ N is the set of possible r-th level facility location sites,
mr = |Mr|, 1 ≤ r ≤ p; and the set E of the weighed edges represents the
transportation network. We assume that the beginning of the production pro-
cess takes place at the level p, further a facility of the level r receives the product
from one or multiple number of facilities of the level (r + 1), 1 ≤ r ≤ p− 1, and
finally the product is supplied to the customers on the level 0. Denote by

gri the cost of opening an r-th level facility at node i;
bj the demand at node j;
dip,...i1,j the total cost of the shortest path transportation of product unit

from the facility of the level p located at node ip through the sequence of the
facilities of the lower levels p− 1, . . . , 1 at nodes ip−1, . . . , i1 to the customer at
node j.

The MLFLP then can be formulated as:

∑
j∈N

bj
∑
ip∈Mp

. . .
∑
i1∈M1

xip...i1jdip...i1j +

p∑
r=1

∑
i∈Mr

gri yri → min (1)

subject to ∑
ip∈Mp

. . .
∑
i1∈M1

xip...i1j = 1, j ∈ N, (2)

∑
ip∈Mp

. . .
∑

ir−1∈Mr−1

∑
ir+1∈Mr+1

. . .
∑
i1∈M1

xip...i1j ≤ yrir , (3)

j ∈ N, 1 ≤ r ≤ p, ir ∈Mr,

0 ≤ xip...i1j ≤ 1, j ∈ N, i1 ∈M1, . . . , ip ∈Mp, (4)

yir ∈ {0, 1}, ∈Mr, 1 ≤ r ≤ p. (5)

Here variables xip...i1j are the allocation variables that stand for the pro-
portion of product transported to the customer at node j through the sequence
of facilities of levels p . . . 1 at nodes ip, . . . i1. The variables yri are the location
variables, where yir = 1, if a facility of level r is opened at node i, and yir = 0
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otherwise. The first sum in (1) corresponds to the total transportation costs, and
the second sum is the total cost of opening the chosen facilities. Constrains (2)
stand for each consumer’s demand is satisfied, while constrains (3) make sure
that the allocation to the facility of the level r at node ir is possible only if it
is open. If the allocation variables satisfy (4), each customer can be served by
multiple sequences of opened facilities, and the problem is called multiple allo-
cation MLFLP. If the allocation variables xip...i1j ∈ {0, 1}, each customer can
be served by one sequence of opened facilities, and the problem is called single
allocation MLFLP.

For the single allocation MLFLP there is a more compact formulation that
uses the assignment vectors as variables. The similar formulation was introduced
for the one-level facility location problem [3]. Let’s use the following notation:

– πr = (πr1, . . . , π
r
n)T is the facilities assignment vector on the level r, where

– πrj ∈Mr is the node in which the facility of the level r serving customer j is
placed.

– π = (π1, π2, . . . , πr) is the feasible solution of the problem;
– Ir(π) =

⋃
j∈N{πrj} is the set of facilities of the level r opened in the solution

π;
– Y ri (π) is the service area of the facility i of the level r, i.e., the union over

all j such that πrj = i, where i ∈Mr and 1 ≤ r ≤ p.

It is clear that Ir(π) ⊂Mr and
⋃
Y ri (π) = N , where the union is taken over all

i ∈ Ir(π), 1 ≤ r ≤ p.
Thus, the single allocation MLFLP can be stated as follows:

p∑
r=1

∑
i∈Ir(π)

gri +
∑
j∈N

bj

p∑
r=1

dπr
jπ

r−1
j
→ min

(πr
j )
, (6)

where dij is the length of the shortest path between nodes i and j in G.
In the following sections we consider it appropriate to recall some of the

results in [4–6] for the Network MLFLP on the line and the tree graphs, and
give some comments on Trubin’s article [13].

2 Some Known Facts about the Polynomial Solvability of
the Chain MLFLP

In this section we are going to recall some facts about a special case of the
single allocation Network MLFLP, where the given network is a chain (path).
The transposition cost dij of the product unit between nodes i and j is the sum
of the lengths of the edges in the subchain connecting these nodes.

2.1 An Exact Algorithm Ap for the Chain MLFLP

The first algorithm Ap for the Chain MLFLP is based on the dynamic
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programming scheme under consideretion the original problem as
〈

(Mr), 1 ≤

r ≤ p; N
〉

and the family of subproblems:{〈
(M ir

r ), ir ∈Mr; [1, j]
〉∣∣∣ ir ∈Mr, 1 ≤ r ≤ p; 1 ≤ j ≤ n

}
,

where Ms
r = [1, s] ∩Mr, s ∈Mr, and 1 ≤ r ≤ p.

Denote by Lj(u) the optimal value of the objective function (the optimum)
of each defined subproblem, where u = (i1, i2, . . . , ip) , and let F sj (u), 1 ≤ s ≤ p,
be the optima of the subproblems

〈
(M ir

r ), r ∈ [1, p]; [1, j]
∣∣∣πrj = ir, s ≤ r ≤ p

〉
.

It is clear, that F1(u) =
p∑
r=1

(grir + b1 cirir−1
), where i0 = j, where we set gri equal

to ∞ if i /∈Mr, 1 ≤ r ≤ p. It is easy to see that the optimum F ∗ of the original

problem
〈
Mr, 1 ≤ r ≤ p; N

〉
is equal to

F ∗ = min
{
F 1
n(u)

∣∣∣ ir ∈Mr, 1 ≤ r ≤ p
}
.

Statement 1 [5]. The Chain MLFLP can be solved in O(pnm1m2 . . .mp)-
time using the following recurrent relations:

F s+1
j (u) = min

{
F sj (u);F s+1

j (u− es)
}
,

F 1
j (u) =

p∑
r=1

(grir + bj cirir−1) + min
1<s≤p+1

{
F sj−1(u− hs)−

p∑
r=s

grir

}
,

where F p+1
j (u) = Lj(u), es is a p-dimensional s-th orth, hs =

s−1∑
r=1

er, 1 ≤ s ≤ p.

Thus, the algorithm has time complexity linear in the number of the cus-
tomers n and exponential in the number of levels p. Moreover, the bounds on
time and space complexities coincide.

2.2 A Polynomial-time Algorithm Ãp for the Chain MLFLP

Another exact Algorithm Ãp for the Chain MLFLP makes essential use of
the inclusion property of optimal solutions and of reduction to a special series
of the Nearest Neighbor Problems (NNP).

In the NNP we are given an integer segment (0, n] and a the cost function
f(x, y) of serving each segment [x, y], 0 ≤ x, y,≤ n. The problem is:

m∑
s=1

f(xs−1, xs)→ min
0=x0<...<xm=n

subject to 1 ≤ m ≤ n.
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Statement 2 [5]. The time complexity of Algorithm Ãp for solving the
Chain MLFLP is O

(
n3
∑p
r=1mr

)
.

Comparing algorithm Ap with running-time O(nm1m2 . . .mp) and algorithm

Ãp with running-time O
(
n3
∑p
r=1mr

)
, it follows that the algorithm Ap runs

faster than Ãp, if
pm1 . . .mp

m1 + . . .+mp
≤ n2.

Let m = max{mr | 1 ≤ r ≤ p}. Then for the time complexities of Ap and

Ãp we have the upper bounds O(pnmp) and O(pmn3), respectively. It is clear
that in the case of two- and three-level FLPs, the algorithm Ap is more efficient
than Ap, but for the problem with the number of levels p > 3 the algorithm

Ãp is preferable. Also note, that the space complexity of the algorithm Ap is
exponential in the number of levels, while the space complexity of the algorithm
Ãp stays polynomial.

3 Multi-level FLP on a Tree

3.1 An Exact Algorithm for the Tree 2-Level FLP

The question on existence of exact polynomial time algorithms for solving the
Tree p-level FLP for p ≥ 3 remains open. Nevertheless, paper [6] gives an exact
polynomial-time algorithm solving the Tree 2-level FLP based on the dynamic
programming procedure. Let G = (N,E) be a tree network with the set N of
nodes and the set E of edges, |E | = n − 1. Let the node 1 be the root of this
tree. For all j ∈ N , let :
Pj be a simple path from the root 1 to the node j;
Nj = {j′ | j ∈ Pj′ , j′ ∈ N};
Irj (π) =

⋃
{πrj′ | j′ ∈ Nj}, 1 ≤ r ≤ p;

µj(π) = arg min{ckj | k ∈ I2(π)}.

Statement 3 [6]. There exists an optimal solution of the 2-level FLP on
a tree, such that for all j ∈ N , the following inclusions

I1j (π) ⊂ Nj ∪ {π1
j },

I2j (π) ⊂ Nj ∪ {π2
j } ∪ {µj(π)}

hold.
Let 〈M1, M2; N〉 be the original 2-level FLP on a tree. Consider the family

of the following subproblems:{
〈M1, M2; Nj〉 | π1

j = i, π2
j = k;µj(π) = k′, i ∈M1, k, k

′ ∈M2, 1 ≤ j ≤ n
}
.

Denote by Fj(i, k, k
′) the optimal value of the objective function of each

defined subproblem.
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Statement 4 [6]. The Two-level FLP on a tree can be solved in O(nm1m
2
2)-

time using for all j ∈ N, i ∈ M1 and k, k′ ∈ M2 , the following recurrent
relations:

Fj(i, k, k
′) = g1i + g2kk′ + bj(cki + cij)+

+
∑
l∈Sj

min{Fl;Fl(k′)− g2k′ ;Fl(k, k′)− g2kk′ ;Fl(i, k, k′)− g1i − g2kk′},

where Fj(k, k
′) = min

i∈M1

Fj(i, k, k
′), Fj(k

′) = min
k∈M2

Fj(k, k
′), Fj = min

k′∈M2

Fj(k
′),

g2kk = g2k and g2kk′ = g2k + g2k′ for k 6= k′. Note that F ∗ = F1.

3.2 On Trubin’s Result for the Tree MLFLP

In paper [13] the multiple allocation MLFLP with p levels on a tree network
was studied. The authors claimed that the MLFLP on an n-vertex tree T1 can be
reduced to a Simple Facility Location Problem (SFLP) on an np-vertex tree T2.
Since the latter problem can be solved in polynomial time, the authors claimed
that the MLFLP on a tree with a fixed number of levels p possesses a polynomial
time algorithm as well. Thus, for example, using an O(n log n) algorithm [11] for
the SFLP, one can obtain an O(np log n) algorithm for the MLFLP on a tree.

The aim of this section is to prove that the reduction from the MLFLP to
the SFLP presented in [13] is incorrect.

The reduction proposed in [13] maps the MLFLP on tree T1 to the following
FLP on T2, which consists of several connected copies of the initial tree T1 (Fig.
1). The tree T2 is built in p steps. At the fist step T2 = T1. After k − 1 steps
T2 consists of vertices vi numbered as (i1, . . . , ik−1). At step k to each vertex
vi = (i1, . . . , ik−1) of T2 we attach the initial tree T1 rooted at vertex ik−1.
Each new vertex j from the attached tree T1 is numbered as (i1, . . . , ik−1, j)
in the constructed tree T2. Opening a facility in the p-vector numerated vertex
(i1, . . . , ip) of T2 in the FLP corresponds to opening a facility of the level 1 at
the vertex i1, a facility of the level 2 at the vertex i2 and so on in the tree T1 of
the initial 2-level FLP. Thus the vertices of T2 enumerates all possible sequences
of opened facilities on the p levels in the original problem. The customers of the
FLP on tree T2 having their original demand are located in vertices (i, i, . . . , i),
1 ≤ i ≤ n, in the Fig. 1 these vertices are (1, 1), (2, 2) and (3, 3). The cost gi1,...,ip
of opening a facility a vertex in T2 is said to be equal to the sum

gi1,...,ip = g1i1 + g2i2 + . . .+ gpip (7)

where gri is the cost of opening an r-th level facility, at vertex i in the original
problem on thetree T1.

Let’s introduce variables zi1,...,ip equal to 1, if we open a facility at vertex
(i1, . . . , ip) ∈ T2, and 0, otherwise. The authors [13] claim that the SFLP on T2,
where the total cost of opening facilities calculates as∑

i1∈M1

. . .
∑
ip∈Mp

gi1,...,ipzi1,...,ip
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is equivalent to the problem (1)-(5) on T1. The incorrectness of this claim follows
from the

Counterexample. Consider the following 2-level FLP (1)-(5) on the tree T1
in the form of a line (path) with the set of vertices {1, 2, 3} and the set of edges
{{1, 2}, {2, 3}} (Fig. 1). Let a1 = 2 and a2 = 3 be the cost of transportation of a
product unit along the edges {1, 2} and {2, 3}, respectively. Let dij be the total
cost of transportation of a product unit along the simple path between vertices
i and j in T1, i, j = 1, 2, 3. Set the demand b1 = b2 = b3 = 1, and the following
costs:

— of opening second-level facilities: g21 =∞, g22 = 5, g23 =∞;
— of opening first-level facilities: g11 = 1, g22 =∞, g23 = 1.

Fig. 1. The initial tree T1 for the MLFLP and the constructed tree T2 for the FLP

The location variables yri in the optimal solution for (1)-(5) on the tree T1
obviously satisfy: y21 = y23 = y12 = 0; y22 = 1; y11, y13 ∈ {0, 1}. Let S(y11, y13)
be the total cost of a feasible solution for our the example of MLFLP on T1.
Then

S(1, 0) = a1b1 + 2a1b2 + (2a1 + a2)b3 + g22 + g11 = 19.

Similarly, it is easy to see that S(1, 1) = 16, S(0, 1) = 23. Thus the optimal
solution is opening a second level facility at vertex 2 and first level facilities at
vertices 1 and 3. The optimal value S∗ of the objective function is 16.

Now let’s consider the SFLP on tree T2 obtained from the two-level FLP on
T1. It is clear that z12, z32 ∈ {0, 1} and zij = 0 for all other vertices (i, j) ∈ T2.
Let Q(z12, z32) be the total transportation and facility opening cost for a solution
of the considered example on T2. Thus:

Q(1, 0) = g12 + a1b1 + 2a1b2 + (a2 + 2a1)b3 = 19,

Q(0, 1) = g23 + (a1 + a2)b1 + a2b2 + 2a2b3 = 23,

Q(1, 1) = g12 + g23 + a1b1 + b2 min{2a1, a2}+ b3 min{2a1 + a2, 2a2} = 21.

Thus the optimum Q∗ of the problem on T2 is equal to 19, which is larger
then S∗. The obtained optimal solution for the problem consists in opening a
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facility at vertex (1, 2) ∈ T2 which corresponds to opening a second level facility
at vertex 2 and a first level facility at vertex 1 in the original problem on T1.

The mistake in [13] obviously consists in setting the costs of opening the
facilities for the problem on T2 as (7), since in this case the costs of opening the
facilities on higher levels of the initial problem may be summed up several times.
This leads to different costs of the optimal solutions in these two problems. The
mistake can be fixed as follows. Set for all r = 1, . . . , p

Pr(z) = {ir|zi1,...,ip = 1, (i1, . . . , ip) ∈ T2}

,
and set the costs of opening a facility at vertex (i1, . . . , ip) ∈ T2 as

p∑
r=1

∑
i∈Pr(z)

gri .

This way the initial problem (1)-(5) on the tree T1 indeed is equivalent to
the location problem on the tree T2, but the latter one is not the Simple Facility
Location Problem.

4 Conclusion

The purpose of this article was, in the first place, to recall some of the
results of constructing exact algorithms for solving the Network MLFLP on the
chain and the tree graphs that were missed in the recent large review of Ortiz-
Astorquiza, C. at al. (2017) [9].

Secondly, it was important to show that the polynomial-time algorithm pre-
sented by Trubin and Sharifov [13] for solving the Tree MLFLP is incorrect even
in the particular case of the line graph.

Thus, we can state that at the present time the question of the complexity
status of the Tree MLFLP (for the number of levels greater than 2) remains
open and is waiting for its solution.
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