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Abstract. An original problem statement and solution algorithms are presented 

for an applied problem in the scheduling theory. The idea of the optimal fleet 

assignment and Flight Scheduling problem considered in this paper is to find a 

scheduling control method that minimizes the losses of the airline company 

from aircraft schedule disruptions. The problem is NP-complete and cannot be 

solved accurately for any real-life number of dimensions. An efficient paramet-

ric algorithm is proposed for finding an approximate solution of the problem. 

The proposed algorithm is an extension of the schedule optimization algorithm 

for a system of unrelated parallel machines with job release dates, which is 

based on the makespan criterion (Cmax). A substantial example is presented of 

applying the algorithm, as well as statistics of testing it on the data of a generat-

ing problem by the Cmax criterion. 

Keywords: Optimal scheduling · Airline fleet assignment · Makespan criterion 

·Efficient parametric algorithm 

Introduction 

One of the areas where optimization methods are traditionally applied in practice is 

the planning of airline operations. In this case, planning involves several stages, the 

most important being aircraft scheduling, fleet assignment, routing, and crew plan-

ning. A detailed review on this topic was published, e.g., by Grönkvist (2005) [1]; the 

formal problem statements and approaches to solving the basic problems were dis-

cussed by Sherali, Bish, and Zhu (2006) [2] and in the numerous publications follow-

ing individual lines of applied research from among those listed above [3–22]. 

For instance, the problems and algorithms of airline fleet assignment modeling 

(FAM) are examined in [3–7]. The main focus in [8–16] is on the aircraft routing 

problem (ARP). Simultaneous solving of both problems (FAM and ARP) is consid-

ered, e.g., in [17–19]. Finally, the studies closest to the subject of the present paper [1, 

5, 20–22] consider the optimal scheduling problem, including route changes and fleet 

assignment.  
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Obviously, the above listed problems are closely related. All their relevant formal 

representations belong to the class of intractable problems of mixed programming. 

The approaches that are used to find their approximate solutions build on classical 

schemes such as the Lagrangian relaxation methods, column generation, and Benders 

decomposition and apply the well-known computational tools of combinatorial opti-

mization, methods of cuts, and programming in constraints [1, 2]. 

The core of this work is an original problem statement in the form of an optimal 

scheduling problem for a system of unrelated parallel machines (aircraft) with job 

release dates (flight delays), which is adapted to the airline flight scheduling problem 

proposed by the authors in [23, 24], together with a special efficient parametric algo-

rithm for its approximate solution [24]. 

1 Conceptual and Formal Statement for the Optimal Fleet 

Assignment and Flight Scheduling Problem 

The input data are airline flight schedules, standard flight times for of all types of 

aircraft, and standard times for ground handling and flight preparations for all types of 

aircraft. 

The real-time information is flight delays at any given time at all airports. 

Then, conceptually, the scheduling problem consists in finding, for the flights in 

the planning period, such an airline fleet assignment that will minimize the maximum 

total deviation from the initial schedule for the entire fleet while satisfying all the 

constraints of the initial schedule in terms of the passenger flow, number of flights, 

and flight standards. 

We use the following notation: 

l   is the airport number, Ll  ; 

i  is the flight number, lIi , II
Ll

l 


 , LllII ll  ',,' ; 

s  is the type of aircraft, Ss ; 

j  is the tail number, sJj , JJ
Ss

s 


 , SssJJ ss  ',,' ; 

0
i  is the actual delay of flight i  at the time of scheduling, 00 i , lIi , Ll , 

00
i . Hereinafter,   denotes a vector, matrix, or tensor corresponding to the 

context of dimension; 
0
it  is the scheduled departure time of flight i , lIi , Ll , 

00
itT  ; 

00
iit   is the possible actual departure time of flight i  at the initial time of sched-

uling;  

jit ,  is the time of ground handling, preparation, and air travel of flight i  of aircraft 

j , jitT , , lIi , Ll  , sJj , Ss . 

We need to find jix ,  under the constraints: 
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




otherwise,   0

,flight   toassigned is  aircraft  if  ,1
,

 ij
x ji lIi , Ll , sJj , Ss  (1) 

 1, 
Jj

jix , lIi Ll , (2) 

 (constraint (2) means that only one aircraft is assigned to flight i);  

 j

Ii
jij bxb

l

 


, , Ll , sJj Ss , (3) 

(constraint (3) means that aircraft with tail number j  can be assigned to no less than 

j
b  and no more than jb  flights); 

ji,  is a possible delay in the departure of aircraft j  on flight i , lIi , Ll , 

sJj , Ss  ( ji,  can be negative, which is taken into account in constraints (5) 

and (6)) 

 




kIk
jkjkjkiiji xtt ,,,

00
, )( , ,kIi sJj , Ss , (4) 

 (constraint (4) means that the delay of aircraft j  at the current step (on flight i ) is a 

recursive function of the delays accumulated in the previous flights of this aircraft);  

 0,,,  jijiji y


,  lIi , Ll , sJj , Ss ; (5) 

 0, jiy ,  lIi , Ll , sJj , Ss . (6) 

Constraints (5) and (6) neutralize negative delays through the compensating varia-

bles 0, jiy ; then, 0, ji


 is the dependent variable, having the meaning of adjusted 

delay between the arrival of the aircraft j  and its flight i , taking into account the 

required service time on the ground, and 

   
 ll Ii

jijiji
Ii

ji xtx ,,,,


, Ll  , sJj , Ss , (7) 

 min  (8) 

Relations (7) and (8) represent the minimax makespan criterion. The use of this cri-

terion helps achieve a uniform distribution of load on the fleet by minimizing the 

maximum total downtime for any aircraft from the whole set of aircraft of the airline. 

Another variant of constraint (7) is 

  


ji
Ii

ji x

l

,,


 (7’) 
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Instead of, or together with (7), one can apply an additive criterion of minimization 

of the total delays 

 min,, 
 Jj

ji
Ii

ji x


 (9) 

Relations (4), which mediate constraints (5) and (7), contain recursions because 

any subsequent (in time) values of ji,  and ji,


 depend on the previous ones. 

Calculating the delays ji,  in all the i  previous steps is associated with considera-

ble difficulties because, first,  due to the multiplicity of the variants of their formation 

with the subsequent choice of the best, and, second,  the expansion of recursions and 

reduction of the statement (1) - (8) to the one-stage mixed programming problem 

leads to an increase in the number of Boolean variables and constraints in the problem 

by a factor of 2I , where II sup  [23]. The structural complexity of (1)–(8) is 

thereby reduced to the computational complexity of the resulting problem statement, 

which remains intractable given that the initial dimension increases by a large factor. 

For more detail on the expansion of recursions for a statement identical to (1)–(8) 

with the formation of a one-step problem (which we call, for brevity, a direct reduc-

tion) and the subsequent formation of a simplified (relaxed) problem with two criteria 

(called a bicriteria relaxation), which allows one to find close-to-optimal schedules in 

terms of makespan, see [23, 24]. These works also provide experimental proof of 

inefficiency of using the direct reduction. Thus, e.g., finding even an approximate 

solution with no more than a six-percent deviation from the optimum for a problem 

instance with 20 flights and 5 aircraft took more than 16 hours of computing time 

using a 6-core processor and the latest version of the IBM ILOG CPLEX optimization 

studio. In [24], one can also find the results of applying the bicriteria relaxation using 

CPLEX. Below we compare the accuracy and computing time in the approach devel-

oped in our publication with the results achieved through the application of the 

bicriteria relaxation (Table 9). 

2 Parametric Algorithm for Finding Suboptimal Solutions 

Since the problem contains recursions, DP is, most likely, the only computational 

method directly applicable to solving problem (1)–(8). However, the direct applica-

tion of DP is inefficient, partly because the problem in question is NP-complete. In 

attempts at finding an accurate solution of (1)–(8), DP leads to an exhaustive search 

through all possible options. It is easy to calculate the number N  of these options. 

For example, if k  is the step number and we assume in (2) that 0
j

b  and 

Ib j sup ,
 II sup , JJ sup , then, as shown below, considering that the number 

of options grows in a geometric progression with DP steps, we have 

2
1












JJN

I
.. Therefore, the DP method in (1)–(8) has a complexity greater 
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than the exponential one and is not applicable in its pure form to problems with an 

actual number of dimensions.  

To construct an efficient approximate algorithm, we use a general DP scheme with 

the sifting of locally worst options at certain DP steps. We tested this approach previ-

ously in solving optimal scheduling problems for unrelated parallel machines with job 

start delays [24]; the tests showed good results in terms of accuracy and speed. 

We assume that all flights lIi , Ll  , are arranged in the order of the initial 

delays (the initial schedule 
0
i ), considering the aircraft locations at the time of 

scheduling. Then, based on the DP procedure, we determine the step number I,1 . 

We denote the time when aircraft j  completes flight   at step   as 

),,( ,,,, jjjj xtf  


, sJj , Ss , and the conditional minimum time of completion 

of all flights at steps from 1 to   as ),,( ,,, jijij xt 


 Ii ,1 , ,1j  

   jjjijijjjjjjjj xtxtxxtf ,,,,,1,1,,,,,, )],,([,0max),,(    


, Jj ,1 ,

1,1  i .  (10) 

The recurrent Bellman relation for this problem is 

  ),,(),,(),,( ,,,1,1,,,,,,,1, jijijjjjjjjijijj xtxtfxt    


, 1,1  i , (11) 

  ),,(max),,( ,,,1,,,, jijijj
j

jijij xtxt   
 , 

sJj , Ss , ,1i . (12) 

To achieve the minimum makespan in (7)–(8), we should select in the last step the 

minimum value of ),,( ,,, jijijII
xt


, i.e., find.  ),,(min ,,, jijijII

xt


  sJj , Ss , 

lIi , Ll . The total number of scheduling options that we need to find to ensure 

the best schedule is 

 2......
12












JJJJJJN

IIk
 (13) 

We can sift out intermediate schedules in DP in different ways. If we discard all in-

termediate schedules at step k  except the locally best one, we have a greedy algo-

rithm. If we keep all the intermediate schedules, we have an exhaustive search 

through all the options. In the latter case, we have J  intermediate schedule options at 

step 1, 
2

J  options at step 2, and 
k

J  options at step k . If we look for a compromise 

between accuracy and speed, then, considering that we seek to construct an efficient 

algorithm, the number of intermediate schedules should be polynomially dependent 

on the number of Boolean variables in (1)–(8).  
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Let us now consider one such compromise. First, we determine the maximum 

number K  of the options retained at stage k  for further analysis. For convenience of 

description, we assume that K  is a constant. For example, we assume that 1024K  

and determine the maximum number KJK
k
' . Since the number of possible 

intermediate schedules increases by a factor of J  at each step, we suggest sifting out 

J/11  of the locally worst options at each step starting from 1k .  

Obviously, k : 
 
  








J

K
k

ln

ln
, where    is the integer part of the number.  

If we calculate the total number of schedule options generated in the algorithm, we 

obtain J  options at step 1, 
k

J  options at step k , and also 
k

J  options at steps from 

1k  to I . This scheme is implemented by sifting out 
1k

J  intermediate schedule 

options at all the steps from 1k  to I . Then, the number of options that remains for 

further consideration at each step beginning from 1k  is exactly J , and the total 

number of intermediate schedules 'N  is 

   kkkkk
JkIJJJJJJJN 







 


12......'
112

 (14) 

Since k  is a constant, relation (14) represents a polynomial dependence of the 

complexity of the parametric DP algorithm with option-sifting on the dimension of 

problem (1)–(8). In this case, k  is the degree of this polynomial. For clarity, we com-

pare N  with 'N , assuming 3k , 1000I , and 100J .  

Then,   21001001001 N ,     9800990010021002100100' 32 N . 

These circumstances underlie the ordinary complexity of the parametric algorithm (its 

complexity is defined by the parameter k ) and the virtually infinite complexity of the 

DP method.  

Based on (14), we can estimate the total complexity of the parametric algorithm. 

To this end, it is sufficient to determine the complexity of the step beginning from k , 

which directly depends on the number of combinations of the variables jix ,  at step k . 

If we denote this value as kP , then, obviously, 
k

k JP  . In fact, this means that at 

each step beginning from k , the algorithm requires calculating kP  variants of con-

strains (7) for all the possible values of jkx , . In total, we have at all steps: JP 1 , 

2

2 JP  , 
k

l JP  , Ikl , . In the above example, 
3100kP , and, considering (14), 

we obtain a high complexity for a problem with an actual number of dimensions. We 

can overcome this difficulty either by reducing k  or by decomposition. 

Below we describe the parametric DP algorithm with the sifting of the locally 

worst intermediate options.  
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Algorithm PA  

1. Enter the input data ),( ,
0

jii t , sJj , Ss , lIi , Ll , and the parameters k  

and 'N . Assuming that 0),,( ,,
0
0,0 jijij xt , determine the initial step number  

0: . 

2. 1:  . 

3. Check the step number. If I , proceed to point 7; otherwise, proceed to the 

next point.  

4. At step  , determine the sequence of the subsequent steps (rearrange the flight 

list), calculate the delays j,


, generate from (10)–(12) all the feasible fleet assign-

ment options, and calculate ),,( ,,,, jjjj xtf  


 and the schedule lengths 

),,( ,,,, jijijj xt 


. 

5. Check 
N , i.e., the number of options of ),,( ,,,, jijijj xt 


 at step  . If k

, i.e., 'NN 
, then proceed to point 2; otherwise, proceed to the next point.  

6. Sift out 
1k

J  of all the options generated at point 4 with the largest schedule 

lengths ),,( ,,,, jijijj xt 


. Return to point 2.  

7. Choose schedule options with the minimum length. Construct the final schedules 

using the inverse DP procedure. 

A note on the PA  algorithm regarding estimates for the delays ji,


: 

At each step of the algorithm, one needs to estimate the delays ji,


 for aircraft that 

have not yet arrived at the airport of departure. The estimates for ji,


 are found by 

solving the subproblems of finding all the shortest paths in a graph composed of the 

possible connections between the airports. In general, one should find these estimates 

at each step because the delays can vary from step to step, depending on the previous 

local fleet assignments.  

3 Illustrative Example 

Below is an illustrative fragment demonstrating the application of the proposed al-

gorithm for constructing a close-to-initial flight schedule and fleet assignment for 

three aircraft (designated by their tail numbers 1, 2, and 3) of two different types. 

The input data on the flights and time costs are given in Table 1. 

In Table 1, the Time column contains jit , ; the Location column shows the pres-

ence or absence of aircraft at the airport of departure at each step of scheduling; and 

the initial schedule corresponds to 
0
i . The Tail Number column shows the numbers 
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j . The data in Table 1 are sorted by 
0
i , taking into account the aircraft location. The 

flights are numbered in the same order.  

The algorithm parameters are 1k , ( 3'N ), 3J , and 11I . 

Since 1k , we can reduce the number of dimensions (the eliminated options are 

highlighted by filling). 

After the third step, both the aircraft locations and the current delays ji,


 change, 

necessitating a new tail assignment sequence, i.e., a change in the sequence of the 

algorithm steps (see point 4 in PA ). 

Table 1.  Flight Data 

 

Departure  Destination Aircraft data Type and initial 

Flight airport airport 

Type Time 

Tail 
Number location  schedule 

1 1 2 1т 5 1 1т 1 

2 2 3 1т 3 2 1т 2 

3 2 1 2т 4 3 2т 1 

4 3 1 2т 2 

 

  1 

5 1 3 1т 2 

 

  2 

6 3 2 1т 4 

 

  2 

7 1 2 2т 4 

 

  4 

8 1 3 2т 2 

 

  4 

9 3 1 1т 3 

 

  4 

10 2 1 1т 5 

 

  4 

11 2 3 1т 3     5 

Table 2. Algorithm: Step One 

1  
  

 

jf ,1   jj f ,1,1 
,

 j
j

,11 max  

 
Flight 1 
 

1 0 0 (1+5,0,0) 1 max{6;0;0}=6 

0 1 0 (0,~,0)  
2,12,11 0,,0max   , 

  

0 0 1 (0,0 ,~)    ,0,0max1  

Table 3. Algorithm: Step Two 

2  
  

1,2x  2,2x  3,2x  jf ,2   jjj f ,1,2,2   ,  j
j

,22 max    

Flight 1 + 

Flight 2 

1 0 1 0 0  (6+3,0,0) 2 max{6+3;0+0;0+0}=9 

1 0 0 1 0  (0,  2+3, 0) 2 max{6+0;0+5, 0+0}=6 

1 0 0 0 1 (0, 0 , ~)    ,0,06max2  

0 1 1 0 0  (13+3,0,0) 2 max{13+3;0+0;0+0}=16 

0 1 0 1 0  (0,  2+3, 0) 2 max{13+0;0+5, 0+0}=13 

0 1 0 0 1 (0, 0 , ~)    ,0,013max2  
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The change in the tail assignment is given in Table 4, whose rows are arranged in 

the order of increasing ji,


, considering the current aircraft locations. 

Table 4. Ordered Data  

 

Departure 

 

Destination Aircraft data Type,  Initial 

Flight airport airport Type  Time Number    location schedule 

1 1 2 1т 5 1 1т 1 

2 2 3 1т 3 2 1т 2 

3 2 1 2т 4 3 2т 1 

4 3 1 2т 2 

 

  1 

5 1 3 1т 2 

 

  2 

6 3 2 1т 4 

 

  2 

7 1 2 2т 4 

 

  4 

8 1 3 2т 2 

 

  4 

9 3 1 1т 3 

 

  4 

10 2 1 1т 5 

 

  4 

11 2 3 1т 3     5 

Table 5. Step Four 

4  
1,2x  2,2x  1,4x  2,4x  jf ,4   jjj f ,3,4,4   ,  j

j
,44 max    

Flights 

1,2,3,6 

 

1 0 1 0 (4,0,0) 4 max{6+3+0+4; 0+0+0+0; 0+0+5+0} =13 

1 0 0 1 (0,4,0) 4 max{6+3+0+0; 0+0+0+40; 0+0+5+0} =9 

0 1 1 0 (4,0,0) 4 max{6+0+0+4; 0+5+0+0; 0+0+5+0} =10 

0 1 0 1 (0,4,0) 4 max{6+0+0+0; 0+5+0+4; 0+0+5+0}=9 

0 1 1 0 (4,0,0) 4 max{13+0+0+4; 0+5+0+0;0+0+5+0} =17 

0 1 0 1 (0,4,0) 4 max{13+0+0+0;0+5+0+4; 0+0+5+0} =13 

The calculations at the fourth step are given in Table 5. 

Consistent with the parameter 1k , we cross out the locally worst current sched-

ule options (for 134  ). 

The results of the calculations at the final eleventh step are summarized in Table 6. 

The tail assignment options excluded from consideration are highlighted by filling. 

The square brackets in the sums of the aircraft handling times highlight the options 

when the aircraft with the corresponding tail numbers are absent at the airport of de-

parture. In this case, the aircraft needs to be delivered from another nearby airport.  

The delivery time is indicated inside the square brackets. 

Thus, we have obtained four tail assignment options and flight schedules, equiva-

lent in terms of criterion (7)–(8) ( 17  for all the options). 

Tables 7 and 8 show all the best aircraft assignment options and the corresponding 

flight schedules. The Start columns show the departure times, and the End columns 

show a total of the arrival time plus the time on ground handling and preparations for 

the next flight.  
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Table 6. Final Step 

11  
1,8x  2,8x  1,11x  2,11x  jf ,11   jjj f ,10,11,11   ,  j

j
,1111 max    

Flights: 

1,2,3,6, 

7,10,11, 

5,8,4,9 

 

1 0 1 0 (3,0,0) 
11 max{6+0+0+0+0+0+3+[2+2]+0+0+3; 

0+5+0+4+0+5+0+0+0+0+0; 
 0+0+5+0+4+0+0+0+[4+2]+2+0} =17 

1 0 0 1 (3,0,0) 
11 max{6+0+0+0+0+5+0+2+0+0+3; 

0+5+0+4+0+0+3+0+0+0+0; 
0+0+5+0+4+0+0+0+[4+2]+2+0} =17 

1 0 0 0 (3,0,0) 
11 max{6+0+0+0+0+0+3+0+0+0+3; 

0+5+0+4+0+5+0+2+0+0+0; 
0+0+5+0+4+0+0+0+[4+2]+2+0} =17 

0 1 1 0 (0, 3, 0) 
11 max{6+0+0+0+0+0+3+[2+2]+0+0+0; 

0+5+0+4+0+5+0+0+0+0+[3+2]; 
0+0+5+0+4+0+0+0+[4+2]+2+0}=19 

0 1 0 1 (0, 3, 0) 
11 max{6+0+0+0+0+5+0+2+0+0+0; 

0+5+0+4+0+0+3+0+0+0+3; 
0+0+5+0+4+0+0+0+[4+2]+2+0} =17 

0 1 0 0 (0, 3, 0) 
11 max{6+0+0+0+0+0+3+0+0+0+0; 

0+5+0+4+0+5+0+2+0+0+3, 
0+0+5+0+4+0+0+0+[4+2]+2+0} =19 

 

Table 7. Shortest Schedule: Options 1 and 2 

i= j=1 j=2 j=3 Start End 

 

j=1 j=2 j=3 Start End 

1 1 0 0 1 6 1 0 0 1 6 

2 0 1 0 2 5 0 1 0 2 5 

3 0 0 1 1 5 0 0 1 1 5 

4 0 1 0 5 9 0 1 0 5 9 

5 0 0 1 5 9 0 0 1 5 9 

6 0 1 0 9 14 1 0 0 6 11 

7 1 0 0 6 9 0 1 0 9 12 

8 1 0 0 11 13 1 0 0 11 13 

9 0 0 1 13 15 0 0 1 13 15 

10 0 0 1 15 17 0 0 1 15 17 

11 1 0 0 13 16 1 0 0 13 16 

 

This example clearly demonstrates the universal applicability of the PA  algorithm. 

It is also suitable for solving both the FAM problem and the mixed FAM + ARP 

problem. The same feature allows finding for the target optimal scheduling problem a 

k -best solution that minimizes the airline company losses from disruptions in the 

initial aircraft flight schedules. 
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Table 8. Shortest Schedule: Options 3 and 4 

i= j=1 j=2 j=3 Start End 

 

j=1 j=2 j=3 Start End 

1 1 0 0 1 6 1 0 0 1 6 

2 0 1 0 2 5 0 1 0 2 5 

3 0 0 1 1 5 0 0 1 1 5 

4 0 1 0 5 9 0 1 0 5 9 

5 0 0 1 5 9 0 0 1 5 9 

6 0 1 0 9 14 1 0 0 6 11 

7 1 0 0 6 9 0 1 0 9 12 

8 0 1 0 14 16 1 0 0 11 13 

9 0 0 1 13 15 0 0 1 13 15 

10 0 0 1 15 17 0 0 1 15 17 

11 1 0 0 9 12 0 1 0 12 15 

4 Exchange-Based Improving Algorithm 

The solution obtained by the parametric PA  algorithm can be improved using a 

procedure based on an exchange of flights between aircraft. Below we describe this 

algorithm. 

At the first step, we select an aircraft with the maximum total flight time and try 

reassigning one of its flights to another aircraft. If the exchange reduces the value of 

the objective function, we repeat the process; otherwise, we move to the next flight.  

At the second step, we select an aircraft with the maximum total flight time and 

consistently review the flights assigned to this aircraft. In each case, we search for 

flights that this aircraft makes in less time yet assigned to another aircraft. Then, the 

flights are exchanged between the aircraft. If the exchange reduces the value of the 

objective function, we repeat the second step; otherwise, we cancel the exchange and 

search for another flight suitable for reassignment. We denote the general exchange-

based algorithm, as well as the one implemented at step two, as СA . The application 

of the СA  algorithm at step two can be detailed as follows: 

Algorithm СA  

1. Select aircraft m with the maximum total flight time  m . 

2. Assume 1:i . 

3. If mi : , then go to point 14. 

4. Assume 1:l . 

5. If 0, lmx , then go to point 12. 

6. Assume 1:j . 

7. If lj   or 0, jix  or lmjm tt ,,   or imjili tt   ,, , go to point 10. 

8. Assume 0, jix , 1, jmx , 1, lix , 0, lmx . 
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9. Calculate the value of the objective function. If it has decreased, go to point 1; 

otherwise, assume 1, jix , 0, jmx , 0, lix , 1, lmx . 

10. Assume 1:  jj . 

11. If Jj  , go to point 7. 

12. Assume  1:  ll . 

13. If Jl  , go to point 5. 

14. Assume 1:  ii . 

15. If Ii  , go to point 3; otherwise, stop the algorithm.  

Let us estimate the complexity of the СA  algorithm, which searches for flight ex-

change options between aircraft for any finite schedule obtained by the PA  algo-

rithm. Since the former conducts an exhaustive search among all aircraft and all 

flights and calculates the value of the objective function for every exchange option, 

the complexity of the exchange-based algorithm for one schedule is 






 
2

JIO . But 

since the PA  algorithm generates J  schedules at the final step, the total upper-bound 

estimate for the complexity of СA  is 






 
3

JIO .  

5 Results of Testing the Algorithms 

A software implementation of the parametric PA  and exchange-based СA  algo-

rithms allowed us to investigate their properties for instances with a close-to-actual 

number of dimensions. The algorithms were tested on the data of the optimal schedul-

ing problem for a system of unrelated parallel machine with job start delays [23]. 

Table 9 contains the results of testing the instances of problem (1)–(8) with the use of 

the above-mentioned means of solving the bicriteria relaxation of problem (1)–(8) 

[23] and the PA  and СA  algorithms. All the tests have the same number of dimen-

sions. The number of flights is 100I , and the number of aircraft is 5J . The 

algorithms PA  and СA  were applied with two values of the parameter: 4k  and 

5k . 

In Table 9, dat  and da  are, respectively, the solution time (hh:mm:ss) and the 

value of the efficiency criterion, which were obtained by applying the basic algorithm 

based on bicriteria relaxation and IBM ILOG CPLEX [24].The values dpt , dp , dpp , 

and dp  are, respectively, the solution time (in seconds); the value of the criterion; 

and the relative and absolute worsening (improvement at a negative value) of the 

criterion achieved by the PA  algorithm, compared with the basic algorithm. The 

corresponding 
c
dp , 

c
dpp , and 

c
dp  values were obtained by the СA  algorithm.  
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In general, there is an evident absolute gain in speed due to the efficiency of the 

PA  algorithm and its combination with СA . Moreover, the solutions obtained show 

almost complete superiority over the basic algorithm in terms of closeness to the op-

timal solutions.  

Table 9. Comparative Characteristics of the Algorithms 

No

. 
dat  da

 
dpt

 

dp

 

dpp  dp

 

c
dp

 

c
dpp  

c
dp

 

dpt

 

dp

 

dpp  dp

 

c
dp

 

c
dpp  

c
dp

   hh:mm:ss 
100I , 5J ,

 

СA  5J , 5k  СA  

1 00:07:18 389 17 368 -5.40 -21 364 -6.43 -25 435 363 -6.68 -26 359 -7.71 -30 
2 00:15:29 335 18 337 0.60 2 335 0.00 0 436 331 -1.19 -4 329 -1.79 -6 

3 00:09:21 401 17 382 -4.74 -19 382 -4.74 -19 438 375 -6.48 -26 375 -6.48 -26 

4 00:01:42 356 18 370 3.93 14 366 2.81 10 437 365 2.53 9 361 1.40 5 

5 00:12:11 334 17 337 0.90 3 333 -0.30 -1 435 337 0.90 3 337 0.90 3 

6 04:43:14 363 17 377 3.86 14 369 1.65 6 434 375 3.31 12 361 -0.55 -2 

7 00:11:56 403 18 404 0.25 1 404 0.25 1 434 404 0.25 1 401 -0.50 -2 

8 01:34:02 395 17 398 0.76 3 397 0.51 2 433 386 -2.28 -9 386 -2.28 -9 

9 00:03:33 364 17 372 2.20 8 372 2.20 8 434 371 1.92 7 371 1.92 7 

10 00:15:37 395 17 392 -0.76 -3 366 -7.34 -29 434 389 -1.52 -6 376 -4.81 -19 

 Average 
   

0.16 0.2  -1.14 -4.7 
  

-0.93 -3.9  -1.99 -7.9 

Tables 10 and 11 show the algorithm testing statistics to estimate the solution times 

for instances of the optimal airline fleet assignment and flight scheduling problem 

with an actual number of dimensions. 

Table 10. Tests: 100I , 10J , 3k           Table 11.  Tests: 100I , 30J , 2k  

Test  
No. 

dpt  dp  c
dp   Test  

No. 
dpt  dp  c

dp  

1 325 163 154 1 18 106 106 

2 322 126 122 2 18 105 105 

3 322 145 145 3 18 107 107 

4 338 139 136 4 18 106 106 

5 329 157 152 5 17 108 108 

6 322 134 132 6 18 114 114 

7 324 147 147 7 18 105 104 

8 322 135 132 8 18 108 106 

9 323 153 153 9 18 106 106 

10 326 137 137 10 19 105 105 

Concerning the accuracy (i.e., closeness of the flight assignments and aircraft 

schedules generated by the PA  and СA  algorithms to the optimal ones) estimates, we 

note the following points. There are no a priori accuracy estimates for PA  and for the 

combination PA + СA , but there are a posteriori ones at small dimensions, which are 

as follows [24]: in approximately 82% of cases, an accurate solution was obtained in 

the generated tests. In the other cases, the deviation from the optimum was no more 
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than 6%. This conclusion was derived from a comparison of the PA + СA  testing 

results with the solutions of the same tests in CPLEX by the expansion of recursions 

and the direct reduction of problem (1)–(8) in milp. 

The dimensions of the tests (100 flights and 30 aircraft) and the solution time offer 

hope that the designed toolkit would be efficient in solving real-life problems of air-

line planning. 

Conclusions 

The results obtained demonstrate the efficiency of the proposed approaches in 

solving real-life problems of air transportation planning, including aircraft fleet as-

signment, routing, and, if necessary, flight scheduling. Thus, our approach would 

make a promising a contribution to the planning practice of an airline company of any 

size. A posteriori estimates for the accuracy and speed of the algorithms lead us to 

conclude that the developed toolkit has evident advantages over its analogs. 

The testing confirms experimentally, in terms of computing time, the efficiency of 

the PA  + СA  pair. Noteworthy is the insignificant contribution of the СA  algorithm 

to the total complexity. The use of this algorithm adds no more than a second to the 

total computing time dpt  for the tests in Tables 9–11.  
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