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Abstract. Laser cutting is one of the major cutting processes used to
manufacture sheet metal products. Lots of researches on tool paths for
cutting machines mainly deal with contour by contour cutting. While
constructing a path one needs to determine the pierce point and the
direction of contour passing. In this case only the length of idle passes
may be optimized. To solve this problem generalized travelling sales-
man problem (GTSP) approach is used. Resource-efficient technologies
for cutting sheet materials allow for the contours of cut-off details to
be overlapped. It allows reducing the material waste and shortening the
length of cuts. Common cuts are also the origin of one more set of prece-
dence constraints. These constraints can be formalized as one general
formal restriction called as Ordered Enclosing (OE) for plane graphs
that are the homeomorphic images of the cutting plan. In this report
we consider the common case of a cutting problem when combination
of contours is allowed. We review the polynomial algorithms for all the
possible restrictions: (1) part cut off a sheet does not require further cuts
(constructing of OE-route); (2) there are no intersections of cuts (con-
structing of NOE-route); (3) there are some restrictions on placement of
pierce points (constructing of PPOE-cover).
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1 Introduction

Laser cutting is one of the major cutting processes used to manufacture sheet
metal products. A typical production process consists of designing parts, nesting
the parts on metal sheets, and cutting the parts from the sheets [2]. After the
assignment parts to a metal sheet computer aided manufacturing (CAM) soft-
ware executes the actual nesting and generates cutting plan. In sheet metal laser
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cutting, a typical cutting process can take between several minutes to several
hours, depending on the number of parts on the plate, the material type, the
machine, the process parameters, and the plate thickness.

Lots of researches [2]–[1] on tool paths for cutting machines mainly deal with
contour by contour cutting. In this case a part consists of an outer contour and
possibly set of inner contours. Each contour itself is a cycle consisting of a finite
set of lines and arcs. While constructing a path one needs to determine the
pierce point and the direction of contour passing. In this case only the length
of idle passes may be optimized. To solve this problem GTSP approach is used.
In GTSP approach, the laser head can initiate a contour at a pre-defined set
of points, but once a contour is initiated, it needs to be cut completely before
moving on to another contour.

(a) (b)

Fig. 1. The distance between details (a) without overlapping and (b) with it

Resource-efficient technologies for cutting sheet materials allow for the con-
tours of cut-off details to be overlapped. It allows reducing the material waste
and shortening the length of cuts (see fig.1). Nevertheless, some other problems
arise.

Besides minimizing the above costs, the tool path problem is subject to prece-
dence constraints coming from the fact that once a contour is completely cut, it
detaches from the rest of the plate. The detached area can possibly shift posi-
tion and hence becomes inaccessible for further cuts [2], [7]. However, there are
a few contours held in place by clamps, they are not subject to these precedence
constraints. In this paper these few contours are not considered.

These precedence constraints come from simple inner-outer contour relations,
that can come from holes in parts, parts nested in holes, and parts nested in
islands [2]. Islands be waste areas that have become completely enclosed by
other parts because of common cut nesting. Common cuts are the result of
efficient nesting algorithms that place parts so close to one another that they
share elements. This has the benefit that only one cut must be made instead of
two cuts.

Common cuts are also the origin of one more set of precedence constraints
[2]. Each common cut is enclosed by a contour composed of the common cuts



Development of Routing Methods for Cutting out Details 251

two contours. The constraint is that common cut needs to be cut before its
composite contour is completely cut.

These two constraints can be formalized as one general formal restriction
called as Ordered Enclosing (OE) formulated in [7], [9], [10] for plane graphs
that are the homeomorphic images of the cutting plan.

One more constraint is absence of intersections between cutter trajectories
(touches are allowed). The reason is that after intersecting the trajectory cutter
goes through a gap formed what may cause the loss of details quality. To formal-
ize this restriction the definition of AOE-route is presented (the move continues
by a neighbouring contour) and NOE-route (trajectories do not intersect but
touches are allowed, and the move is not necessary to continue by a neighbour-
ing contour). Routes belonging to classes AOE and NOE satisfy the condition
of ordered enclosing.

Technological constraints may arise because of nesting. In this case some
pierce points should be fixed. Hence, the recognition problem for opportunity of
cutting (a route existence problem) for a given cutting plan arises.

For the tool path problem, elements are defined by their start and end nodes
and can be cut in both directions. Thus, one does not need any information
on the detail shape to define the sequence of detail cutting. This is true if one
does not have to take thermal effects into account. Therefore, all curves without
self-intersections and contiguities on a plane representing the shape of details
are interpreted as graph edges, and all points of intersection and contiguity are
graph vertices. One needs introduce additional functions to the set of vertices,
faces, and edges of the graph received to analyse the satisfaction of technological
restrictions [7].

Let us designate some technological definitions and make an adequate corre-
spondence from graph theory terms.

Cut move (graph edge) be a movement where the laser head is actually
cutting. The cutting time can be independent of the chosen tool path.

Air move (additional graph edge) be a movement where the laser head is
not cutting. The time required for an air move is considerably less than the time
required for the cut move.

Piercing (graph vertex) – every time the laser needs to start cutting in a
new section of the sheet some piercing needs to be made. Path (edge-disjoint
OE-cover by the ordered set of chains of a graph being the homeomorphic image
of a cutting plan) be the instrument trajectory corresponding the shape and
nesting of parts on the sheet.

The construction of a path to cut off each component is reduced to the
construction of an ordered Eulerian covering for the given component by OE-
chains [9], [10]. The order of routing within the components is defined by the
solution to a generalized salesman problem on the digraph of allowed transitions
between components with precedence constraints according to the nesting of
one component to the contours of others. The restriction of components being
Eulerian allows for increased quantity through overlapping fragments of contour
parts and, consequently, decreases the number of components. This problem is
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not easier or smaller, but, it is more difficult since these sub tool paths still need
to be determined in conjunction with the idle passes between the components.
These sub tool paths also contain idle passes and these sub tool paths are also
determined by the higher-level path between components.

So, contour overlapping allows reductions in the material waste, the length
of cutting, and the length of idle paths, due detail border combination.

In this paper the common case of a cutting problem when combination of con-
tours is allowed [7]. We review the algorithms for all the considered conditions:
part cut off a sheet does not require further cuts (constructing of OE-route);
there are no intersections of cuts (constructing of NOE-route).

2 OE-Routes for Plane Graphs

To solve the stated problem cutting plan should be represented as a plane graph
[7]. Let plane S be a model of a metal sheet, plane graph G be a model of cutting
plan. Let E(G) be a set of edges of graph G which are plane Jordan curves with
pairwise disjoint interiors homeomorphic to open segments. The set of vertices
V (G) is represented by the set of bounding points of these curves.

For any J ⊆ G (part of a cutter trajectory) let the theoretical-set union of
its inner faces be designated as Int(G) (the union of all its components S \ J
without outer face). Then Int(G) may be interpreted as a part cut off a sheet.
Let an initial part of a route in graph G be considered as a part of a graph
containing all vertices and edges belonging to this part of a route. This allows
formalizing the claim to a cutter as a condition of absence of initial route part
inner faces of graph G intersection with unpassed graph G edges [11]. Such type
of routes is called as OE-routes [9].

Definition 1. [11] Let chain C = v1e1v2e2 . . . vk, 0 < k < |E(G)| so that
Int (v1e1v2e2 . . . el) ∩ E(G) = ∅, 1 ≤ l ≤ k be called ordered enclosing (or OE)
chain.

Definition 2. [9] Let the ordered sequence of edge-disjoint OE-chains

C0 = v0e01v
0
1e

0
2...e

0
k0
v0k0

, (1)

C1 = v1e11v
1
1e

1
2...e

1
k1
v1k1

, . . . , (2)

Cn−1 = vn−1en−11 vn−11 en−12 ...en−1kn−1
vn−1kn−1

, (3)

covering graph G and such that

(∀m : m < n) ,

(⋃m−1

l=0
Int(Cl)

)
∩
(⋃n−1

l=m
Cl

)
= ∅,

be called cover with ordered enclosing (OE-cover).

Constructing of OE-route for graph G solves the stated above tool path
problem. Routes with a minimum number of chains have the major interest
since the transition from one chain to another corresponds to the idle cutter
pass.
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Definition 3. [7] Let minimal cardinality ordered sequence of edge-disjoint OE-
chains for plane graph G be called Eulerian cover with ordered enclosing (Eule-
rian OE-cover).

One needs to define the following functions for each edge E ∈ E(G) to
represent the image of cutting plan as a plane graph G = (V,E) [12]:

– vk(e), k = 1, 2 be vertices incident to edge e;
– fk(e) be a face placed on the right-hand side when one is moving over edge

e from vertex vk(e) to vertex v3−k(e), k = 1, 2;
– lk(e) be the edge incident to face f3−k(e) and vk(e), k = 1, 2;
– rk(e) be the edge incident to face fk(e) and vk(e), k = 1, 2.

As functions vk(e), fk(e), lk(e), rk(e), k = 1, 2, constructed on graph G =
(V,E) edges define incident vertices for each edge, incident faces and adjacent
edges the following statement holds.

Theorem 1. [7] Functions vk(e), fk(e), lk(e), rk(e), k = 1, 2 constructed on
graph G = (V,E) edges define plane graph G = (V,E) up to homeomorphism.

Further we consider that all considered plane graphs are represented by these
functions. The space complexity of such a representation is O(|E| · log2 |V |).
There is no problem to get these functions. In fact, they are defined on the
stage of interpreting the cutting plan in terms of graph G. This is minimal
information need to representation of any plane graph up to homeomorphism.
Using the known coordinates of graph G = (V,E) vertices images and nesting
the fragments of the cutting plan (the images of graph G = (V,E) edges) any
route in graph may be interpreted as a tool trajectory.

Let us introduce the following definition of rank for graph G edges to for-
malize the technological restrictions on the order of cutting.

Definition 4. [7] Let rank of edge e ∈ E(G) be a value of function rank(e) :
E(G)→ N defined recursively:

– let E1 = {e ∈ E : e ⊂ f0} be a set of edges bounding outer face f0 of graph
G = (V,E) then (∀e ∈ E1) (rank(e) = 1);

– let

Ek(G) = {e ∈ E(G) \ {∪kl=0El}}

be a set of rank 1 edges for graph

Gk

(
V,E \

(
∪kl=0El

))
then (∀e ∈ Ek) (rank(e) = k).

The rank of an edge defines its remoteness from the outer face and defines
the minimal number of faces to be crossed to get from outer face f0 to this edge.
Algorithms for constructing OE-chains and OE-routes are presented in table 1.
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Table 1. Algorithms for OE-routes constructing

Route type Comp. complexity

Eulerian OE-cycle (alg. Recursive OE) [11] O(|V |2)

Eulerian OE-cycle (alg. OE-Cycle) [9], [10] O(|E| · log2 |E|)
OE-Postman Route (alg. CPP OE) [12] O(|E| · |V |)
OE-Cover [7] O(|E| · log2 |E|)
Optimal OE-Cover [7] O(|V |2)

OE-Cover for Disconnected graph [7] (alg. MultiComponent) O(|E| · log2 |E|)
OE-Cover for Disconnected graph [7] (alg. DoubleBridging) O(|E| · log2 |E|)

3 NOE-Covers for Plane Graphs

3.1 Definitions and Statements

Further we use some definitions from papers [9], [3], [13], [4]. Let us introduce
them for completeness of presentation.

Definition 5. [13] Let graph of allowed transitions TG(v) of vertex v ∈ V (G)
be a graph which vertices are edges incident to vertex v, i.e. V (TG(v)) = EG(v),
and set of edges is represented by the allowed transitions between edges.

Definition 6. [13] Let system of allowed transitions TG be the set {TG(v)‖ v ∈
V (G)} where TG(v) is the graph of transitions for vertex v.

Definition 7. [13] Let path P = v0, e1, v1, . . . , ekvk in graph G be TG-compatible
if {ei, ei+1 ∈ E(Tg(vi))} for each i (1 ≤ i ≤ k − 1).

Definition 8. [13] [4] Let a cyclic order O±(v) is given for each vertex v ∈
V (G) for chain T = v0, k1, v1, . . . , kn, vn, vn = v0. This cyclic order defines the
system of transitions AG ⊂ O±(v). If ∀v ∈ V (G)AG(v) = O±(v) the system of
transitions AG(v) be called the full system of transitions.

Definition 9. [3] Let Eulerian chain T be called A-trail if it is an AG-compatible
chain. Thus, consequent edges from chain T (incident to vertex v) are neighbours
in cyclic order O±(v).

Definition 10. [4] Let a chain be an AOE-chain if it is OE-chain and A-trail
simultaneously.

Let us introduce the following theorems proved in [4], [5].

Theorem 2. [4], [5] If there is an A-trail for a plane graph G, then there is also
AOE-chain.

Theorem 3. [4], [5] There exists AOE-chain for any plane connected 4-regular
graph G.

Algorithm AOE-TRAIL [5] allows to find an AOE-chain for plane connected
4-regular graph any partial graph of rank k of which has no cut-vertices.
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Definition 11. [5] Partial graph Gk of G where E(Gk) = {e ∈ E(G) :
rank(e) ≥ k} is called as partial graph of rank k.

To define the cut-vertices the following properties of 4-regular graphs are
used.

Statement 1. A vertex incident to four edges incident to outer face is a cut-
vertex.

Statement 2. The outer face of partial graph Gk is a union of all faces of rank
k in graph G.

Definition 12. [7] Let the rank of face f ∈ F (G) be the value of function

rank : F (G)→ Z≥0 : rank(f) =

{
0, iff = f0,
mine∈E(f)rank(e), otherwise,

where E(f) be a set of edges incident to a face f ∈ F .

So, if in advance all the cut-vertices of partial graphs Gk are ’correctly’ splitted
then as a result we have a graph any partial graph Gk of which has no cut-
vertices.

The sequence of splitting has no value, as soon as it is the local opera-
tion. The ’correct’ splitting means that we move from one arc of a cyclic order
to another and arcs belong to different pairs of faces (see fig. 2(a)). The re-
sult of splitting is presented in figure 2(b). This procedure may be realized by
Cut-Point-Splitting algorithm [5] which considers vertices one by one and
splits the cut-vertices of any rank.

(a) (b)

Fig. 2. (a) The correct transitions system for splitting a cut-vertex of partial graph Gk.
(b) The result of splitting according to transitions system of the cut-vertex of partial
graph Gk.

From all the above, the effectiveness of the Cut-Point-Splitting algorithm
used to perform the splitting operation of cut-vertices of all ranks in a plane
connected 4-regular graph follows [5].

Theorem 4. Algorithm Cut-Point-Splitting needs time O(|V (G)|) to iden-
tify and split all the cut-vertices of plane connected 4-regular graph G = (V,E).
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Theorem 5. Algorithm AOE-TRAIL allow to construct AOE-chain for a plane
connected 4-regular graph G by time O(|E(G)| · log2|V (G)|).

3.2 Class of NOE-chains and Algorithm for their Constructing

Class of AOE-chains describes all the trajectories of the cutting tool by the
adjacent contour but does not cover completely all possible routes of the cutting
tool with no intersections of cuts. Here the problem of non-intersecting OE-chain
(see definition 14) arises.

Definition 13. [6] Let Eulerian cycle of plane graph G be called non-
intersecting if it is homeomorphic to a cyclic graph G̃ obtained from graph G
by |E(G)| splittings of each vertex.

Definition 14. We say that chain belongs to class NOE-chains if it is OE-chain
and non-intersecting chain simultaneously.

Definition 15. Let the transition system corresponding to non-intersecting
chain be called a system of non-intersecting transitions.

The proof of the fact of existence of such a starting vertex and finishing
edge incident to outer face for a system of transitions corresponding to non-
intersecting Eulerian cycle that allow to get the OE-cycle is like the proof of
theorem 2 and gives the algorithm of such a chain constructing.

To get a non-intersecting Eulerian OE-chain (or a cycle) for a plane Eulerian
graph without fixed transitions system (later this chain is called NOE-chain) one
may act the following way.

Let’s define a boolean function

Checked(v) =

{
true, if the vertex is considered;
false, otherwise.

on the set of graph G vertices.

Let all the vertices be unchecked on the stage Initiate(). Function
Non-intersecting(G) (see alg. 1) splits all vertices v ∈ V (G), deg(v) ≥ 2n,
n ≥ 3 of graph G to k pseudo-vertices of degree 4 and enters k additional
pseudo-edges incident to these pseudo-vertices and forming a cycle.
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Algorithm 1 Function Non-intersecting (G)

Require: plane Eulerian graph G;
Ensure: plane connected 4-regular graph G∗;

for all (e ∈ E(G) ) do . Look through all the graph edges
k = 1; . Consistently process function of index 1, later - 2
while (k ≤ 2) do

if NOT(Checked(vk(e))) then . If vertex is not processed
Handle ( e, vk(e), k); . Process the vertex

end if
k + +;

end while
end forReturn G∗;

To realize this transfiguration, one needs to look through all the functions vk(e),
k = 1, 2 for all the edges and modify the graph encoding. Procedure Handle (e,
vk(e), k) (see alg. 2) processes each unchecked vertex of G.

Algorithm 2 Procedure Handle (e,v,k)

1: . Passage 1: Defining of vertex v degree
2: efirst = e;
3: d = 0; . Variable d saves the vertex degree
4: repeat
5: le = lk(e);
6: if (vk(le) 6= v) then
7: REPLACE(le);
8: end if
9: e = le; d = d + 1;

10: until (e = efirst);
11: . Passage 2: Splitting of vertices with degree greater than 4
12: if (d > 4) then
13: e = efirst; le = lk (e); fl=new EDGE; fle = fl; efirst = e; enext = lk (le);
14: repeat
15: e = enext; le = lk (e); fr = fl; fl=new EDGE; enext = lk (le);
16: Pointers(e,le,fr,fl); . Put the edge pointers
17: until (lk(le) = efirst);
18: Pointers(efirst, lk(efirst), fle, fe); . Put the edge pointers
19: end if

Processing of vertex vk(e) means its splitting according to figure 3(a, b).

If degree of checked vertex is equal to 2k then k pseudo-vertices entered by
procedure Handle and k pseudo-edges incident to these vertices form a cycle.
As a result of processing of all the graph G vertices we get a modified graph G∗

which is a plane connected 4-regular graph. Hence, the following theorem holds.
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(a) (b)

Fig. 3. (a) Initial pointers to the neighboring edges of splitted vertex. (b) Splitting
of a vertex (bold lines are graph G edges, thin lines correspond to additional edges
(pseudo-edges)) and pointers modification according to this splitting.

Theorem 6. Function Non-Intersecting allows to reduce any plane connected
Eulerian graph G to a plane connected 4-regular graph G∗ by time O(|E(G)| ·
log2|V (G)|).

Algorithm AOE-trail may be used for definition of AOE-chain T ∗. If to
delete all pseudo-edges and absorb all splitted vertices to v then we get a non-
intersecting chain T for graph G. The obtained chain belongs to OE-class because
the procedure of absorbing the vertices does not vanish the sequence of edges
in the chain what excludes appearing of a cycle enclosing the unpassed edges.
Computing complexity of this reduction algorithm is O(|E(G)| · log2|V (G)|).
Hence the following theorem holds.

Theorem 7. The computational complexity of constructing a NOE-route for
plane graph (V,E) does not exceed O(|E(G)| · log2|V (G)|).

4 PPOE-Covers and their Existence

One of the most common cutting technologies is a plasma cutting technology.
Nowadays the most common method for cutting of details using plasma cutting
is GTSP-technology (contour by contour cutting). The technology using com-
bination of cuts is not widely used now. Nevertheless it allows save material
and reduce the cut length. Plasma cutting technology puts some additional re-
strictions on the instrument path. One of the major restrictions is necessity of
leaving some free space for placement of pierce points. Besides time need for
cutting significantly affects on the time of cutting.

The problem of feasibility of cutting with plasma cutting technology for solv-
ing the cutting-packing problem arises due to these restrictions. The problem of
minimization of pierce points number while constructing the cutter path also
arises.

As soon as minimal number of pierce points for a cutting map represented
by a plane connected graph is equal to |Vodd|/2 in this section we consider only
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graphs coverable by |Vodd|/2 chains, i.e. bridgeless graphs with at least one vertex
incident to outer face.

Let us consider the cutting plans in fig. 4. We admit that cuts combining
technology was used for placement of rectangular parts. So, piercing can be
realized from the vertices incident to outer face (in common we may use any
face allowing piercing).

(a) (b)

(c) (d)

Fig. 4. The example of an unrealizable and feasible cutting for plasma cutting tech-
nology

Hence, realization of cutting by plasma automata is possible for packing in
figure 4(b) and not possible for packing in figure 4(a). We need placement of
additional pierce points for cutting the inner rectangles R4 and R5 in fig. 4(a).
As for cutting plan in figure 4(b) it is possible to place pierce points near the
outer contour.

Let us formalize this problem.

Let faces Fin(G) ⊂ F (G) allow placement of pierce point. Then let us des-
ignate vertices of off degree incident to Fin(G) as Vin(G) ⊂ V (G). If a route
in graph is OE-route and starting vertex v1 ∈ Vin(G) then this route may be
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a base for constructing the cutting program for plasma cutting machine. This
type of routes be called as PPOE-route [8].

Definition 16. Let chain C = v1e1v2e2 . . . vk be called PPOE-chain if it is an
OE-chain and starting vertex v1 ∈ Vin(G).

Definition 17. Let PPOE-cover of graph G be the OE-cover of graph G con-
sisting of PPOE-chains.

Definition 18. Minimal cardinality ordered sequence of edge-disjoint PPOE-
chains in plane graph G is called Eulerian PPOE-cover.

Graphs in figure 4(c) and (d) are the images of cutting maps in figures
4(a) and (b). Vertices Vin are designated by white circles. These vertices al-
low placement of pierce point nearby. On the other hand placement of pierce
points near the black-marked vertices is impossible. Thus, Eulerian PPOE-
cover exists for graph in figure 4(d). For example, it can consist of the following
chains: C1 = v1v3v5v6v9v8v5, C2 = v3v7v8, C3 = v7v11v10v9, C4 = v11v12v10,
C5 = v12v4v6, C6 = v4v2v1v2. Such a cover does not exist for graph in figure
4(c).

The problem of definition the possibility of cutting by plasma instrument
may be stated as a problem of checking the existence of Eulerian PPOE-cover
for a given graph. According to the mentioned restrictions we may formulate the
following necessary condition of PPOE-cover existence.

Statement 3. Let G be a plane graph with 2k odd degree vertices. If there exists
Eulerian PPOE-cover then |Vin(G)| ≥ k.

For example, the graph in figure 5(a) cannot be covered by PPOE-chains.
It has eight odd degree vertices and can be covered by minimum four Eulerian
chains, and only three of them can start from vertices marked as starting ones
for PPOE-chain. As for graph in figure 5(b) there are four vertices that can be
starting for PPOE-chain and the same number of finishing vertices. Neverthe-
less, there is no PPOE-cover for this graph.

Paths realizing PPOE-cover can be represented by a special way ordered
set of PPOE-chains with additional idle paths (edges) between the end of the
current chain and beginning of the next one. Such transitions form a matching
on a bipartite oriented graph D = (Vin ∪ vout− > Vin, E) where Vin is a set of
odd degree vertices allowed to be the beginnings of trails (pierce points); Vout

is a set of odd degree vertices allowed to be only the ends of constructed chains
(leaving points).

Statement 4. It is necessary for existing PPOE-cover to a mixed graph G∪D
to have a cycle all additional arcs of which belong to

{(v, u) : v ∈ Vout ∪ Vin, u ∈ Vin}.

Proof. PPOE-cover is a partial case of OE-cover, hence, it is an oriented
cycle consisting of graph G edges and edges of matching M on set of vertices
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(a) (b)

Fig. 5. Examples of graphs having no PPOE-cover

Vodd ∈ G (vertices Vin∪Vout). As soon as PPOE-cover consists of PPOE-chains
then edges of matching M are to be passed in direction Vout∪Vin− > Vin, hence,
they correspond to arcs in D.

This yields that it is necessary for existing of PPOE-cover the existence
of a cycle for mixed graph G ∪ D in which all additional edges are arcs from
Vout∪Vin to Vin, as soon as PPOE-cover has this type of the cycle. Statement
now follows.

Statement 5. It is necessary for existence of PPOE-cover of plane connected
graph G for cardinality of minimal {Vin, Vout}-cut be not more than |Vout|.

Proof. Let there exists PPOE-cover for graph G. Nevertheless, the cardinal-
ity of {Vin, Vout}-cut is less than |Vout|. As soon as no one of PPOE-chains form-
ing a cover cannot start in u ∈ Vout then a cover consists of not less than |Vout|
ways from v ∈ Vin to u ∈ Vout. Then some of these ways may be edge-disjoint
what leads to a contradiction with definition of PPOE-cover. Statement now
follows.

The graph in figure 5(b) can be a good example for statement above if we
assume that we can begin PPOE-chain only from white vertex. The graph has
ten odd degree vertices so we need minimum five vertices from where Eulerian
chain can begin. Five of vertices allow it, but we cannot cover the graph by
chains which are began only from these vertices. Not more then three chains,
for example, C1 = v5v9v8v10v9, C2 = v3v8v7v6v8, C3 = v4v3v2v6 that can be
constructed so that chain begins from white vertex and ends in black one. The
minimal cut between black and white vertices has three edges.

Constructing of PPOE-cover for graph G solves the routing problem for a
cutter with restrictions on pierce points placement.
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5 Conclusions

The technology of details’ edge combination is actual resource-saving cutting
technology. However, a few algorithms for its implementation exist. So the ques-
tion of constructing these algorithms is currently important.

In this article we discussed the technology of details’ edge combination from
the point of view of cutting tool routing. We raised the question of the possibility
of details cutting by plasma cutting machine and presented necessary conditions
for it. But the issue of multiple using of one vertex for piercing or finishing a
chain and the issue of using even degree vertices for piercing are not considered
in this paper and present the aim of further researches.
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