
A Hybrid Approach for the Capacitated Vehicle
Routing Problem with Time Windows

Ilya Bychkov and Mikhail Batsyn

Laboratory of Algorithms and Technologies for Network Analysis,
National Research University Higher School of Economics,

136 Rodionova, 603093, Nizhniy Novgorod, Russia
ibychkov@hse.ru, mbatsyn@hse.ru

Abstract. The Vehicle Routing Problem (VRP) is one of the most
popular combinatorial optimization problems which is closely related to
the real-life optimization challenges. Being developed for more than 60
years the problem has been considered in many different formulations.
In real-life goods distribution such constraints as fleet size and mix, site-
dependency constraints, hard and soft time windows, vehicle capacity
constraints are very important. In this paper we consider Capacitated
Vehicle Routing Problem with hard Time Windows. We propose a hybrid
heuristic algorithm which contains elements of ant colony optimization
strategy and tabu search technique. Our algorithm shows good perfor-
mance and results for the well-known Solomon dataset.

Keywords: Vehicle routing problem · Time windows · Hybrid algorithm
· Tabu search · Ant colony optimization

1 Introduction

The Vehicle Routing Problem (VRP) is one of the most popular combinato-
rial optimization problems which is closely related to the real-life optimization
challenges. The problem’s community is quite large - various VRP challenges
and knowledge databases can be found all over the Internet. In everyday life
many distribution companies use specific algorithms and software to solve dif-
ferent variations of VRP. The importance of the problem grows today with the
achievements in drone delivery and unmanned vehicles popularization. Modern
VRP formulations usually contain many different types of constraints. To our
experience in case of distribution companies the most critical constraints are
hard and soft time windows (VRPTW). Other research papers also confirm the
vitality of time windows constraints [5, 11, 12].

Copyright c© by the paper’s authors. Copying permitted for private and academic purposes.
In: S. Belim et al. (eds.): OPTA-SCL 2018, Omsk, Russia, published at http://ceur-ws.org

Hybrid Approach for Capacitated Vehicle Routing Problem 67

There are many heuristic algorithms with promising results. Jawarneh & Ab-
dullah [3] present the adaptive bee colony optimization algorithm with sequen-
tial insertion heuristic for initial solution. The authors use several neighborhoods
based on swap and shift moves. Lau et al. [6] modeled VRPTW as a linear con-
straint satisfaction problem and introduced an efficient local search method for
solving it. Braysy & Gendreau [1] proposed an adaptation of a popular tabu
search metaheuristic for solving VRPTW.

Hybrid algorithms where several heuristics or metaheuristics ideas are com-
bined are widely used for solving various combinatorial optimization problems
[4, 7, 8, 10]. In this paper we introduce a new hybrid ant colony optimization
algorithm combined with tabu search technique in which we allow visiting infea-
sible solutions during the search process. Allowing infeasible solutions is inspired
by a unified tabu search algorithm of Cordeau et al. [2]. Our algorithm shows
good performance and results for the well-known Solomon’s dataset [9].

2 Mathematical Formulation

In this paper we consider the Capacitated Vehicle Routing with Time Windows
(CVRPTW). In this formulation we are given a limited number of vehicles with
the same capacity to serve customers in the specified time intervals. In practice
these intervals called time windows may refer to customer working hours or
concrete hour when it is convenient for a customer to unload a vehicle. Time
window constraints are known to be the hardest part of VRPTW [5].

According to CVRPTW formulation each customer i has an associated pair
of values [ei, li] which represent the earliest and the latest time when unloading
can be started. However, if a vehicle arrives before a customer i is ready to start
service we assume that the vehicle waits for the beginning of the time window
ei. On the other hand, any vehicle is allowed to finish servicing customer i even
after the right bound of time window li.

We consider the CVRPTW formulation in which we have a set K of identical
vehicles with capacity Q. The number of vehicles is |K|, but it is not required
to use all of them.

A straightforward mathematical formulation for CVRPTW is given in [11].
Here we have graph G = (V,A) with a set of nodes V representing customers
and a set of arcs A representing roads between customers. There are n = |V |
customers numbered from 1 to n. Also there are two auxiliary vertices with
numbers 0 and n + 1 representing the depot node for route start and finish
respectively. We are also given the cost matrix C where cij indicates the cost
of traveling from customer i to customer j and the matrix of traveling times
T where it takes tij time units to get from customer i to customer j. For each
customer i there are time window [ei, li], demand qi and service time si. Let us
define ∆+(i) the set of nodes directly reachable from i and ∆−(i) - the set of
nodes from which i is directly reachable. Parameters E, L determine the earliest
time when a vehicle can leave the depot and the latest time when it can return.

68 I. Bychkov, M. Batsyn

The decision variables are specified as follows:

xijk =

{
1, if arc (i, j) is used by vehicle k

0, otherwise

wik =

{
service start time, if customer i appears in the route of vehicle k

0, otherwise

With all the variables and parameters above we can now formulate the prob-
lem considered in this paper as follows

(CVRPTW):

min
∑
k∈K

∑
(i,j)∈A

cijxijk (1)

Subject to: ∑
k∈K

∑
j∈∆+(i)

xijk = 1 ∀i ∈ V, (2)

∑
j∈∆+(0)

x0jk = 1 ∀k ∈ K, (3)

∑
i∈∆−(n+1)

xi,n+1,k = 1 ∀k ∈ K, (4)

∑
i∈∆−(j)

xijk −
∑

i∈∆+(k)

xjik = 0 ∀k ∈ K, j ∈ V (5)

xijk(wik + si + tij − wjk) ≤ 0 ∀k ∈ K, (i, j) ∈ A, (6)

ei
∑

j∈∆+(i)

xijk ≤ wik ∀k ∈ K, i ∈ V, (7)

li
∑

j∈∆+(i)

xijk ≥ wik ∀k ∈ K, i ∈ V, (8)

w0k ≥ E ∀k ∈ K, (9)

wn+1,k ≤ L ∀k ∈ K, (10)

∑
i∈V

qi
∑

j∈∆+(i)

xijk ≤ Q ∀k ∈ K, (11)

Hybrid Approach for Capacitated Vehicle Routing Problem 69

xijk ∈ {0, 1} ∀k ∈ K, (i, j) ∈ A. (12)

Objective function (1) minimizes the total cost of all the routes in the solu-
tion. Constraint (2) ensures that each customer is assigned to exactly one route.
Constraints (3), (4) and (5) guarantee that we have only one outcoming edge
from the start depot vertex, only one incoming edge to the end depot vertex and
each customer has the same number of incoming and outcoming edges. Inequal-
ity (6) prohibits service to start earlier than the earliest possible arrive time from
the previous customer taking into account service and travel times. Inequalities
(7), (8), (9), (10) provide feasibility with respect to the given time windows. Fi-
nally, constraint (11) prohibits overloaded routes with the total demand greater
than vehicle capacity Q.

3 Algorithm Description

During the recent years metaheuristic algorithms have become a popular way
to solve any combinatorial optimization problem. The so called hybrid methods
which incorporate strategies from different metaheuristic approaches are widely
used. In this paper we present a hybrid heuristic algorithm which contains Ant
Colony Optimization (ACO) and Tabu Search (TS) with the possibility of vis-
iting infeasible solutions during the search. In section 3.3 we provide empirical
results which confirm that our hybrid algorithm outperforms separate runs of
TS and ACO procedures. The effect of visiting infeasible areas during the search
is discussed in Section 3.4.

Algorithm 1 Ant Colony - Tabu Search approach

1: procedure ACO-TS()
2: maxIterations← 30
3: candidateAco← ∅
4: candidateTS ← ∅
5: bestSolution← ∅
6: for i← 1,maxIterations do
7: candidateACO ← runACO(candidateTS)
8: updateIfBetter(bestSolution, candidateACO)
9: if hasUnserved(candidateACO) = True then

10: fixUnserved(candidateACO)
11: end if
12: candidateTS ← runTS(candidateACO)
13: updateIfBetter(bestSolution, candidateTS)
14: end for
15: return bestSolution
16: end procedure

Algorithm 1 provides the top level procedure of our approach. Here we
have the main loop which sequentially runs the ant colony algorithm and then

70 I. Bychkov, M. Batsyn

tabu search. Variables candidateACO, candidateTS and bestSolution repre-
sent best solutions found by ACO, TS and overall best respectively. Variable
maxIterations limits the number of iterations of the main loop. Inside the loop
runACO(candidateTS) is called and the best solution found by this function
is saved to candidateACO. runACO(candidateTS) receives the best solution
found by the previous TS function run and uses it to update initial pheromone
values. For the first time when candidateTS is empty all pheromones are initial-
ized with the same value that will be discussed later. Then the algorithm calls
updateIfBetter(bestSolution, candidateACO) which replaces the best solu-
tion found so far with candidateACO if candidate solution is better. Our ACO
solution is constructed by adding routes one by one. This sometimes leads to in-
feasible solutions where some customers are unserved. Since the TS function can-
not work with such kind of infeasibilities we run fixUnserved(candidateACO)
procedure to fix it. This procedure transforms all unserved customers into one-
customer routes using additional vehicles. Such transformation in its turn can
lead to using more vehicles than we have. However, this type of violations can be
easily fixed in tabu search function. Then candidateACO solution is passed to
runTS(candidateACO) function and used as a starting solution for the search.
After TS function is finished the results are saved to candidateTS variable and
the best solution is updated if necessary inside updateIfBetter() .

3.1 Ant Colony Optimization Algorithm

Ant colony optimization strategy is used to obtain an initial solution and then
to escape from the local optimum obtained by the tabu search part. In this algo-
rithm each ant constructs a solution in a probabilistic manner using pheromone
values associated with every single arc. Initially all pheromone values are set to
the same value equal to the total cost of the solution where every customer is
served with its own vehicle. This means that initially all the arcs can become a
part of the solution under construction with the same probability. Here we use
the solution with one-customer routes to fill initial pheromone values. The algo-
rithm for our ACO stage is presented in Algorithm 2. The detailed description
is provided below.

Algorithm 2 starts with defining some variables. The first variable which is
called maxIterationsWithoutImprovement defines how many iterations with-
out improving the current best solution we can run. The next variables which
are iterations, colonySize and best define current iteration counter, number
of ants generated in each iteration and the best solution found so far respec-
tively. At first procedure updatePheromones(startSolution) is called. This
procedure gets a solution startSolution (or generally a list of solutions), iterate
over it and increase current pheromone values for every edge in a solution by
1/c(startSolution) where c(startSolution) is the cost of startSolution. As a
result, it allows us to connect the parts of our approach by passing the TS result
to ACO part and letting ACO search to prioritize elements of TS solution.

After that the main loop of ACO algorithm starts. The stopping criterion
in this case is reaching maxIterationsWithoutImprovement iterations without

Hybrid Approach for Capacitated Vehicle Routing Problem 71

Algorithm 2 Ant Colony Optimization algorithm

1: procedure runACO(startSolution)
2: maxIterationsWithoutImprovement← 100
3: iterations← 0
4: colonySize← 100
5: best← ∅
6: updatePheromones(startSolution)
7: while iterations < maxIterationsWithoutImprovement do
8: oldBest← best
9: localBestList← ∅

10: current← ∅
11: for i← 1, colonySize do
12: current← runSingleAnt()
13: if isBetter(current, best, 0) = True then
14: best← current
15: iterations← 0
16: end if
17: if isBetter(current, bestLocal, 5) = True then
18: bestLocalList← bestLocalList ∪ current
19: end if
20: end for
21: updatePheromones(bestLocalList)
22: evaporate()
23: iterations← iterations + 1
24: end while
25: return best
26: end procedure

improving the best solution. Inside the main loop we have variables oldBest,
localBestList and current which represent the best solution in the previous it-
erations, the list of best solutions in the current iteration and the current solution
under consideration. Variable oldBest is needed to compare current iteration so-
lutions only to the solutions from the previous iterations, localBestList is used
to update pheromone values at the end of iteration.

Then an inner loop starts where a colony of ants is formed. Every single
solution for the problem which is represented by a single ant is constructed by
calling current ← runSingleAnt(). Then we have to update the current best
solution if necessary and add current solution for future pheromone update if
this solution is good enough. Both of these actions are done with the help of
isBetter(solution1, solution2, gap) function which gets two solutions and gap
value as parameters. If solution1 has a lower cost than solution2 or solution1
cost is within the gap percent from solution2 the function returns true. Since
runSingleAnt() can produce solutions where some customers are unserved,
isBetter(solution1, solution2, gap) returns true value immediately if the num-
ber of unserved customers in solution1 is strictly less than in solution2.

72 I. Bychkov, M. Batsyn

We call isBetter(current, best, 0) to test if a better solution than the cur-
rent best is found. Also isBetter(current, bestLocal, 5) is called when the algo-
rithm determines which solutions in the current iteration can be used for future
pheromones update. If a solution’s cost is within 5% from the best one obtained
in the previous iterations or it has less unserved customers - it is added to
localBestList list. After the whole colony is generated we update the pheromone
values in updatePheromones(bestLocalList). Then the pheromone evapora-
tion procedure evaporate() is called. It reduces the pheromone value on every
edge: pheromoneij = pheromoneij ∗ρ. Here ρ is the evaporation rate parameter
empirically set to 0.8.

Algorithm 3 Creating a single ant solution

1: procedure runSingleAnt()
2: solution← ∅
3: repeat
4: isInserted← addNewRoute(solution)
5: until isInserted == True & getRoutesNumber(solution) < |K|
6: return solution
7: end procedure

Every candidate solution in our ACO approach is constructed using runSin-
gleAnt(), addNewRoute() and insertNextCustomer() procedures. These
procedures are described in Algorithm 3, Algorithm 4 and Algorithm 5 respec-
tively. Function runSingleAnt() from Algorithm 3 forms a new solution from

Algorithm 4 Procedure for adding new routes

1: procedure addNewRoute(solution)
2: unservedCustomers← getUnservedCustomers(solution)
3: route← ∅
4: if unservedCustomers = 0 then
5: return False
6: end if
7: repeat
8: isInserted← insertNextCustomer(route, unservedCustomers)
9: until isInserted = True

10: if isEmpty(route) then
11: return False
12: end if
13: addRoute(solution, route)
14: return True
15: end procedure

scratch. Step by step it adds a new route by calling addNewRoute(solution).

Hybrid Approach for Capacitated Vehicle Routing Problem 73

The solution construction terminates when addNewRoute(solution) returns
false (there are no possible routes to add) or when the total number of routes
equals to the number of vehicles available. Algorithm 4 describes a new route
creation process. At first we check if there are unserved customers in the solution
and set the current route under creation as an empty route. Then we call proce-
dure insertNextCustomer(route, unservedCustomers) to extend route until
there is a customer who can be added without any constraint violations. Finally,
addRoute(solution, route) is called to append a new route to the solution.

Procedure insertNextCustomer(route, unservedCustomers) which is pre-
sented in Algorithm 5 appends a new customer to route with some proba-
bility. This probability depends on the current pheromone values for the arc
from the last customer to a new one and the cost of this arc. The list of
probabilities for every customer is initially empty. Then the algorithm iter-
ates over all the unserved customers. If the customer c can be inserted to the
end of route without time window and load violations we define its proba-

bility to be chosen as pheromones[prev][c]
costs[prev][c] . After iterating over all the unserved

customers we check if there is a non-null value in probs for at least one cus-
tomer by calling isEmpty(probs). Strictly speaking values in probs cannot be
called probabilities so we normalize all these values with normalize(probs).
Then we choose a customer to be added to the route using probs as prob-
abilities inside getRandom(probs, unservedCustomers) and then add it in
addCustomer(nextCustomer, route).

Algorithm 5 Customer insertion procedure

1: procedure insertNextCustomer(route, unservedCustomers)
2: probs← ∅
3: prev ← getLastCustomer(route)
4: for c ∈ unservedCustomers do
5: if isFeasibleInsertion(c, route) = True then

6: probsc ← pheromones[prev][c]
costs[prev][c]

7: end if
8: end for
9: if isEmpty(probs) then

10: return False
11: end if
12: normalize(probs)
13: nextCustomer ← getRandom(probs, unservedCustomers)
14: addCustomer(nextCustomer, route)
15: return True
16: end procedure

74 I. Bychkov, M. Batsyn

3.2 Tabu Search Algorithm

After ant colony part is finished we use its best solution to improve it with
tabu search technique. Our algorithm is inspired by the unified tabu search from
[2]. We consider a single neighborhood structure N(S) obtained by moving any
customer i in solution S from its current position to another position in the same
route or another route within the solution S.

One of the features of our algorithm is the possibility of forming new routes,
which is defined as moving a customer from its current route to a new route. Also
we allow all kind of constraints to be violated at some cost. Let c(S) be the total
cost of solution S, load(r) be the total load of some route r inside S, tw(r) be
the total lateness time for route r. For each type of infeasibility (time windows,
load, routes number) we introduce a control coefficient. These coefficients are
α, β, γ for time windows, load and routes number violations respectively. The
key goal of these control coefficients is to force the tabu search algorithm to
decrease infeasibilities when we stay in the infeasible area for too long. This goal
is achieved by adding penalties for each type of violations to the cost function.
Therefore total solution cost is defined as:

cost(S) = c(S) + α
∑
r∈S

tw(r) + β
∑
r∈S

max(0, load(r)−Q) + γmax(0, |S| − |K|)

(13)

where |S| is the total number of routes in the solution S. To prevent the search
from visiting only infeasible solutions we control the time spent inside infeasible
area by using dynamically adjusted control parameters α, β, γ. Initially all these
parameters are set to the starting value equal to 1. Each time we move from
solution Sm to solution Sm+1 while, for example, tw(Sm) < tw(Sm+1), the
control parameter α is multiplied by a fixed scaling factor which is set to 1.4. If
we move to a solution where violation is increased comparing to the previous one,
the corresponding control parameter is always multiplied by the scaling factor.
On the other hand, if we move to a solution where violation is decreased the
control parameter stays the same. Only when a violation value becomes equal
to 0 the control parameter for this particular violation type is reset to 1. This
way the search is allowed to visit infeasible areas, but the exponential growth of
α, β, γ parameters forces the algorithm to move back to feasible regions.

As a part of tabu search technique we use short term memory to avoid the
search moving within some loops. We append moves to a tabu list structure and
they become prohibited for a fixed numbertabuTenure = 10 of iterations. For
long term memory strategy we store the number of times each edge has been
transited to a solution. Each time we evaluate a move, the algorithm estimates
how many times the edges we want to include has been transited to the solution
before. The resulting value is also added to the cost function as a penalty. Such an
approach allows us to prevent some edges to be transited to a solution too often
and let the algorithm to consider other options. It provides global diversification
for the search.

Hybrid Approach for Capacitated Vehicle Routing Problem 75

The pseudocode for the TS procedure is presented in Algorithm 6. Algo-
rithm 6 starts with defining iterations, maxIterationsWithoutImprovement
and best variables which represent iterations counter, stopping criterion for the
main loop and the current best solution respectively. Inside the main loop we
declare bestDelta which is the best cost difference found between the current
solution and a possible candidate solution. Variable bestMove stores the best
move found so far. Function fillPossibleMoves(currentSolution) looks for
all possible moves from the current solution. Then the algorithm iterates over
all possibleMoves from the previous step. getCost(currentSolution,move)
is run for each move to compute the cost delta. If this delta is better than
bestDelta found so far and move is not in the tabu list bestDelta is updated.
Here we use the first descent strategy and perform the first improving move
found. This way we leave the inner loop immediately when an improving move

Algorithm 6 Tabu Search algorithm

1: procedure TS(currentSolution)
2: iterations← 0
3: maxIterationsWithoutImprovement← 500
4: best← currentSolution
5: while iterations < maxIterationsWithoutImprovement do
6: bestDelta←∞
7: bestMove← ∅
8: possibleMoves← fillPossibleMoves(currentSolution)
9: for move ∈ possibleMoves do

10: delta← getCost(currentSolution,move)
11: if delta < bestDelta & isTabu(move) = False then
12: bestDelta← delta
13: bestMove← move
14: if delta < 0 then
15: break
16: end if
17: end if
18: end for
19: updateTabuList(bestMove)
20: updateTransitions(bestMove)
21: applyMove(currentSolution, bestMove)
22: updatePenalties(currentSolution)
23: iterations← iterations + 1
24: if isBetter(currentSolution, best, 0) = True then
25: best← current
26: iterations← 0
27: end if
28: end while
29: return best
30: end procedure

76 I. Bychkov, M. Batsyn

is found. updateTabuList(bestMove) marks the customer and the source route
from bestMove as tabu active elements. We prohibit any moves in which a cus-
tomer and a destination route are tabu active for tabuTenure iterations, where
tabuTenure equals to 10. Long term memory is updated by updateTransitions().
Then we apply the best move found with applyMove(currentSolution, bestMove)
and adjust the control coefficients α, β, γ.

3.3 Hybrid vs. Separate Algorithms

We have performed several computational experiments to test our hybrid ap-
proach in comparison to separate runs of ACO and TS algorithms. Our hybrid
approach termination criterion has been set to 100 iterations without improve-
ment for ACO part and 500 iterations without improvement for TS. Then we run
the hybrid approach for 30 times, find the longest run and set this value as the
time limit for a single ACO run. For a fair comparison with a separate ACO al-
gorithm we have run ACO also for 30 times, each time with the determined time
limit. For TS algorithm we have started with one-customer routes solution and
limited its running time to the total time of 30 hybrid algorithm runs. The re-
sults of our experiments are very similar for almost all instances from Solomon’s
dataset, so we provide only some examples in Table 1. The best results among
all the algorithms are in bold. Here we can conclude that on all problems from
Solomon’s dataset our hybrid approach shows a good performance in comparison
with separate ACO and TS runs.

Table 1. Performance tests of the hybrid approach in comparison to separate ACO
and TS algorithms

Instance
ACO Hybrid

TS
Min Avg Max Min Avg Max

C103 1983,92 2092,47 2158,93 828,06 844,84 893,86 904,00
C104 1618,40 1713,18 1780,16 825,54 874,79 951,52 878,97
C203 1749,11 1831,31 1911,70 591,17 648,53 697,13 623,41
C204 1527,66 1595,26 1653,51 594,60 659,12 740,39 702,39
R103 2230,23 2318,88 2390,62 1238,24 1263,68 1308,59 1277,47
R104 1900,23 1975,75 2035,35 1003,98 1028,00 1069,36 1024,17
R203 1726,29 1780,87 1838,50 901,73 949,52 998,20 926,93
R204 1481,46 1516,05 1550,86 755,36 802,40 839,78 802,68

RC103 2347,84 2470,44 2555,68 1301,06 1360,81 1400,26 1375,22
RC104 1967,23 2148,03 2226,91 1151,24 1199,94 1256,72 1188,27
RC203 1873,54 1873,54 2034,34 959,23 1014,95 1090,36 1026,28
RC204 1517,43 1626,50 1676,57 818,09 865,78 927,12 886,24

Hybrid Approach for Capacitated Vehicle Routing Problem 77

Table 2. Performance tests of the infeasible moves feature in TS

Instance Feasible Infeasible

C101 1609,62 828,94
C102 1939,26 861,77
C201 2026,22 632,05
C202 2079,49 677,12
R101 1972,98 1694,51
R102 2076,42 1499,84
R201 1839,54 1223,76
R202 1636,69 1090,26

RC101 2074,31 1680,83
RC102 2010,11 1511,16
RC201 1926,34 1323,87
RC202 1846,68 1146,75

Table 3. Results comparison for clustered Solomon instances

Instance ABCO
ACO-TS

Gap
Min Avg Max Time

C101 828,94 828,94 831,02 859,82 6,70 0
C102 828,94 828,94 831,61 869,73 6,65 0
C103 835,71 828,06 844,84 893,86 7,35 0,92
C104 885,06 825,54 874,79 951,52 9,12 6,72
C105 828,94 828,94 834,68 877,63 7,05 0
C106 828,94 828,94 832,05 882,77 7,34 0
C107 828,94 828,94 840,29 893,27 7,12 0
C108 831,73 828,94 835,76 869,22 8,42 0,34
C109 840,66 828,94 842,94 923,80 10,46 1,39
C201 591,56 591,56 624,77 682,39 10,09 0
C202 591,56 591,56 654,16 748,76 10,45 0
C203 593,21 591,17 648,53 697,13 11,46 0,34
C204 606,90 592,13 659,12 740,39 9,63 2,43
C205 588,88 588,88 647,58 706,69 11,29 0
C206 588,88 588,49 648,99 752,19 15,08 0,06
C207 590,59 588,28 649,92 708,58 12,26 0,39
C208 593,15 588,32 663,74 709,93 6,70 0,81

3.4 Infeasible Moves

Visiting infeasible solutions has been considered for many combinatorial opti-
mization problems. Cordeau et al. [2] used the moves violating time window
and load constraints for CVRPTW and obtained good quality results. In our
approach we allow only feasible solutions (with respect to time windows and
load constraints) to appear during the ACO stage. However, iterative nature of
solution construction procedure where routes are added one by one can lead to

78 I. Bychkov, M. Batsyn

Table 4. Results comparison for random Solomon instances

Instance ABCO
ACO-TS

Gap
Min Avg Max Time

R101 1643,18 1653,23 1679,98 1702,31 8,97 -0,61
R102 1476,11 1488,18 1519,51 1569,05 9,94 -0,82
R103 1245,86 1236,88 1263,68 1308,59 8,88 0,72
R104 1026,91 1003,98 1028,00 1069,36 11,09 2,23
R105 1361,39 1378,94 1404,88 1431,05 8,26 -1,29
R106 1264,50 1255,16 1294,08 1335,89 10,02 0,74
R107 1108,11 1088,68 1116,52 1144,19 11,23 1,75
R108 994,68 960,80 987,04 1037,09 10,86 3,41
R109 1168,91 1158,20 1191,54 1231,45 10,63 0,92
R110 1108,22 1095,43 1120,85 1153,86 10,31 1,15
R111 1080,84 1061,61 1100,18 1124,90 9,85 1,78
R112 992,22 965,87 1005,11 1052,81 8,90 2,66
R201 1197,09 1162,55 1205,22 1251,18 9,80 2,89
R202 1092,22 1065,88 1106,81 1153,03 9,22 2,41
R203 983,06 892,97 949,52 998,20 9,56 9,16
R204 845,30 755,36 802,40 839,78 9,65 10,64
R205 999,54 987,93 1027,36 1062,86 8,91 1,16
R206 955,94 911,40 954,97 989,51 9,22 4,66
R207 903,59 833,26 876,30 977,59 9,64 7,78
R208 769,96 726,71 770,10 804,71 10,06 5,62
R209 935,57 877,44 920,14 953,98 9,81 6,21
R210 988,34 933,52 978,29 1007,01 9,86 5,55
R211 867,95 766,48 813,46 856,551 10,78 11,69

using more vehicles than available. The proposed tabu search procedure allows
all kind of infeasible moves to be done (time windows, load, routes number). We
have performed some empirical tests to prove the effectiveness and importance
of this feature as a part of our algorithm. The performance of the TS procedure
has been tested using two scenarios - when infeasible moves prohibited and per-
mitted. In both cases TS starts with the solution where every single customer is
served with its own vehicle. This way we have time window and load constraints
satisfied at the cost of big number of vehicles. Tabu search procedure is allowed to
do all kind of moves to reach the first feasible solution and then infeasible moves
become prohibited in one of the scenarios. The experiment has been performed
on Solomon’s dataset with running time limited to 60 seconds for a single TS
run. The results of this experiment show that in each test case allowing infeasi-
ble moves leads to much better objective values than allowing only feasible ones.
Some examples are presented in Table 2. As a result of the experiment we can
report that allowing infeasible moves undoubtedly wins in comparison to only
feasible moves. The cost difference is huge for all the problems from Solomon’s
dataset.

Hybrid Approach for Capacitated Vehicle Routing Problem 79

Table 5. Results comparison for random clustered Solomon instances

Instance ABCO
ACO-TS

Gap
Min Avg Max Time

RC101 1637,40 1654,62 1688,88 1755,67 8,87 -1,05
RC102 1486,85 1494,56 1527,58 1595,39 8,79 -0,52
RC103 1299,38 1301,06 1360,81 1400,26 9,50 -0,13
RC104 1200,60 1151,24 1199,94 1256,72 10,01 4,11
RC105 1535,80 1539,39 1581,33 1630,93 9,15 -0,23
RC106 1403,07 1392,91 1433,93 1491,85 9,10 0,72
RC107 1230,32 1230,30 1283,76 1372,39 9,75 0,00
RC108 1165,17 1140,28 1177,21 1237,36 8,65 2,14
RC201 1315,57 1291,88 1344,68 1394,85 10,32 1,80
RC202 1169,72 1124,99 1172,53 1229,02 9,93 3,82
RC203 1010,74 946,69 1014,95 1090,36 11,37 6,34
RC204 890,28 818,09 865,78 927,121 9,47 8,11
RC205 1221,28 1185,30 1232,73 1297,56 11,02 2,95
RC206 1097,65 1082,57 1135,25 1189,61 10,75 1,37
RC207 1024,17 992,79 1049,12 1126,51 9,29 3,06
RC208 864,56 792,60 845,72 884,10 9,29 8,32

4 Computational Experiments

We have performed the computational experiments using well known Solomon
dataset with 100 customers. Our algorithm is run 30 times for every problem
instance and the best results are reported. All experiments are performed on
Inter Core i3 3.7 Ghz processor with 8 GB RAM. The algorithm has been pro-
grammed in C++ programming language under Windows 10 operating system.
The computational results for Solomon dataset are provided in Tables 3, 4 and
5. Each table contains instance name, objective value from [3], our algorithm
min, average and max objective value, average running time and the gap value
in percent (the difference between [3] and our result). For clustered problem
instances (see Table 3) our ACO-TS algorithm results are equal to the results
from [3] in 8 of 17 cases. For the rest of test instances we have found better
solutions with an improvement from 0,06 to 6,72%. Computations for random
Solomon instances are shown in Table 4. Here our algorithm has obtained worse
results in 3 of 23 cases with the difference from 0,61 to 1,29% . For the remain-
ing instances our improvement varies from 0,72 to 11,62%. The last test scope is
random clustered instances where 4 of 16 problems are solved with worse results
(from 0,13 to 1,05%) and for 12 instances the objective value is improved up to
8,32% (see Table 5).

80 I. Bychkov, M. Batsyn

5 Conclusion

In this paper we have presented a new hybrid heuristic approach for solving
the Capacitated Vehicle Routing Problem with Time Windows. Our algorithm
combines Ant Colony Optimization (ACO) approach and Tabu Search (TS) tech-
nique. A move neighborhood with possibility of creating new routes and visiting
infeasible areas has been considered to improve the search process. The idea of
sequential usage of ACO and TS parts gives major improvements comparing
to separate runs of these algorithms. Computational experiments show better
results on 41 of 56 considered test instances comparing to the recent results of
Jawarneh & Abdullah [3].

Acknowledgement. The research was funded by Russian Science Foundation
(RSF project No. 17-71-10107).

References

1. Braysy, O., Gendreau, M.: Tabu search heuristics for the vehicle routing problem
with time windows, SINTEF Applied Mathematics, Department of Optimisation,
Oslo, Norway, Internal Report STF42 A01022 (2001)

2. Cordeau, J.F., Laporte, G., Mercier, A.: A unified tabu search heuristic for vehicle
routing problems with time windows. Journal of the Operational Research Society
52, 928–936 (2001)

3. Jawarneh, S., Abdullah, S.: Sequential insertion heuristic with adaptive bee colony
optimisation algorithm for vehicle routing problem with time windows. Plos one 10,
1–23 (2015)

4. Koc, C., Bektas, T., Jabali, O., Laporte, G.: A hybrid evolutionary algorithm for
heterogeneous fleet vehicle routing problems with time windows. Computers &
Operations Research 64, 11–27 (2015)

5. Laporte, G.: The vehicle routing problem: an overview of exact and approximate
algorithms. European Journal of Operational Research 59(3), 345-358 (1992)

6. Lau, H., Lim, Y., Liu, Q.: Diversification of search neighbourhood via constraint-
based local search and its applications to VRPTW. In: Proceedings 3rd Interna-
tional Workshop on Integration of AI and OR Techniques (CP-AI-OR). pp. 1–15.
Kent, United Kingdom (2001)

7. Minocha, B., Tripathi, S.: Solving school bus routing problem using hybrid genetic
algorithm: a case study. Advances in Intelligent Systems and Computing 236, 93–
103 (2014)

8. Nai-Wen, L., Chang-Shi, L.: A hyrid tabu search for the vehicle routing prob-
lem with soft time windows. In: Yang G. (eds.) Proceedings of the 2012 Interna-
tional Conference on Communication, Electronics and Automation Engineering,
Advances in Intelligent Systems and Computing. vol. 181, pp. 507–512. Springer,
Heidelberg (2012)

9. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with
time window constraints. Operations Research 35(2), 254–265 (1987)

10. Subramanian, A., Penna, P., Uchoa, E., Ochi, L.: A hybrid algorithm for the fleet
size and mix vehicle routing problem. European Journal of Operational Research
221(2), 285–295 (2012)

Hybrid Approach for Capacitated Vehicle Routing Problem 81

11. Toth, P., Vigo, D. : The Vehicle Routing Problem. Society for Industrial and Ap-
plied Mathematics, Philadelphia, USA (2002)

12. Toth, P., Vigo, D.: Vehicle Routing: Problems, Methods, and Applications. Society
for Industrial and Applied Mathematics. Philadelpia, USA (2014)

