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Abstract. This work is devoted to development of swarm intelligence
for competitive facility location problem with elastic demand in the fol-
lowing formulation. In a competitive environment, Company plans to
locate new facilities which differ in design. Clients of each point choose
the facilities of Company or Competitor depending on their attractive-
ness and distance. The total share of demand of facilities varies flexibly
depending on the behaviour of clients. The Company’s goal is to maxi-
mize the fraction of demand it serves. The modelling of this demand leads
to the nonlinearity of the mathematical model and to the difficulties of
finding the optimal solution by commercial software in an acceptable
time. There is a small number of publications devoted to the problems
with elastic demand, and a set of methods for solving the problem is
limited. In this paper, we develop ant colony optimization approach. A
comprehensive computational experiment is carried out, and the results
are discussed.

Keywords: Swarm intelligence · Ant colony optimization · Discrete op-
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1 Introduction

During last decade the main attention, among all the branches of artificial intel-
ligence, has been paid to researching multiagent systems. Those systems consist
of a set of intercommunicating agents. The agents are relatively simple, but via
cooperation they model so called swarm intelligence [22]. There are several ex-
amples of such intelligence in nature, such as: an ant colony, a bee hive, a flock
of birds, a fish shoal, etc. Ant colony algorithms were developed by analogy with
them. This work is devoted to the development of those algorithms.
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At the base of ant colony algorithms (AC) is the idea of live ant swarm intel-
ligence. Biological researches showed that ants are able to find the shortest path
from the anthill to the food source using special essence, pheromone [4]. While
moving, ants spread the track of odorous substance. The pheromone cumulates
till new amounts of ants follow the track, and dissolves if it does not attract
any more attention. The higher the pheromone level is the more ants choose the
path. The binary bridge experiment was carried out. During the experiment, the
anthill and the source of food were separated by a bridge with two branches of
different length. With the course of time almost all the ants chose the short-
est branch, which can be explained by the factthat during the same period of
time the ants could pass through the shortest path more times than through the
longest one. The pheromone level on the shortest path gradually increased and
the bigger amount of ants followed the track.

Ants behavior while choosing the shortest path can be considered as an
optimal solution search prototype. Artificial ant (AA) is a agent; ant colony is a
multiagent system. In most cases, AA is a relatively simple probability algorithm,
which occurs to be a part of a more complicated ant colony algorithm. In the
process of solution constructing agents accumulate information about the task.
That information serves like pheromone and is AC algorithm parameter. It is
processed in AC algorithm and allows artificial ants cooperate during further
research. The algorithm is completed in case several conditions are fulfilled, for
instance: the given number of iterations, computing time and others.

Ant colony algorithm was proposed by Dorigo M., Maniezzo V., Colorny A.
in 1991 and was given the name of Ant System. For the first time it was used
to solve travelling salesman problem. The problem allows drawing an analog
between the travelling salesmans motion along the edges of a graph and the
ants movement from one point to another. Travelling salesman problem can be
formulated the following way: there is a complete directed graph G = (N,E),
where the vertex set N , |N | = n is the amount of cities, E is the set of edges
which describe the connections among the cities. The edge length dij is equal to
the distance between the cities i and j; i, j ∈ N, i 6= j. Hamiltonian cycle of the
minimal length is to be searched.

Ant colony algorithm belongs to so called metaheuristic algorithms, which
general schemes can be applied to a wide range of problems [9]. Let us write out
the AC algorithm general scheme.

AC algorithm scheme

Set initial parameters.
Algorithm step:

– Solution constructing via the artificial ant algorithm;
– Applying the local search procedure to the constructed solutions;
– Updating the statistical information for the following artificial ant algo-

rithm usage.

According to [5], at each iteration in the set above travelling salesman prob-
lem the given set of artificial ants L are constructing the solution moving along
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the graph from one city to another according to some probabilistic rule. If ant
chooses to go from vertex i to vertex j, then edge (i, j) is added to the solution.
Artificial ant repeats the iterations until the Hamiltonian cycle is constructed.
Parameter τij shows the desirability of the edge (i, j) to appear in the solution
and serves like an analog to the pheromone. The attractiveness of ηij = 1/dij ,
which was called the visibility of city j from city i in [5], also influences the
ants choice. The probability of the l-ant from the L-colony of artificial ants to go
from city i to city j at iteration t of the AC algorithm is calculated the following
way:

plij(t) =

{
(τij(t))

α(ηij)
β∑

k∈Nl (τik(t))
α(ηil)β

, if j ∈ N l,

0, else,

Where N l is the vertex set which ant l has not visited yet, the values α and β
are the control parameters of the algorithm.

The update of the pheromone takes place at the end of each iteration t of the
ant colony algorithm with the ant-cycle scheme [7], when all the ants complete
constructing solutions, according to the following formula:

τij(t+ 1) = (1− ρ)τij(t) +∆τij(t),

where ρ ∈ (0, 1] is so called pheromone evaporation coefficient, ∆τij(t) is the
total change of the pheromone on the edge (i, j), that is

∆τij(t) =

L∑
l=1

∆τ lij(t).

Where ∆τ lij(t) is the impact of ant l into the pheromone level on the edge (i, j),
which is calculated through the following formula:

∆τ lij(t) =

{
Q/P l(t), if (i, j) ∈ T l(t);
0, else.

In the given formula T l(t) is the Hamiltonian cycle constructed by ant l at
iteration t, the variable P l(t) is its length, Q is a positive constant.

Thereafter the scheme was enhanced: different pheromone update rules were
researched [2, 5, 7]; only the global best current solution was considered for the
pheromone update [6]; a group of elite ants was separated out (the best ants
according to the objective function value) [13]; the local search was used in
order to increase the quality of the solution [17]; new ideas were performed
in order to prevent stagnation [20]; when the concurrent computing had been
developed, parallelization of the process was used [19] and other ideas.
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2 Competitive Facility Location Problem with Elastic
Demand

This work is devoted to the development of swarm intelligence for the competi-
tive facility location problem with elastic demand in the following formulation:
Company plans to locate some new different by design facilities in a competitive
environment. Clients at each point choose the facilities of Company or Competi-
tor depending on the attractiveness and distance. The total share of the facilities
demand varies flexibly depending on the clients behaviour. The Company’s goal
is to serve the largest share of the total demand. Modelling of this demand leads
to the mathematical model nonlinearity and to the difficulties in finding the
optimal solution by commercial software in acceptable time.

This problem was firstly formulated and modelled by Aboolian R., Berman
O. and Krass D. [14]. Let us set the following mathematical model. In the given
problem N = {1, 2, . . . , n} with weight wi, i ∈ N is a set of customers. Let
R be the set of facility designs which differ from one another in size, range,
etc., r ∈ R. It is assumed that Competitor has already placed his facilities in
C ⊂ N and is not going to change them. Company may open its markets in
S = N \ C taking into account the budget B and the opening cost cjr of the
facility j ∈ S with the design r ∈ R. Clients decide to choose the Companies’ or
the Competitors’ facilities depending on the attractiveness ajr and the distance
dij , i, j ∈ N, r ∈ R. The Company’s goal is to maximize the fraction of the
demand it serves.

Let us introduce the variables: xjr = 1, if the facility j is opened with the
design variant r, otherwise xjr = 0; j ∈ S; r ∈ R. Thus the mathematical model
can be presented the following way:

max
∑
i∈N

wi · g(Ui) ·MSi, (1)∑
j∈S

∑
r∈R

cjrxjr ≤ B, (2)

∑
r∈R

xjr ≤ 1, j ∈ S, (3)

xjr ∈ {0, 1}, r ∈ R, j ∈ S. (4)

The demand function of this model has an exponential form:
g(Ui) = 1 − exp(−λi · Ui), where λi is the characteristic of the elastic demand
in point i, λi > 0; Ui is the total utility for a customer at i ∈ N from all open
facilities:

Ui =
∑
j∈S

∑
r∈R

kijrxjr +
∑
j∈C

∑
r∈R

kijrxjr.

Coefficients kijr = ajr(dij + 1)−β depend on the customers sensitivity β to the
distance from the facility and the attractiveness ajr. The Company’s total share
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of the facility i ∈ N is measured by:

MSi =

∑
j∈S

∑
r∈R kijrxjr∑

j∈S
∑
r∈R kijrxjr +

∑
j∈C

∑
r∈R kijrxjr

.

Based on the above notation, the objective function (1) looks as follows:

max
∑
i∈N

wi ·
(

1− exp

(
− λi

(∑
j∈S

∑
r∈R

kijrxjr +
∑
j∈C

∑
r∈R

kijrxjr

)))
· (5)

·
( ∑

j∈S
∑
r∈R kijrxjr∑

j∈S
∑
r R kijrxjr +

∑
j∈C

∑
r R kijrxjr

)
.

The objective function (5) reflects the Company’s goal to maximize the cus-
tomers demand share. Inequality (2) takes the available budget into account.
Condition (3) shows that only one variant of the design can be selected for each
facility.

3 Development of the Ant Colony algorithms

Successful supplement of the ant colony algorithm for the travelling salesman
problem led to the usage of this approach to a wide range of combinatorial prob-
lems. For instance, there are investigations for the Set Covering Problem [1];
Quadratic Assignment Problem [8]; Scheduling theory [3]; graph theory [12];
routing problem [21]; clustering problem [11]; Data mining [10] and many oth-
ers. The development of this approach for the Discrete Optimization Problems
has been investigated for several years in Sobolev Institute of Mathematics SB
RAS (e.g. [13, 17]). The ant colony algorithm varieties were developed for the
classical p-median minimization problem in [18]. The final set of possible facil-
ities locations and the list of customers are already given in the problem. The
facilities are able to produce the unlimited quantity of the similar product. The
service cost for each customer are known; the opening expenses for each facility
are equal to zero. The task is to locate p facilities and attach the customers
to them, so that each clients demand is satisfied and the total service charges
are minimal. While constructing the ant colony algorithm for the stated above
problem, the artificial ant marks the points i from the set of possible facilities
locations I with the pheromone, unlike in [5], where the edges are marked. That
is why the information about the solution is kept not in a matrix but in a vector.
Each location vector component zi corresponds to the pheromone parameter αi.
In order to define the pheromone value only the t best solutions out of L solu-
tions are used at each iteration. Let us set f as a value of the objective function;
F is the best known value of the objective function; αmin is the minimal possible
pheromone level. The ant colony algorithm for the p-median problem looks as
follows:
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Scheme of AC algorithm for the p-median problem (ACPM)

(1) Set α := (αi), F :=∞, k := 1.
Repeat the following until the stopping condition is met:
Iteation k, k ≥ 1. (1) Construct L possible solutions for the AA algorithm.
(2) Choose t best solutions among them, according to the objective function

value; f∗ is the best value at the given iteration.
(3) Change the parameters αi with regard to t.
(4) If f∗ < F , then for the non-zero vector components of the vector z∗, of

the corresponding f∗, set α := αmin, F := f∗.
Go to the next iteration k := k + 1.

The vector components αi are changed according to the following rule:

αi =
αmin + qγi(αi − αmin)

ρ
, i ∈ I,

ρ ∈ (0, 1) is the pheromone parameter change coefficient, γi ∈ [0, 1] is the fre-
quency of the point i appearance among the best solutions t; q ∈ (0, 1) is the
algorithm parameter.

In the AC algorithm version [18] the artificial ant is represented as a prob-
abilistic variation of the greedy descent algorithm, where with the probability
of

pi =
αi(∆fmax −∆fi + ε)∑

k∈F (λ) αk(∆fmax −∆fi + ε)

one facility is chosen out of the set of facilities F (λ) included in the solutions
so that the objective functions differ from F not more than λ times; ∆fi is the
objective function change as a result of facility closing at point i, ∆fmax is the
maximum change; ε > 0 is the algorithm parameter.

The algorithm for the competitive facility location and design problem with
elastic demand has been developed in this work based on the ant colony algo-
rithm (ACPM) for the p-median problem (5), (2)-(4). The value of the pheromone
vector component is changed by the following rule:

αi =
αmin + q(1−γi)(αi − αmin)

ρ
, i ∈ I,

An artificial ant in the ant colony algorithm version, offered in this work, is
a probabilistic modification of a greedy ascent algorithm. The ant starts from
the zero solution z = 0. Running through the possible facility locations, the ant
either includes the location into the search list or not with the probability:

pi =
αi(∆fi + ε)∑
k∈S αk(∆fi + ε)

.

Therefore, the list of the facility numbers to be searched is formed. After that
a unit is taken out of the budget and the facility, which improves the objective
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function the most, is chosen. The algorithm works until the budget is not over.
As a result, the artificial ant finds some solution. The local ascend along the Lin-
Kernighan neighborhood with the length 3 is applied to the solution, which the
ant brought. The Lin-Kernighan neighborhood permutes the existing facilities
into the closed, i.e. an open facility becomes a closed one, but the closed facility
is opened according to the first design variant.

4 Computatinal Experements

It must be mentioned, that because of a set of several parameters in the algo-
rithm, there is problem of their setting, i.e. the parameter values for the best
algorithm behavior for most instances should be chosen. One of the traditional
ant colony algorithm parameters is the pheromone evaporation coefficient ρ, this
one value equal to 0.95. The following values are chosen for the rest of the param-
eters: the number of ants at each iteration is s = 30; the minimal pheromone level
αmin and the initial pheromone level α0 are equal to 0.3; q = 0.5 respectively.
The maximal number of iterations is equal to Tmax = 5.

The computational experiment was held for two series of test instances: in
the first series (Series 1) the distances among the points were set with uniform
distribution of distances in the interval [0;30]; in the second series (Series 2) the
distances satisfied the triangle inequality. A set of 16 instances of the dimension
|N | = 60, 80, 100, 150, 200, 300 with three possible projects and budget limits of
3, 5, 7 and 9 units were formed for each series. The distance sensitivity parameter
is β = 2, the elastic demand parameter is λ = 1. The results of the algorithm
execution were compared with the upper bounds which was described in [16]
earlier.

The average deviations of the ant colony algorithm for the series of the test
cases are given in tables 1 and 2. It could be seen that the average deviation
of the ant colony algorithm for the first series with the dimension 300 is 1.71%,
the maximal deviation does not exceed 5.595%. The minimal deviation is less
then 0,001%. This is a very good result for problems of such dimension. For
the second series we see a different situation. Even the minimum deviation from
the upper bound is 11.116%. Here the average algorithm deviation is 14.821%,
the maximal deviation is 19.232%. This is not a failure and can be explained
by different reasons. In many cases, for other tasks it is possible to compare the
obtained solution with the optimal solution or with the best known solution. For
our problem it is often impossible to find even a feasible solution. Therefore, we
have to use the upper bounds. In the rule for constructing the upper bound we
used, there is a configurable parameter m (10). It is possible to apply another
rule to calculate it. In addition, large deviations may indicate an inaccuracy of
the upper bound for those cases. We have studies that have shown this fact for
other values of λ [15].

The computational experiment was carried out on a computer with CPU
Intel Xeon X5675 @ 3.07 GHz, 32 GB RAM. Information on the CPU time is
given in Table 3 and in Figure 1. The CPU time for both series was much the
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Table 1. Deviations from upper bounds in case of uniform distribution distances
(Series 1) %

60 80 100 150 200 300

min 0.000 0.000 0.000 0.000 0.000 0.000
aver 0.586 0.300 0.766 1.040 0.902 1.710
max 1.640 2.078 3.701 4.530 4.403 5.595

Table 2. Deviations from upper bounds in case of uniform distribution distances
(Series 2), %

60 80 100 150 200 300

min 13.090 12.847 9.727 13.689 12.025 11.116
aver 21.317 18.624 15.344 18.163 14.425 14.821
max 37.678 29.679 24.250 22.896 18.891 19.232

same, which is why in Table 3 there is the execution time for the first series
only. In Figure 1 it is possible to observe a significant advantage of ant colony
algorithm on sistem GAMS (solver CoinBonmin). The results of the CoinBonmin
are given in brackets. The proposed algorithm works faster than the known
software up to 13 times. For instance, the average execution time for SA for the
dimension 300 was 1021 sec. and 11831 for CoinBonmin. Also usually, the ant
colony algorithm has the advantage over a standard multistart procedure. Often
it is faster than other algorithms for various difficult problems (for example, [13,
18]). The results of the current experiments indicate the necessity of its further
development. Perhaps we get such values of CPU time (Table 3) because the
facility number list to be search, formed by the ant, was excessively large. Now
we are researching the algorithm behaviour for the smaller dimension of the list
and the bigger number of iterations.

All in all, the experiment and the relative simplicity of the proposed al-
gorithm implementation indicate appropriateness of the stated above methods
application for the considered class of the problems.

5 Conclusion

This paper is devoted to the development of swarm intelligence approach for one
variant of the competitive facility location and design problem. It is known that
the location problem considered in this paper is NP-hard. Sience the objective
function of corresponding mathematical model is non-linear, it is impossible to
use the linear programming methods to solve problem. The ant colony algorithm
for the search of approximate solutions have been built, their parameter setting
has been carried out with the help of a special computational experiment. The
proposed algorithm was implemented, as a result of the computational experi-
ment, interesting data are obtained. Due to the fact that not all test instances
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Table 3. CPU time, sec

60 80 100 150 200 300

min 4 13 1 67 136 450
aver 14 31 54 170 308 1021
max 33 48 116 343 625 2036

14 31 54 170 308
1021(181) (329) (482)

(2351)
(2650)

(11831)
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Fig. 1. Comparing the average CPU time of the ant colony algorithm and CoinBonmin.

know the values of the objective function, it was necessary to work in its upper
bounds. Thus, for a series of test cases with uniform distribution distances the
minimum deviation from the upper bounds did not exceed 0.0001%, and for the
other series with Euclidean distances this value was not less than 11%. The pro-
posed algorithm works faster than the known software up to 13 times, but it’s
not fast enough for a metaheuristic. Perhaps here it is worth using other upper
bounds, adjust the rules of their construction, improve the development of the
algorithm.

All in all, the results of computational experiment and the relative simplicity
of the proposed algorithm implementation indicate appropriateness of the stated
above methods application for the considered class of the problems.
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