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Abstract. A discussion is given of a universal mathematical economic model 

designed to find optimal strategies for controlling the production and logistics 

subsystems (subsystem components) of a company. The declared universal 

character of the model allows a systematic consideration of both production 

components, including constraints associated with how raw materials and com-

ponents are converted into goods for sale, and resource-based and logical con-

straints on input–output material flows. The model and the generated control 

problems are developed within a single approach allowing the implementation 

of logical conditions of any complexity and the formulation of the correspond-

ing formal optimization problems. An explanation is provided for the meaning 

behind the criteria and constraints. An approximate polynomial algorithm is 

proposed for solving the formulated mixed programming optimization problems 

of actual dimension. The results are presented of testing the algorithm for prob-

lem instances over a wide range of dimensions. 

Keywords: Discrete optimization problems · Mixed integer linear program-

ming · Production, supply, and sales control · Discount functions · Efficient al-

gorithm. 

1 Introduction 

The aim of this work is to solve one of the problems associated with control over 

production and economic systems and processes. Within its framework, we developed 

a model and an algorithm, based on mathematical programming methods, for synthe-

sizing optimal solutions. Studies like this one most often focus on specific topics 

(problems): location, supplier selection [1], job assignment, inventory management, 

supply chain management, logistics [2, 3], and production [4]. In this work, we used a 

comprehensive system approach to optimize the control over the product line and 

material flows of an industrial company [5]. 

The composition of the product line depends on the specific weight of each product 

type in the total share of production and its profitability. A large product line allows 
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the company to satisfy the various demands of customers and, thus, increase the out-

put and sales. To maximize profits, however, managers must make sure that the prod-

uct line composition is rational. They should assess the relevance of the product pro-

gram in terms of economic efficiency as early as during the development of the pro-

gram. It should be noted that there is no generally accepted methodology for deter-

mining an optimal product line for an industrial company. We analyzed the literature 

on this subject, from which we elicited a few approaches to product line determina-

tion and optimization. One can speak only of calculation systems/techniques designed 

and applied by industrial companies or researchers on a case-by-case basis, depending 

on a specific problem. Therefore, it would be irrational to widely apply these individ-

ual techniques.  

At present, optimization problems are widely used in the various areas of produc-

tion [6]. In [7], e.g., a process is described for finding a solution to the problem of 

multi-objective optimization of material traffic in a logistics network by means of a 

control system based on fuzzy logic as well as the simulated annealing methodology 

and a genetic algorithm. 

In [8], the authors point out the relevance of studying supply chain optimization—

in today's competitive and flexible environment, companies need effective planning 

that is based primarily on modern technology and calculations. One such technology 

is dynamic modeling tools, i.e., discrete-event simulation (DES). 

The multi-objective optimization problem as applied to supplier selection and the 

order release mechanism has long been the focus of research for a team of scientists 

from Youngstown State University in the United States [9, 10]. They consider one of 

the alternative decision support systems with several criteria, i.e., visual interactive 

goal programming (VIG). 

Researchers from Sweden [11] focus on production logistics optimization, which is 

also relevant for Russian companies. They discuss the results of the combined use of 

DES and simulation-based multi-objective optimization (SBO) for analysis and im-

provement of logistics and production systems. 

2 Conceptual Problem Statement 

Control actions: selection of suppliers, determination of amounts of procurement 

for all items in the product line, transportation, production, storage, and sales [5, 12, 

13]. 

Production and economic activity features considered in the model: the high unit 

price for all items in the product line (e.g., electronic chips, plant seeds, or jewelry; 

this condition has no substantial effect on the structure of the formal model); relative-

ly small supply by volume; in-house production is considered in the general scheme 

as in-house supply. Transportation costs are considered insignificant. Remoteness of 

suppliers affects only the time of delivery, which is compensated by a necessary 

amount of stocks in the warehouse. Supply conditions can be considered significant if 

they are characterized by wholesale discounts, whose dependence on the amounts of 

supply by value is shown in Fig. 1. 
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Fig. 1. Product supply conditions.     

Here and below, wavy dashed lines show breaks in the plots. 

The dependence of the supplier prices on sales is presented in Fig. 2. 

 

Fig. 2. Dependence of the unit price on the order amount. 

The most important factor in the model is demand. In the worst-case scenario, 

there is only an average demand forecast estimate; in the best-case one, there is a 

forecast of the demand function for all the items in the product line. The demand 

function for each product item may look as in Fig. 3. 

Another feature is the presence of several consumers groups (wholesale and retail 

customers, persons entitled to privileges, and holders of discount cards). 
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Fig. 3. Product supply conditions. 

Considering the above circumstances, the control problem can be formulated as 

follows. 

It is necessary to devise such a procurement strategy (select suppliers and supply 

amounts, in view of the discounts) and such a sales price policy by consumer group 

that maximize the criterion (the net income or working capital at the end of the plan-

ning period) under constraints on the working capital at the beginning of the period 

and on the warehouse capacity. The term procurement strategy means a set of planned 

amounts of procurement for the entire product line, including the selected prices and 

discounts from all potential suppliers; the amounts are determined for each time inter-

val within the planning period. The term sales strategy means a set of planned 

amounts of sales for the entire product line to all consumers groups; the amounts are 

determined from demand data for each time interval within the planning period. 

The constraints of the problem are logical conditions that consider changes over 

time in the discounts associated with procurement and sales [5] as well as in consum-

er demand and in the company’s warehouse and production capacities and financial 

capabilities [12]. 

It should also be noted that the production cycle in the case under consideration is 

much shorter than any interval of the planning period. 

3 Formal Statement 

We use the following notation: 

t  is the number of the time interval used as a measure of discreteness when deter-

mining the simulation time (hereinafter, the month number); 

j  is the supplier number ( Jj ,1 ); i  is the product number in the supply product 

line ( Ii ,1 ); l  is the consumer type index ( Ll ,1 ); k  is the number of the interval 

on the discount ( Kk ,1 ) and demand ( ',1 Kk  ) scales; 
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( )ijy t   is the amount of procurement of product i  by volume from supplier j  in 

month t ; 

)(tOi  is the stock of product i  in the warehouse at the beginning of month t ; 

)(tCij  is the base wholesale price of product i  from supplier j  in month t ; 

)(td j  is the amount of procurement by value from supplier j  in month t  at the 

base price (without discounts); 

)(th jk  is the right boundary of interval k  on the scale of discounts given by sup-

plier j  in month t ; 

( )jkg t  is the discount given by supplier j  in month t  in interval k  on the corre-

sponding scale (in percentage); 

( )jkw t  is an indicator that a given amount of procurement falls within interval k  

on the scale of the discounts given by supplier j  in month t ; 

( )ilkx t  is the amount of sales of product i  by volume to a consumer of type l  in 

month t  in interval k  on the demand-function scale; 

( )ilkp t  is the unit price of product i  for a consumer of type l  in month t  in inter-

val z  of the demand function; 

( )Q t  is the size of working capital in month t ; 

)(tN  is the wages and overheads in month t ; 

)(tsilk  is the right boundary of interval k  on the scale of the demand function for 

product i  by a consumer of type l  in month t . 

A mathematical economic model (MEM) for optimal control over the supply and 

sales of inhomogeneous products manufactured by a company is as follows: 
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 1 1( ) ( )il ilx t s t , 1,i I , 1,l L , 1,t T ; (7) 
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Relations (1) define the amount of procurement by value, ignoring the discounts, in 

month t from supplier j; relations (2) and (3) are logical constraints on the presence of 

discounts and on their size; (4) are constraints on the amount of procurement by val-

ue, considering the discounts, in month t  from all the suppliers; (5) and (6) are de-

mand constraints for each product for all types of consumers in month t . Relations 

(7) are logical constraints: the total amounts of procurement and stock in the ware-

house for each product item in each month must not be lower than the corresponding 

amounts of sales. Relations (8) define the time changes in the warehouse stock for the 

entire product line; (9) define the time changes in net income; (10) is a criterial indi-

cator of efficiency, meaning the time-weighted average of net income; (11) is a spe-

cial case: the net income at the end of the planning period. 

Since the problem under consideration includes the manufacturing component of 

the process, the above constraints can be supplemented by another one, i.e., on the 

ways to transform raw materials and components Y into goods for sale X: 

 ,X A Y   (14) 

where A is the tensor of technological coefficients. It should be noted that although 

we calculate several output values (considering consumer types and discount scales) 

for each output good, the calculations for all these values use the same coefficients of 

the A tensor for this good. This is reflected in the following group of constraints:  
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4 Estimating the Potential Complexity of Solving the 

Optimization Problem Instances 

We assume that , 1. , 1,ija A i I j J     is an element of a continuous set A . We 

use the following notation: ( )ijM a I J   is the number of elements in the set A ; 

contM  is the number of continuous variables; intM   is the number of integer variables; 

and constrM  is the number of constraints in the model.  

Let us consider a typical example of applying model (1)–(13) with the following 

parameters: 

I  2000 is the product line; J  10 is the number of suppliers; T 3 is the plan-

ning period; K 3 is the number of intervals on the discount scale; 'K  3 is the 

number of intervals on the demand scale; and L 2 is the number of types of con-

sumers.  

Then, if we leave out the constraints on continuous variables, we have 

))(( tyM ij 60000, ))(( txM ilk 36000, ))(( twM jk 90, contM ))(( tyM ij

))(( txM ilk 96000, intM ))(( twM jk 90, constrM 

=10·3+10·3+2000·10·3+3+2000·2·3+ 2000·2·3·3+2000·3+2000·3+2000·3=126063. 

The number constrM  is formed by those constraints that include the solution varia-

bles: (1), (2), and (3) for procurement-related variables; (4)–(8) and (13). 

))(( tyM ij  is the maximum possible estimate. If there is no complete intersection of 

the suppliers’ product lines, the estimate will be lower.  

Thus, an order-of-magnitude estimate for the number of dimensions and, hence, for 

the complexity of a control problem with parameters as close as possible to actual 

ones is as follows: 10
4
 continuous variables and 10

2
 integer variables. Moreover, the 

model contains nonlinear constraints (4) and (9) and a nonlinear objective function 

(10)–(11). 

It also follows directly from the problem statement that the problem belongs to the 

class of NLP and MIP with potential NP-hardness. 

5 Approximate Algorithm for Solving the Problem of Optimal 

Control over Supply, Production, and Sales 

As noted above, if we ignore the specific features of the problem statement, prob-

lem (1)–(13) of any actual dimension is, at given parameters of computational com-

plexity, formally unsolvable by known methods. To solve this problem, we construct 

an algorithm best tailored to the specific features of the problem. Note that all the 

discount functions ( )jkg t  are nondecreasing ones; hence, all the functions of whole-

sale prices and demand are nonincreasing ones. In view of these circumstances, we 

propose the following algorithm to search for an optimal solution of problem (1)–

(13): 
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Preliminary Step. We define the relaxed problem for (1)–(13) as follows. We select 

any ( )jg t  { ( )}jkg t , 1,j J , 1,t T , and form on the basis of problem (1)–(13) a linear 

subproblem: 
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We now add new notation to that introduced above. Let n be the number of the step 

in the algorithm. We denote as ,n nY X  and nz  the solution of the relaxation problem 

at step n (the amounts of procurement and sales and the value of the efficiency criteri-

on). We denote as nG  the set of intervals of discounts at step n ( ( )jg t ). Below we 

give a stepwise representation of the algorithm for solving the problem.  

Step One. We assume that ( )jg t  max{ ( )} ( )jk jK
k

g t g t , 1,j J , 1,t T and make up 

the relaxed subproblem (14)–(22). We denote its solution as 0 0 0, ,Y X z . ( 0 0 ( )
ij

Y y t , 

0 0 ( )
ilk

X x t , 
0 0 0( , )z z X Y ) We determine the matrix identity: 

0( )jg t G .  
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Step n. Based on the solution obtained at the previous step, i.e., 1 1 1, ,n n nY X z    at 
1nG 

, we determine the new values of ( )
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Using the implementation of the barrier algorithm in the IBM ILOG CPLEX opti-

mization studio [13], the main computing tool in the software implementation of the 

algorithm, we solve problem (14)–(22), find new values of , ,n n nY X z , and check them 

for optimality. If 1n nz z    is a small number setting the calculation accuracy), 

then we have obtained at this step an optimal solution of (1)–(13). If the condition is 

not satisfied, we proceed to the next step (n+1), determining the new values of ( )
j

g t  

from nY . 

It is obvious that the algorithm converges in a finite number of steps, which cannot 

be greater than J K T  . This is due to the specific features of the discount functions 

( )jkg t . In our example, J K T   = 90. However, a statistical estimate for the number of 

steps in this example for varying initial data is 5. 

Thus, the proposed algorithm converts problem (1)–(13) into a polynomially solv-

able one with respect to dimension. If we use this algorithm, problem (1)–(13) falls 

into another class of (linear) models with an ordinal number of continuous variables 

of 410  and a complete absence of integer variables [13]. 

6 Results and Discussion 

The universal character of the model, the algorithm, and the implementation soft-

ware with respect to the types of enterprises is achieved through the tensor of techno-

logical coefficients, which determines the ways of converting raw materials and com-

ponents into goods for sale and participates in a group of constraints (12)–(13) of the 

problem. The technological coefficients in the tests are nonnegative. They were gen-

erated in the range from 0 to 1 for a general instance of the problem of managing a 

trading and manufacturing company. 

Table 1 shows the input parameters and the program results for each of the tests, 

which are displayed in the table rows. The right-hand side of the table contains the 

input dimensions, i.e., the following numbers for a given case (test): items in the sup-

pliers’ product line (I), consumer-type indices (L), suppliers (J), intervals on the dis-

count (K) and demand (K1) scales, and time intervals (T). The second part of Table 1 

shows the resulting indicators, such as the time of execution of the program (in se-

conds and fractions of a second), the number of steps in which the problem was 

solved (q), and the number of constraints in the problem. 
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The columns Number of Continuous Variables and Number of Boolean Variables 

show the number of variables that participate in solving the problem. These include 

all the tensor components ( )ijy t , ( )ilkx t , and ( )jkw t , considering their differences for 

each of the time intervals.  

The column Number of Constraints shows the number of problem constraints, 

which depends on the input values of the variables. The number of constraints was 

calculated in the same way as the indicator constrM  in the section Estimating the Com-

plexity of the Model, i.e., by considering constraints (1)–(3) for the procurement-

related variables, (4)–(8), and (13). 

Table 1. Results of testing the program given the presence of in-house production 

N
o

. 

I 
(p

ro
d

u
ct

 t
y
p

es
) 

L
 (

co
n

su
m

er
 t

y
p

es
) 

J 
(s

u
p

p
li

er
s)

 

K
 (

in
te

rv
al

s 
o

n
 t

h
e 

d
is

co
u

n
t 

sc
al

e)
 

K
1

 (
in

te
rv

al
s 

o
n
 t

h
e 

d
e-

m
an

d
 s

ca
le

) 

T
 (

m
o

n
th

s)
 

C
o

m
p

u
ti

n
g

 t
im

e 
(s

ec
o
n

d
s)

 

q
 (

st
ep

s)
 

N
u

m
b

er
 o

f 
co

n
ti

n
u

o
u

s 

v
ar

ia
b

le
s 

N
u

m
b

er
 o

f 
B

o
o

le
an

 

v
ar

ia
b

le
s 

N
u

m
b

er
 o

f 
co

n
st

ra
in

ts
 

1 10 5 10 4 3 6 4.25 5 1500 240 2046 

2 10 5 10 5 4 6 4.77 5 1800 300 1656 

3 7 4 4 4 3 6 2.59 3 672 96 1020 

4 7 4 4 5 4 6 2.8 3 840 120 1188 

5 6 3 3 4 3 6 2.69 3 432 72 690 

6 6 3 3 5 4 6 3.28 4 540 90 798 

7 10 5 10 3 2 6 4.78 5 1200 180 1806 

This testing section shows three blocks of tests, each including the same I, L, and J 

indicators and two different tests for different K and K1. The planning period was the 

same for all the tests in this section. One can see how the time increases linearly for 

tests of higher dimension, i.e., with larger K and K1 in the rows with the same I, L, 

and J, which confirms the efficiency of the algorithm. The number of steps in the tests 

of higher dimension is greater than or equal to that in the corresponding pairwise tests 

of lower dimension.  

7 Conclusions 

The initial problem of control over the external material flows of a company was 

examined and supplemented with a production component. A program was developed 
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that implements the modified algorithm, and the relevant tests were performed. As a 

result, a new decision support tool was obtained.  

Thus, this program can be successfully applied to problems of actual dimension 

that arise in the production sector, in terms of applying MEMs to company logistics, 

and can provide support of decision-making in the planning of procurement, produc-

tion, and sales, from the perspective of maximization of working capital balances. 

According to expert estimates, the potential for improving the performance in the 

search for the best solutions to logistics problems is on average 30% or higher [14, 

15]. 
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