
Integrating Multiple Contexts and Ontologies in a
Pervasive Computing Framework1

Adrian K. Clear and Stephen Knox and Juan Ye and Lorcan Coyle and Simon Dobson and Paddy Nixon2

Abstract. There is a commonly accepted need for contexts and
ontologies to describe the vast amounts of data that are available to
pervasive computing applications. Existing contexts and ontologies
are either much generalised, very application specific, or inflexible.
An integrated approach is required in which new concepts can be
added and related to existing ones transparently. This paper describes
a novel approach to the design of a set of contexts and ontologies
for context-aware pervasive computing systems. It describes aQuery
Service, that lies between applications and contextual information,
which complemented by the contexts and ontologies, offers a more
powerful query answering service to application developers than is
currently available.

1 Introduction

Pervasive systems are interactive systems, whose behaviour must
adapt to the user’s changing tasks and environment using different
interface modalities and devices [8]. In order to be able to adapt to
its environment, the pervasive system’s applications and the environ-
mental sensors must have a common understanding of the contextual
information. For this purpose, contexts and ontologies are vital. We
view an ontology as an explicit modelling of the fundamental con-
cepts of a domain that may be shared and reused. A context is an
explicit model of the secondary concepts in a domain. It is more spe-
cialised than an ontology but can still be shared and reused.

To date, most ontologies for pervasive systems have been devel-
oped in a top-down manner in which the main focus is on application
semantics. This leads to ad-hoc models which are neither extensi-
ble nor support interoperability [12]. On the contrary, they should
be flexible in their design to support a wider range of applications
and environments. Moreover, the current approach to modelling con-
textual data is to give it a single representation in contexts and on-
tologies. However, it is evident that sensors acquiring conceptually
equivalent data provide different representations of such because of
their nature; issues such as accuracy and heterogeneity necessitates
that the data provided by these sensors are represented differently.
At a common level of abstraction these representations are concep-
tually equivalent. The need to incorporate such relationships into the
design of contexts and ontologies should be recognised and is thus
the primary focus of this paper. Dealing with this issue at design time
can be instrumental in the run-time inference of unknown facts from
known contextual data.

1 This work is partially sponsored by Science Foundation Ireland under grant
numbers 05/RFP/CMS0062 and 04/RP1/I544. Adrian Clear is funded by a
joint IBM/IRCSET EMBARK scholarship.

2 The authors are with the Systems Research Group, School of Computer
Science and Informatics, UCD Dublin IE (email adrian.clear@ucd.ie)

Contextual data can be viewed as being part of a spectrum where
data modelled by ontologies lie at one extreme, data modelled by
contexts lie somewhere in the middle, and data without an explicit
model lie at the other extreme. In an effort to clearly illustrate this
spectrum, we propose the concept of asemantic sphereof pervasive
system data (see figure 1). In the semantic sphere we define a set of
fundamental ontologies for pervasive systems. We call this set the
coreontology. The core ontology describes the principle concepts in
a pervasive computing environment –who, whereandwhen. More
precisely, these are: the entities that are in the environment (people,
sensors, etc.), the locations of interest, and the times of interest, re-
spectively. All remaining data are viewed as being somewhat less
general and are modelled usingapplication contexts(for example,
weather and music), or not modelled explicitly. Within the semantic
sphere, a class definition in a context or ontology can be viewed as
a hook. By creating an instance of one of these classes, contextual
information is effectively hooked onto the context or ontology. Our
contexts and ontologies are designed in such a way that semantically
equivalent contextual data can be found regardless of their syntax,
and coarser levels of abstraction can be inferred from finer ones.
Consequently, the scope of an information search is broadened us-
ing simple relations. In this paper we also present the Query Service
(QS) that has been developed so that high-level application queries
can be handled transparently, and results of the appropriate level of
abstraction and representation are returned to the application.

Our design approach delivers contexts and ontologies that are
well-defined and flexible. Sensor developers can hook contextual
data onto, or extend, an existing context or ontology. They can be eas-
ily adapted to different applications and environments. Once hooked,
the contextual data is put into a distributed store, and applications can
access it independently of the sensors. The novelty of this approach
is the organisation of the ontologies. This, along with a powerful QS,
will be very useful for the building and supporting of a large number
of context-aware applications.

Our work is built within a framework called Construct, a fully-
distributed and decentralised context aggregation infrastructure for
pervasive computing environments [15]. Construct consists of a num-
ber of nodes that aggregate contextual data. Each node has its own
data-store, and sensors register themselves with a node and inject
data into it. Construct nodes gossip [6] amongst themselves to main-
tain a global model of the system as a whole. All information is
represented using RDF as the underlying data model. Applications
therefore see a soup of contextual data derived from sensors and can
access it through the QS. High-level queries are passed to the QS
using RDQL (RDF Data Query Language) [14]. The low level infer-
ring is handled transparently and application-interpretable results are
returned. A model of this process can be seen in figure 1.

Figure 1. Contexts and Ontologies within Construct

The rest of this paper is organised as follows: Section 2 briefly
illustrates the related work in the area along with the semantic web
technologies that our approach depends on; in Section 3 we introduce
the ontologies that are defined for the pervasive computing domain
and describe some specific application contexts; Section 4 describes
how the data represented in these ontologies and contexts are con-
verted into information suitable for consumption by pervasive ap-
plications. This process is demonstrated with an example location-
based application in Section 5. Finally, in Section 6 we conclude the
paper and give some directions for future work.

2 Related Work

This paper addresses the issues of context modelling and context ac-
cessibility in context-aware pervasive computing systems. The area
has attracted attention recently and some seminal approaches that fo-
cus on the same issues have emerged: Firstly, the work carried out
by Heer et al on the liquid extension to the Context Fabric [10, 11]
consists of a query service which supports distributed, continuous
query processing for context data. They introduce the notion of an
infospace which is a logical storage unit that may be centralised or
decentralised. Once context is sensed, it is added to the appropriate
infospace. Context is stored in infospaces using tuples consisting of
types and values. The value can be a basic value or another infos-
pace allowing queries to be structured as a concatenation of different
types. Thus, to resolve a query involves the traversal of a string of
tuples. There are drawbacks to this, however. The user is required
to know the structure of the infospaces and the types of their tuples
in order to make a query. Also, there is no mention of a common
semantics for types that tuples may contain making interoperability
difficult.

Another related concept is that of the Enactor extension to the
Context Toolkit (CTK) [13, 9]. The CTK introduces Widget com-
ponents which are structures that encapsulate a particular type of
context acquiring sensor, for example, a location sensor. Each lo-
cation sensor will have the same interface, be they an internal RF
location system or GPS. This, however, allows only one level of ab-
straction per interface. The Enactor, which encapsulates some ap-
plication logic, obviates the application developer from having to
subscribe to each widget manually. It consists of a number of Ref-

erences which “support the declarative specification of interest in a
set of CTK components through a general query package”. Refer-
ences process queries to discoverers and automatically subscribe to
any components that match. Like our approach, the low level queries
are handled transparently.

Khedr et al [12] introduces context-level agreements into a mul-
tiagent pervasive computing environment. They allow user agents to
specify context that is relevant to them so that the context manage-
ment agent can subscribe to the appropriate context providing agents
in order to have the appropriate context delivered.

All three systems support a high-level query language that decom-
poses requests into satisfiable responses and then returns a response
to an application’s request without the application needing to know
the details of how the infrastructure is satisfying the response. How-
ever, there is no effort to structure the semantics of the context data
to provide a more powerful query service.

Similar to the work from Chen et al on SOUPA (Standard Ontol-
ogy for Ubiquitous and Pervasive Applications) [4], we use the Web
Ontology Language (OWL) [3] to model our ontologies. The distinc-
tion that we make between the application contexts and the ontolo-
gies is closely based on the divide that exists in SOUPA between
SOUPA Core and SOUPA Extension. Although the models that they
define are quite extensive, we take the approach of organising our
ontologies more effectively while keeping them simple. We also use
Jena [1] which is a semantic web framework for java.

3 Contexts and Ontologies for Pervasive
Computing

Numerous ad hoc ontologies have been created for pervasive com-
puting systems to date. They have been designed with the primary
goal of providing a semantics for contextual data so that a common
understanding can be given to data from heterogeneous sensors along
with entities in the pervasive environment. The goal of this work is
to not only develop such a semantics for contextual data, but also to
develop our ontologies in a way in which they can be efficiently rea-
soned about. The hypothesis is that different applications may require
the same contextual data, but in different representations or levels of
abstraction. By adding a structure to our ontologies, using relations
between their contents, this reasoning over data can be done at a
lower level and will thus be transparent to the application developer.

The three core ontologies ofwhere, whenandwho are described
in this section along with their general properties and relationships.
These ontologies form a base model that is general enough to be
used in a range of pervasive computing applications. An overview
of the application contexts along with a description of the relations
used in the contexts and ontologies to achieve equality and levels of
abstraction are also given.

3.1 The Where Ontology

Thewhereontology describes the concept of location in a pervasive
computing environment. A location may be defined as a point (Co-
ordinate) or as a region (Space). Figure 2 shows the hierarchy of
location types that are possible. Locations may be either physical,
e.g. a set of GPS coordinates; or symbolic, e.g. “RivadelGarda”.

Locations may be related to each other in ways that declare equiva-
lence, e.g.RivadelGarda=GPS (45.88,10.82) and contain-
ment, e.g.RoomA007 isContainedIn CS-Building .

Section 5 gives an example of how these mappings are used to
transform location data from multiple contexts into a single result at

Figure 2. ThewhereOntology

the correct level of abstraction in response to a query from an appli-
cation.

3.2 The When Ontology

The whenontology defines the concept of time in pervasive com-
puting environment. Figure 3 illustrates this hierarchy. Time may
be declared as an instant (InstantTime) or as a range of time (e.g.
TimeRegion). Time may be declared as being either symbolic, e.g.
Yesterday ; or physical, e.g.00:28, Friday 7th April
2006 . Again, there is an equivalence relationship.TimeRegionex-
presses a period of time in a tuple of<from, to> . We define three
relationships for time:equals; before; andafter.

Figure 3. ThewhenOntology

3.3 The Who Ontology

Thewhoontology is different from thewhenandwhereontologies. It
describes an agent that inhabits a pervasive computing environment,
e.g. a human user, intelligent agent or sensor. Thewhoontology has
only one hook: anEntity. EveryEntity in the system will be attached
to this hook and will be uniquely identified. EachEntity must con-
tain one or moreIdentityclasses which are represented as attributes
with values. Any piece of contextual data that identifies an agent de-
clares itself to be representative of this token, e.g. in a tag-based lo-
cation application the tag ID is mapped to anIdentity attribute of
the corresponding userEntity. Instances of thewhoontology can be
mapped to further, less general, contextual information such as a per-
sonal profile. Thus, by traversing the equivalence relations between
Identityclasses, any representation can gain access to contextual in-
formation regarding the agent in question.

In Section 5 we demonstrate how three representations (Identities)
of a user from three different sensors are mapped together allowing
an application to benefit from access to each of the contexts.

3.4 Application Contexts

Besides these core ontologies, there exist many other types of data
that are reusable in a pervasive environment. However, they are too

specific to be modelled in an ontology. We have defined application
contexts for data from a number of diverse applications that we are
working on. These include weather data, flight data and music data.
These contexts are stored in a catalogue of data models and are avail-
able as hooks for application developers who wish to access the data
of that type that are in the data store.

3.5 Transitivity and Equivalence

Contextual data can be modelled using set-theory. Referring to our
core ontologies and application contexts, two relations in particu-
lar are critical to their structure; transitivity and equivalence. Conse-
quently, there exists the notion of transitive and equivalence relations
on elements of sets.

In mathematics, a binary relationR over a setX is transitive if it
holds for alla, b andc in X, that if a is related tob andb is related to
c, thena is related toc. Transitive relations strengthen the reasoning
capabilities and are invaluable for certain ontology structures. For
example, thewhereontology is naturally modelled using transitive
relations between different levels of abstraction of contextual data.
Rooms are contained in floors which are contained in buildings, so
that a result for an application query for a high level of abstraction
such as “What building...” can be inferred from lower level represen-
tations of the same content.

The equivalence relation is a little simpler. An equivalence rela-
tion on a setX is a binary relation onX that is reflexive, symmetric,
and transitive and it is used to group objects that are similar in some
sense. Taking thewhereontology as an example, symbolic names
for locations are equivalent to their corresponding physical represen-
tations. Furthermore, in thewho ontology, theIdentity instances of
an Entity are equivalent representations of the Entity.

To demonstrate the usefulness of these relations alone, a general
query for a building name can be derived from〈x, y, z〉 coordinates
sensed by a tag-based location system by inferring the physical loca-
tion that contains the coordinate (at a building level of abstraction)
and finding the equivalent symbolic name.

4 Query Service

The Query Service (QS) is a layer that sits between the application
layer and the data-store. It provides an interface to the application
to make high-level queries on the store, and returns the results to
the application in the correct level of abstraction. In order for sensor
developers to take advantage of the QS functionality, they can make
use of the existing ontologies and contexts so that their contextual
data can be represented with the appropriate semantics and relations
between levels of abstraction. The ontologies and contexts mentioned
in the previous section make such a tool possible.

The QS consists of three main components; the Query Handler,
the Query Executer and the Query Service Reasoner:

The Query Handler is the query interface that the QS provides
to the applications of the system. Any application can use the QS
by sending a high-level query to the Query Handler. When an ap-
plication makes a query, the Query Handler must first determine the
knownandunknownfacts of the query. The unknown facts are those
that the application is requesting and the known facts are those that
the unknown facts are requested in relation to. For example, take the
query “What room is Bob in now?”. In this situation, the unknown
fact is the room and the known facts are Bob (the subject) and Tues-
day, 11th April, 10:03am (the time that the query is made at). The
next step is to find the different representations of the known and

unknown facts, and query for each representation of the unknown’s
using the known ones as filters on the results. The Query Executer is
handed all of the derived queries and the results are returned to the
QS Reasoner.

The Query Executer The purpose of the Query Executer is to
execute all of the low-level queries that are passed to it from the
Query Handler. The Executer queries the data-store and passes the
results on to the Query Service Reasoner so that it can then infer
further information that the application requires. Virtual sensors may
be used to derive properties that are not explicit in the contexts and
ontologies. For example, ahasLocationproperty can be derived from
a higher level notion of a sighting. A sighting might introduce three
predicate triples to the data-store; one stating the person, one stating
the time, and another stating the location.

The Query Service ReasonerThe basic results returned by the
Query Executer may not be of the level of abstraction required by
the application. The job of the Reasoner is to reason about the results
so that, if possible, they can be moulded into the representation re-
quired by the application. Currently, only bottom-up inferencing is
supported as top-down inferencing would produce ambiguous or su-
perfluous results (e.g. a building reasoning about what is contained
in it could return numerous rooms). Finer levels of abstraction can
be generalized to coarser ones using the relations from Section 3.5.
From the query, the Reasoner knows the type, level of abstraction
and representation that it must match. Using the ontologies and con-
texts as a reference, this match can be inferred from different repre-
sentations and finer levels of abstraction. In the above example, the
tag-based location system may return a coordinate which, using the
whereontology as a reference, can infer that the coordinates are in
a particular room which, in turn, is in a building as these physical
spaces are defined by a set of coordinates.

Currently, a simple custom-inferencer has been implemented to
reason over equivalence and transitive relations in order to seek out
the required levels of abstraction. Referring to thewhereontology,
one of the transitive relations isisContainedIn. Equivalence relations
can be defined over multiple types also. For example, a symbolic
name of a location might be equal to a physical representation of a
location. They are semantically equal but they are syntactically dif-
ferent. Consequently, a query returned for one representation can be
converted to another to be of use to the application. Using these rela-
tions, the Reasoner references the appropriate ontology to locate the
level of abstraction and representation that the application is looking
for. If the values returned by the Query Handler are not syntacti-
cally correct the Reasoner searches for an equivalence relationship
between the syntactic form that is required and the form that is re-
turned by the Query Handler. If one exists, the Reasoner then ab-
stracts the value to the correct level of abstraction using the transitiv-
ity relation. Once the level of abstraction is met, the representation
can be mapped to the required syntactic form using the equivalence
relation.

5 Application

To demonstrate the exchange of context data and ontology data in a
pervasive system, we introduce a location-tracking application that
queries the data-store for the location of a user. It has a semantic
map defining the locations in its realm, and a list of the users of the
system. It is capable of making queries for the location of a user at the
level of abstraction of a room, floor or building. We use the following
sensors to provide location data at different levels of abstraction.

• Ubisense [2] sensors generate coordinate location data for each
tagged user with a peak level of abstraction of 30cm in 3D space.

• Bluetooth location sensors which can track location to approxi-
mately ten metres. This provides a room-level abstraction to the
data-store.

• Activity sensors determine whether an individual is located at a
computer by checking whether they are logged in and active at the
terminal. This sensor also provides a room-level abstraction.

Each of these sensors insert data into the data-store which have
the properties:hasLocation, hasTimeandhasIdentity. The Ubisense
sensor generates raw data that looks as follows: (tagID=tag184,
time=30/03/2006 13:22:13, x=13.28, y=11.82,
z=0.35). These data are hooked to the corewho, when, andwhere
ontologies as follows:tagID is hooked onto theIdentity class of
the who ontology; time is hooked onto theInstantTimeclass of
the whenontology; andx=13.28, y=11.82, z=0.35are collectively
hooked onto theCoordinateclass of thewhereontology.

When an application asks a question relating to a person’s loca-
tion, e.g. “What room is Bob in now?”, the Query Handler takes the
known and unknown terms and generates a suitable query in RDQL:

SELECT ? l o c a t i o n WHERE
? person alsoKnownAs Bob
? t ime a f t e r (cu r ren tT ime − 5)
?x hasTime ? t ime
?x h a s I d e n t i t y ? person
?x hasLocat ion ? l o c a t i o n

The Query Executer executes this broad query. At least three
results will be found (one for each active sensor). The data
that came from the Ubisense sensor might come out in the fol-
lowing format: (Bob, 30/03/2006 13:22:13, (13.28,
11.82, 0.35) . These results are passed to the Query Service
Reasoner.

The required level of abstraction for the location data response is
at the room level. In this example, two different levels of abstraction
are returned; data at the room granularity (the data that originated
at the activity sensor and Bluetooth sensor); and at the coordinate
level (from the Ubisense sensor). The former results are at the correct
level, and can be returned unaltered. However, the coordinate data
must be raised from the coordinate level to the room level.

Figure 4 illustrates a series of steps that the Query Service Rea-
soner goes through to process this inconsistent data in order to return
the correct level of abstraction to the application. The Query Ser-
vice Reasoner starts at the level of abstraction of the available data;
in this case coordinate data, and follows the transitiveisContainedIn
relation, defined in thewhereontology, to discover whether it is con-
tained within a definedspace. The equalsrelation is also used to
move between physical and symbolic locations. These relationships
are followed until the resulting location maps to a level of abstraction
that matches the original query (or it fails if there is no valid mapping
— i.e. the coordinate does not match a known room). In this example,
the Query Service Reasoner returns the room called “RoomA007”.
This is done for all available data and the results are returned to the
application that made the original query.

6 Conclusions and Future Work

This paper describes a novel design approach to a set of core per-
vasive computing ontologies describing the concepts ofwho, where
andwhen. These ontologies are used to ensure interoperability be-
tween data from different application contexts. Data is accessed us-

Figure 4. The process by which location data is abstracted to a higher level.

ing a specialised query service that searches for and translates ap-
propriate data to the required level of abstraction for the query. We
demonstrate this interoperability with an application that queries for
location data. This data has been collected from a variety of sensors
at different levels of abstraction. By using the tools in this paper the
application developer does not need to be concerned with translating
this data.

We describe the core ontologies. However, developers may ex-
tend from the core by implementing their own contextual models
and adding them to the semantic sphere. When creating new sensors,
the developer should use the preexisting contexts and ontologies but
this is not required. If they enter data without an explicit model, it is
available to application queries but only if they query directly against
the data.

When a query is made, multiple sensors may have sensed a con-
text which matches the query constraints. Each of these results will
be returned to the application level. It is up to the application devel-
oper to process this data. One characteristic of pervasive computing
environments is that sensors cannot be relied upon to always give
accurate readings. Work is being done to associate a quotient of ac-
curacy with each piece of contextual data provided by a sensor [7].
This will be available to applications and will improve the overall
accuracy of an application by allowing sensor data to be fused based
on the individual accuracies of the available data. We will annotate
data with notions of trust [5] in the same way.

As part of our ongoing development, we intend to explore seman-
tic translation (e.g.adjacentin thewhereontology) with richer rela-
tionships in basic structures. Such semantic translation will help to
support more reasoning capabilities. We intend to further develop our
location-tracking algorithm to query against other types of data. We
also intend to develop another application for making generic queries
for pieces of data in the data-store that will assist in self-diagnosis,
e.g. “tell me everything you know aboutx”, wherex is a single piece
of data.

Additionally, as a consequence of Construct’s use of gossiping to
spread information between its distributed nodes, latency is a con-
cern which must be more fully investigated. Some safeguards have
to be put in place so that the occurrence of redundant data is min-
imised. Due to our use of backward chaining in our virtual sensor
for inferencing, every query is independently dealt with by the QS.
The disadvantages to this are latency and the computational cost of
the same query being inferred multiple times for different applica-
tions. We will therefore be investigating the use of forward chaining,
where all inferencing is done on all data when it is inserted into the

data-store. In this way, the result to every satisfiable query is explicit
in the data-store. This has its own problems, but would improve la-
tency, which is paramount in pervasive systems. Truth maintenance
is also a factor in pervasive systems, whereby information is inferred
from lower level data. If this data is deleted or changes, it is important
that this inference is still valid.

REFERENCES
[1] Jena semantic web framework. http://jena.sourceforge.net/.
[2] Ubisense. http://www.ubisense.net/.
[3] Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Harrocks, Deb-

orah L. McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein,
‘Owl web ontology language guide’, (2004).

[4] Harry Chen, Filip Perich, Tim Finin, and Anupam Joshi, ‘SOUPA:
Standard Ontology for Ubiquitous and Pervasive Applications’, inIn-
ternational Conference on Mobile and Ubiquitous Systems: Networking
and Services, Boston, MA, (August 2004).

[5] Michael Collins, Simon Dobson, and Paddy Nixon, ‘Security issues
with pervasive computing frameworks’, inWorkshop on Privacy, Trust
and Identity Issues for Ambient Intelligence at Pervasive 2006, pp. 1–7,
(2006).

[6] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott
Shenker, Howard Sturgis, Dan Swinehart, and Doug Terry, ‘Epidemic
algorithms for replicated database maintenance’,SIGOPS Oper. Syst.
Rev., 22(1), 8–32, (January 1988).

[7] Simon Dobson, Lorcan Coyle, and Paddy Nixon, ‘Hybridising events
and knowledge as a basis for building autonomic systems’,Journal of
Trusted and Autonomic Computing, (2006). To Appear.

[8] Simon Dobson and Paddy Nixon, ‘More principled design of pervasive
computing systems.’, inEHCI/DS-VIS, eds., Ŕemi Bastide, Philippe A.
Palanque, and Jörg Roth, volume 3425 ofLecture Notes in Computer
Science, pp. 292–305. Springer, (2004).

[9] A. K. Dey et al, ‘A conceptual framework and a toolkit for supporting
the rapid prototyping of context-aware applications’, inHuman Com-
puter Interaction, pp. 97–166, (2001).

[10] J. Heer, A. Newberger, C. Beckmann, and J. Hong, ‘liquid: Context-
aware distributed queries’, inFifth International Conference on Ubiq-
uitous Computing, pp. 140–148, (2003).

[11] Jason I. Hong and James A. Landay, ‘An infrastructure approach
to context-aware computing’, inHuman-Computer Interaction, vol-
ume 16, (2001).

[12] M. Khedr and A. Karmouch, ‘Negotiating context information in con-
text aware systems’,IEEE Intelligent Systems magazine, 19(6), 21–29,
(November/December 2004).

[13] A. Newberger and A. Dey, ‘Designer Support for Context Monitoring
and Control’, (2003).

[14] Andy Seaborne. RDQL - a query language for RDF. W3C member
submission, Hewlett Packard, January 2004.

[15] Graeme Stevenson, Lorcan Coyle, Steve Neely, Simon Dobson, and
Paddy Nixon, ‘Construct — a decentralised context infrastructure for
ubiquitous computing environments’, inIT&T Annual Conference,
Cork Institute of Technology, Ireland, (2005).

