
Weakening the Sufficient Condition for the
Constant Speed of the Software Development

Process

Eugeniy Tyumentcev

Dostoevsky Omsk State University, Omsk, Russia
etyumentcev@gmail.com

Abstract. In the study [4], the amount of software development work
was measured as a function of the number of machine instructions in 11
major software projects. It turned out that the dependence has the form
of a power function with exponent 1.5.
Articles [5, 6] described a mathematical model of the process of software
development as a process of editing program code. Based on this model,
a sufficient condition was formulated, in which the development speed
will not decrease with the growth of the project size.
In this paper, the weakened version (theorem 2) of this sufficient condi-
tion is proved. This theorem is proposed as a formal form of The Open-
Closed Principle in the part of “Software entities (classes, modules, func-
tions, etc.) should be ... closed for modification.”

Keywords: Formalization · Software development process · Software ·
Productivity · Constant speed · Sufficient condition · The Open-Closed
Principle

1 Introduction

In the study [4], the amount of software development work was measured as a
function of the number of machine instructions in 11 major software projects.
The results of Nanus and Farr’s study plotted on Figure 1. The dashed line
means the expected dependency. It was assumed that it would be linear. The
solid line means the empirical dependency. It turned out that it has the form of a
power function with exponent 1.5. This research was carried out more than fifty
years ago and there is an opinion that such dependence is irrelevant for modern
methodologies and software development tools.

Articles [5, 6] described a mathematical model of the software development
process as a process of editing program code. Using this model, the example
was constructed which shows the slowdown of the software development process

Copyright c© by the paper’s authors. Copying permitted for private and academic purposes.
In: S. Belim et al. (eds.): OPTA-SCL 2018, Omsk, Russia, published at http://ceur-ws.org



408 E. Tyumentcev

Fig. 1. The amount of work depending on the number of machine instructions

with the growth of the project size. This example can be easily reproduced in
any programming language. Based on the model, in [6] the sufficient condition
was formulated, in which the software development speed will not decrease with
the growth of the project size.

In this paper, the weakened version of this sufficient condition is proposed
(see Theorem 2). Theorem 2 explains formally one part of The Open-Closed
Principle [3].

2 Formal Model of the Software Development Process

In section, there are key results of the articles [5, 6], since they have never been
published in English, and acquaintance with them is necessary to understand
the result of this article.



Weakening the Sufficient Condition 409

2.1 The Set of Operations

Let L be a formal language over the alphabet Σ. The set of all words over the
alphabet Σ design as Σ∗, and the words themselves are symbols of the Greek
alphabet α, β, γ, length of the word α design as |α|. Remember, that Σ∗ is a
semigroup. In other words,

∀α, β ∈ Σ∗ : αβ ∈ Σ∗.

Empty word in Σ∗ is designed as ε.

Definition 1 (Delete Symbol). Let’s say that the word α′ is obtained by re-
moving the symbol a ∈ Σ from the word α = βaγ, where β, γ ∈ Σ∗, and one of
words β or γ can be empty if and only if α′ can be written in the form α′ = βγ.

Definition 2 (Add symbol). Let’s say that the word α′ is obtained by adding
the symbol a ∈ Σ to the word α = βγ, where β, γ ∈ Σ∗, and one of words β or
γ can be empty if and only if α′ can be written in the form α′ = βaγ.

Example 1. Consider the alphabet of C++. The word:

void f()

{

int

}

is obtained by adding the character int to the word

void f()

{

}

And, conversely, the second word can be obtained from the first by removing
the character int.

We want to introduce a formal definition of the software development process
over the language L. In the framework of this process, the same words from
Σ∗ can appear. To distinguish between them we will not consider the words
themselves, but the pairs (α, n), where α ∈ Σ∗, n ∈ N and denote such pairs α,
and call the word α the word α, if it is necessary.

Here and in the following text, we assume that the set of natural numbers N
contains 0.

Let

S = {α1, α2, . . . , αn},

is a set of pairs (αi, ni), where αi ∈ Σ∗, ni ∈ N, i ∈ N, i ∈ (1, 2, . . . , n), all the
ni are pairwise distinct.

Let’s define four types of operations on the set of pairs S:



410 E. Tyumentcev

1. Let’s say that the set of pairs S′ is obtained from S by adding to S the pair
(α, k), where α ∈ Σ∗, |α| = 1, k ∈ N, if and only if

S′ = S ∪ {(α, k)}, (α, k) /∈ S,

and @(β, t) ∈ S : k = t.
2. Let’s say that the set of pairs S′ is obtained from S by deleting the pair

(α, k), where α ∈ Σ∗, k ∈ N, if and only if

S′ = S \ {(α, k)}, (α, k) ∈ S.

3. Let’s say that the set of pairs S′ is obtained from S by replacing the pair
(α, k), where α ∈ Σ∗, k ∈ N, by (α′, k), where the word α′ was obtained
from the word α by adding the character a ∈ Σ in the sense of Definition 3,
if and only if

S′ = S \ {(α, k)} ∪ {(α′, k)}, (α, k) ∈ S.
4. Let’s say that the set of pairs S′ is obtained from S by replacing the pair

(α, k), where α ∈ Σ∗, k ∈ N, by (α′, k), where the word α′ was obtained
from the word α by deleting the character a ∈ Σ in the sense of Definition
2, if and only if

S′ = S \ {(α, k)} ∪ {(α′, k)}, (α, k) ∈ S.

Remark 1. ∀α ∈ Σ∗ there exists a sequence of operations the result of which is
the pair (α, n), for some n ∈ N.

Proof. Let α ∈ Σ∗. Suppose that α = a1a2 . . . an, where n > 0. Then we take
the following set of operations: Using the operation of type 1, we add the pair
(a1, n). Then, for each symbol ai, i > 1, with the help of an operation of type 3,
we replace the pair (a1a2 . . . ai−1, n) by a pair (a1a2 . . . ai−1ai, n).

Remark 2 (Existence of a set of operations.). Let S is an arbitrary set of pairs.
Then there is a sequence of operations, the result of which is a given set of pairs.

Proof. It is carried out by induction on the number of pairs in the set S and
applying the previous remark to each pair.

2.2 Definition of the Software Development Process

Let L̂ be a subset of words of the programming language L over some alphabet
Σ. The subset L̂ symbolizes the restrictions imposed by programmers on the
language used in connection with the chosen programming methodology for ex-
ample, procedural, object-oriented, etc. or the coding standards adopted in the
development process, for example, the prohibition on the use of global variables.

Definition 3. Let
S = {αi|i ∈ (1, 2, . . . , n)},

where n ∈ N, αi ∈ Σ∗, is some set of pairs. S is called a program in the language
L if and only if ∀αi : αi ∈ L̂.



Weakening the Sufficient Condition 411

Definition 4 (The Software Development Process). The sequence of sets
of pairs:

P0
c1−→ P1

c2−→ P2
c1−→ . . .

where P0 = ∅, Pi (i > 0) are sets of pairs, and Pi is obtained from Pi−1 by using
operation ci of one of the above types, while for all operations of type 1 all the
added pairs have the form (α, k), where α ∈ Σ∗, k is a step number at which the
operation was performed, is called the software development process Pr.

Definition 5. Let’s say that the program P is obtained using the software de-
velopment process Pr, if ∃i > 0 : Pi = P.

All further reasoning will be carried out on the assumption that there is some
process of developing Pr:

P0
c1−→ P1

c2−→ P2
c1−→ . . . .

Remark 3. By definition of the software development process, either pair (α, k)
does not exist, which was created in the software development process, either
there is only one, for any k ∈ N.

Let’s define for convenience the sequence of sets of removed pairs as:

1. D0 = ∅,
2. Di = Di−1 ∪ {α}, if α was removed on the step i from the set Pi−1 by using

operation of type 2, Di = Di−1 otherwise.

Proposition 1. ∀n ∈ N : Pn ∩Dn = ∅.

The proof is by induction by virtue of constructing the set of pairs Pn.

2.3 Speed of the Software Development Process

Next, let’s define the sequence of functions

Fi : (Σ∗ ⊗ N)→ N, i ∈ 1, 2, ..., n :

on the set Σ∗ ⊗ N – the Cartesian product of the sets Σ∗ and N

1. F0(Σ∗ ⊗ N) = 0.
2. Suppose that all functions Fj , j ≤ i were already defined. Let α ∈ Σ∗ ⊗ N

be some pair. Then
– Fi(α) = 1, if the pair α = (α, i) was adding to Pi by operation of type 1

at step i.
– Fi(α) = Fi−1(α′)+1, if the pair α = (α, k) was obtained from α′ = (α′, k)

by operation of type 3 or 4 at step i.
– Fi(α) = Fi−1(α) + 1, if the pair α = (α, k) was removed at step i from

the set Pi−1 by operation of type 2.
– Fi(α) = Fi−1(α), otherwise.



412 E. Tyumentcev

Definition 6. Let α ∈ Σ∗ ⊗ N. Then the complexity of writing the pair α on
the step n in the software development process Pr is called Fn(α).

Proposition 2.

∀α ∈ Σ∗ ⊗ N ∀k,m ∈ N : k > m⇒ Fk(α) ≥ Fm(α).

It follows from the construction of a set of functions Fi : Σ∗ ⊗ N→ N, i ∈ N.

Proposition 3. Let α ∈ Σ∗ ⊗ N. Then the sequence {Fi(α), i ∈ N} either con-
verges to some C ∈ N, either ∀C ∈ N ∃k > 0 : Fk(α) > C.

It follows from the definition of functions Fi, i ∈ N, and proposition 2.

Definition 7. Let α ∈ Σ∗ ⊗ N. Then the asymptotic complexity of writing the
pair α in the software development process Pr is called lim

i→∞
Fi(α).

Definition 8. Let F : N → R+ is some function from N to R+, where R+ =
{x ∈ R, x ≥ 0}. Let’s say that software development process Pr has speed not
better, than F up to constant, if and only if

∃k ∈ N ∀n > k |Pn| ≤ F (n) · n.

Here and below, |Pn| denotes the cardinality of the set Pn.

Definition 9. Let F : N → R+ is some function from N to R+, where R+ =
{x ∈ R, x ≥ 0}. Let’s say that software development process Pr has speed not
worse, than F up to constant, if and only if

∃k ∈ N ∀n > k |Pn| ≥ F (n) · n.

Definition 10. Let F : N→ R+ is some function from N to R+. Let’s say that
the software development process Pr has speed F up to constant if and only if

∃C1 > 0, C2 > 0 ∃k ∈ N ∀n > k C1 · F (n) · n ≤ |Pn| ≤ C2 · F (n) · n.

2.4 The Sufficient Condition for the Constant Speed of the Software
Development Process

Let Pr be a software development process:

P0
c1−→ P1

c2−→ P2
c1−→ . . . .

In terms of the previous section

Proposition 4.
∀n ∈ N |Pn|+ |Dn| ≤ n.

The proof is by induction on the number n.



Weakening the Sufficient Condition 413

Corollary 1. By Proposition 4, the speed of any software development process
can not be better than n.

Proposition 5.

∀n ∈ N
∑

α∈Pn∪Dn

Fn(α) = n.

The proof is by induction on the number n.

Proposition 6. Suppose that ∃C > 0, C ∈ N ∀n ∈ N ∀α ∈ Pn ∪Dn : Fn(α) <
C.

n

C
≤ |Pn ∪Dn| ≤ n.

Proof. The upper limit follows from propositions 1 and 4. The restriction from
below follows directly from the condition and the proposition 5.

Theorem 1 (The Sufficient Condition for The Constant Speed of The
Software Development Process). - Under the assumptions of Proposition
6, suppose that ∃C1 > 0 ∃k1 ∈ N ∀n ≥ k1 |Dn| ≤ C1 · |Pn|. Then the software
development process Pr has a constant speed.

Proof. By Proposition 6
n

c
≤ |Pn ∪Dn| ≤ n.

By Proposition 1

|Pn ∪Dn| = |Pn|+ |Dn|,

consequently, by the assumption of the theorem

|Pn|+ |Dn| ≤ |Pn|+ C1 · |Pn| = (1 + C1)|Pn|.

We get that
n

c
≤ (1 + C1)|Pn|,

that is
n

C(1 + C1)
≤ |Pn|.

On the other hand, |Pn| ≤ n. We get

n

C(1 + C1)
≤ |Pn| ≤ n.

By definition 10 we get that the speed F of the software development process
Pr equals F (n) = 1.



414 E. Tyumentcev

3 The Weakened Version of the Sufficient Condition

The theorem 1 requires that the assimptotic complexity of writing each word of
the program is bounded by some positive integer constant C. This requirement
can be weakened.

Before we formulate a new sufficient condition, we introduce several notation.
Let Pr be some software development process, C > 0, C ∈ N, be some positive
integer constant. Then ∀n ∈ N

GCn = {α |α ∈ Pn : Fn(α) ≤ C} −

the set of all pairs in Pn, that were obtained no more than for C operations.

BCn = {α |α ∈ Pn : Fn(α) > C} −

the set of all pairs in Pn, that were obtained more than for C operations.

Remark 4. By definition of sets GCn and BCn , n ∈ N

∀k ∈ N GCk ∪BCk = Pk,

∀k ∈ N GCk ∩BCk = ∅.

Theorem 2 (The Sufficient Condition for The Constant Speed of The
Software Development Process). In the notation of this section, suppose
that ∃C > 0, C ∈ N ∃C1 > 0 ∃k ∈ N ∀n > k

C1 · (
∑
α∈GC

n

Fn(α)) ≥
∑
α∈BC

n

Fn(α) +
∑
α∈Dn

Fn(α)

Then the software development process Pr has a constant speed.

Proof. By proposition 5

∀n ∈ N
∑

α∈Pn∪Dn

Fn(α) = n.

We rewrite this equation with the remark 4∑
α∈GC

n

Fn(α) +
∑
α∈BC

n

Fn(α) +
∑
α∈Dn

Fn(α) = n.

By the assumption of the theorem ∀n ∈ N : n > k∑
α∈GC

n

Fn(α) + C1 ·
∑
α∈GC

n

Fn(α) ≥ n.

Or,

(1 + C1) · (
∑
α∈GC

n

Fn(α)) ≥ n.



Weakening the Sufficient Condition 415

Since C1 > 0, then 1 + C1 > 1. Hence,∑
α∈GC

n

Fn(α) ≥ n

1 + C1
. (1)

By definition of set GCn ∑
α∈GC

n

Fn(α) ≤
∑
α∈GC

n

C = C · |GCn |. (2)

By (1) and (2) it follows

C · |GCn | ≥
n

1 + C1
.

Since, C > 0, then

|GCn | ≥
n

C · (1 + C1)
. (3)

By remark 4 |GCn |+ |BCn | = |Pn| follows that

|GCn | ≤ |Pn| (4)

By (3), (4) and proposition 4 we get

n

C · (1 + C1)
≤ |Pn| ≤ n.

By definition 10 we get that the speed F of the software development process
Pr equals F (n) = 1.

Remark 5. Theorem 1 is a special case of Theorem 2

Proof. Indeed, if in the conditions of Theorem 2 we take the process of the
software development PR, for which the complexity of all words is less than
some C > 0, C ∈ N, then BCn = ∅ and by remark 4 GCn = Pn. We obtain the
statement of theorem 1.

4 Practical Using

4.1 The Open-Closed Principle

The Open-Closed Principle (OCP) was first described by Bertrand Meyer in [1].
In 1996 Robert C. Martin [3] proposed its modern formulation:

“Software entities (classes, modules, functions, etc.) should be open for ex-
tension, but closed for modification.”

OCP is one of five principles for which Robert C. Martin offered the acronym
SOLID. It is believed that a program that has a “good” design must meet SOLID.
However, till now in the community of programmers, there is no unanimous opin-
ion concerning the obligatory observance of SOLID. For instance, Joel Spolsky,



416 E. Tyumentcev

author of a popular blog and several books about programming, one of the de-
velopers of Visual Basic For Applications, in the 38th issue of Stack Overflow
podcast said:

“Last week I was listening to a podcast on Hanselminutes, with Robert Mar-
tin talking about the SOLID principles . . . they all sounded to me like extremely
bureaucratic programming that came from the mind of somebody that has not
written a lot of code, frankly.”

Nevertheless, SOLID and, in particular, OCP has a number of interesting
consequences that require an answer to the question of the appropriateness of
using SOLID.

For example, the following programming language constructions:

– multiple-choice operator switch,
– enumeration type enum,
– chain of nested operators if-else-if

as a rule, lead to violation of OCP.
Indeed, each of these constructions has a finite set of options. If the set of

options is not exhaustive, then there is a possibility that in the future it will
be necessary to modify such operator to add the missing option, which is a
violation of OCP. In practice, one has to deal with situations where the entire
set of options is unknown beforehand or changes in time.

4.2 The Open-Closed Principle and the Sufficient Condition

In our opinion, the reasons for the ambiguous assessment of SOLID are the
following:

– The vagueness of the term “good” design. Everyone puts their meaning in the
term “good” design. Therefore, it is difficult to establish a causal relationship
between SOLID and own understanding of “good” design.

– It is believed that SOLID are the principles of object-oriented programming.
So, for other methodologies, they are not applicable.

– Martin claims that ”It should be clear that no significant program can be
100% closed. . . . Since closure cannot be complete, it must be strategic. That
is, the designer must choose the kinds of changes against which to close his
design. This takes a certain amount of prescience derived from experience.
The experienced designer knows the users and the industry well enough to
judge the probability of different kinds of changes.”

The sufficient condition (theorem 2) allows one to answer some of these ques-
tions about OCP. Before proceeding to the answers, we note that OCP consists
of two parts:

1. “Open For Extension”. In this article, we will not touch Extension in any
way. This is a topic for a separate article.

2. “Closed For Modification”. Our further reasoning will only be about closure.



Weakening the Sufficient Condition 417

So, in OCP it is asserted that software entities should not be modified, but
not all, only those that are “strategically” important for the program being
created. In our model, the absence of modifications of any word of the program
means, in accordance with the proposition 2, that the asymptotic complexity of
writing this word converges to some constant. In OCP, nothing is said about
the fact that the asymptotic complexity of writing any word should be limited
to some general constant. In [5], the example of a development process was
constructed in which the asymptotic complexity of writing any word is limited,
but there is no general constant that limits the asymptotic complexity of writing
any word at once. In this case, the speed of the software development process
tends asymptotically to 0.

However, there is another practice for “good” code [2] p.p. 54-56 “classes,
procedures, functions must be small”. The concept of “small” implies the exis-
tence of a certain threshold for the size of the entity. If we combine this practice
with OCP, we get that the software entities should be small and closed for mod-
ification. This is very similar to the fact that the assymptotic complexity of
essences must be limited to one common constant.

In this case, the “strategic” closure in Theorem 2 is replaced by the require-
ment ∃C > 0, C ∈ N ∃C1 > 0 ∃k ∈ N ∀n > k

C1 · (
∑
α∈GC

n

Fn(α)) ≥
∑
α∈BC

n

Fn(α) +
∑
α∈Dn

Fn(α)

Note also that in the case of Theorem 2, the complexity of all deleted words is
taken into account. In OCP, nothing is said about this, so the following situation
is possible: instead of editing, the entity is completely deleted, and instead of it,
a new entity is created that takes into account the necessary changes. OCP is
not broken, but the change is actually done.

Instead of a “good” design, Theorem 2 proposes a completely understandable
result with obvious benefits: the development speed will not fall as the size of
the project grows.

In addition, Theorem 2 is valid for any programming language and is not
tied to any software development methodology.

5 Conclusion

In this article, we have obtained a weakened sufficient condition for the constant
speed of the software development process compared to the sufficient condition
in the article [6]. This sufficient condition is proposed as the formal form of
The Open-Closed Principle in the part of “Software entities (classes, modules,
functions, etc.) should be . . . closed for modification.”

References

1. Bertrand, M.: Object-Oriented Software Construction. Prentice Hall (1988)



418 E. Tyumentcev

2. Fowler, M.: Refactoring: Improving the Design of Existing Code. Simvol-Plus
(2003)

3. Martin, R.: The Open-Closed Principle. Object Mentor (1996). http:
//www.objectmentor.com/resources/articles/ocp.pdf (revised date: 5.10.2015)

4. Nanus, B., Farr, L.: Some cost contributors to large-scale programs. In: AFIPS
Proc. SJCC. Spring. vol. 25, pp. 239–248 (1964)

5. Tyumentcev, E.A.: About the formalization of the software development process.
Mathematical Structures and Modeling 3(43), 96–107 (2017)

6. Tyumentcev, E.A.: Clarification of the article “About the formalization of the
software development process”. Mathematical Structures and Modeling 1(45), (ac-
cepted, in press) (2018)


