
On the Complexity of Query Answering

under Access Limitations:

A Computational Formalism

Andrea Caĺı1,3 and Mart́ın Ugarte2

1Dept of Comp. Sci. and Inf. Syst.
Birkbeck, Univ. of London, UK

2Comp. and Decision Eng. Dept.
Université Libre de Bruxelles

3Oxford-Man Inst. of Quantitative Finance
University of Oxford, UK

andrea@dcs.bbk.ac.uk, mugartec@ulb.ac.be

Abstract. The Deep Web is the large corpus of data accessible on the
Web through forms and presented in dynamically-generated pages, but
not indexable as static pages, and therefore invisible to search engines.
Deep Web data are usually modelled as relations with so-called access
limitations, that is, they can be queried only by selecting certain at-
tributes. In this paper we give some fundamental complexity results on
the problem of processing conjunctive (select-project-join) queries on re-
lational data with access limitations.

1 Introduction

The term Deep Web (also called Hidden Web) [4, 1] refers to the data content
that is created dynamically as the result of a specific search on the web. For
example, when we query a web site containing information on films shown at
film teathers, the generated output consists of one or more pages containing the
result of a query posed on an underlying database; these pages cannot be indexed
by search engines. When we query the above hypothetical web site through a
form, we are forced to fill in some fields of the form, for instance the City and
Title fields; the result is then displayed normally as a table. A Deep Web source
can be naturally modelled as a relational table (or a set of relational tables)
that can be queried only according to so-called access patterns, each of which
enforces the selection on some of the attributes (which corresponds to filling the
input fields in the form with values), which are called input attributes. Relational
tables accessible through access patterns are said to have access limitations.

Processing structured queries over Deep Web sources is the key problem
in the integration of such sources. Interestingly, when Deep Web sources are
modelled as relations with access limitations, answering a simple conjunctive
(select-project-join) query on such sources requires, in the worst case, the evalu-
ation of a recursive Datalog query plan. In such plans, values obtained as output
from a source are used as input for other sources; the compatibility of values is
established by assigning to each attribute of a relation a so-called abstract do-
main, which expresses the type of value (e.g. name, address etc.) as opposed to
the concrete domain (e.g. string, integer etc.).



In this paper we consider the problem of query answering under access lim-
itations in a general way. We believe that the fundamental problem of query
answering, even in the case of conjunctive queries (which are, so to say, very
vanilla database queries in terms of expressive power), has been largely over-
looked. In particular, in the so-called restricted case, where the answer has to
be computed by querying the sources according to the limitations and without
any prior knowledge of the underlying data, it is not yet clear how to formally
model the fact that part of the input is partially hidden to the algorithm that
is to compute the answers, as the data can be accessed only according to the
access limitations. Therefore we offer the following contributions.

– We provide a formalisation of the query answering problem where the prob-
lem has a hidden input (the data) and an open input (the query and the
schema with access limitations).

– We propose a computational model for the query answering problem consist-
ing of a Turing machine which queries an oracle machine (a transducer in
this case) that, given the information for an access to the hidden relational
data, writes the corresponding output.

– We revisit some fundamental results, and propose some new ones, on con-
junctive query answering in the new framework, so as to set the basis for
future investigation, in particular regarding more expressive query languages.

2 Modelling Query Answering

We assume the reader is familiar with the notions of relational schema and
instance, conjunctive query and Datalog program. We consider relational
schemata with access limitations, where the limitations consist of annotations
on predicates (or columns, or attributes) that express whether each argu-
ment/attribute/column is input (needs to be selected) or output ; for instance,
riio, of arity 3, has the first two attributes as input attributes, and the third
as output — in order to query r, two input values are to be provided as selec-
tion values on the first two attributes. Suppose the schema of r is r(A,A,B),
where each attribute name corresponds to a so-called abstract domain, associ-
ated with a real-world domain (such as car registration number, person name,
phone number etc.) that is more abstract than the underlying concrete domain
(such as string, integer, date etc.). In order to access r (or more precisely its
instance within a database instance D) one needs to provide a pair 〈a1, a2〉 of
constants of the abstract domain DA of A, that is {a1, a2} ⊆ DA. The result of
the access/query consists of all facts r(a1, a2, b) contained in r(D), where r(D)
is the instance of r in the database D.

In the presence of access limitations on the sources, queries cannot be usually
evaluated as in the traditional case. Given a conjunctive query q, a schema with
access limitations (implicit), a database D and a set I of initial constants, the
answers to q, denoted ans(q, I,D), are obtained starting from the constants in I

and extracting all possible tuples (by using the constants as input in all possible
ways); with the newly obtained constants again all possible tuples are extracted,
and so on, until no new tuple is extracted – see e.g. [1]. The above procedure is
naturally encoded in a Datalog program [4, 1] that encodes the fact that suitable



inputs are to be fed to the sources with limitations. However, with the Datalog
encoding at hand, in principle we are not sure whether a better strategy is pos-
sible. We argue that we cannot consider the query answering problem from the
computational point of view without going beyond the aforementioned Datalog
encoding. We address the above issues by providing a formal framework for the
problem of query answering under access limitations.

We start by considering a Turing machine as our obvious computational
tool. In order to model the relations with access limitations we use a special
type of oracle Turing machine (OTM) as follows: (1) the OTM, apart from the
standard tape, has an oracle tape; (2) to access a source, the OTM writes the
input (the source relation name R plus n constants, where n is the number of
input attributes or R), enters in a special state qA (ask state); then the oracle
writes the output on the oracle tape and the OTM goes into state qR (response
state). Notice that the oracle in this case does not solve a problem of a certain
complexity class in order to improve the computational power of the main OTM;
instead, the oracle serves to hide part of the input (the database D) from the
main computation that is carried out by the main OTM. We need in this case to
split the input of the problem into two parts: an open input and a secret input.
The open input is the standard input to the OTM, which goes on the tape; the
hidden input instead is accessible to the oracle but not to the OTM.

Considering the main OTM M as an acceptor, we can define complexity
classes of the type C[rl] (where rl stands for “Relational with Limitations”),
where C[rl] is the class of languages accepted with complexity C by an OTM
having an oracle that provides access to relational sources with access limitations
as above described.

Notice that the problem solved by the oracle is, in the absence of additional
data structures, linear in the size of the database D. However, replacing the
oracle with an arbitrary linear time transducer would destroy the purpose of the
oracle as it is. In such a case, even in the presence of secret input (as we are
in this context), the oracle could simply return the whole D at the first access,
thus making the hidden input de facto open instead.

The availability of a hidden input and an OTM opens novel scenarios. For
instance, we can formalise the problem of guessing a secret number between 0
and 2n−1. Consider a schema constituted by a single n-ary relational predicate
r with all input attributes, and a database D as secret input, constituted of
a single tuple r(c0, . . . , cn−1) where the ci are either 0 or 1. Now consider the
set I = {0, 1} of initial constants as well as the Boolean CQ q defined as q()←
r(X0, . . . , Xn−1). ObviouslyD represents a number between 0 and 2n−1 in binary
notation, and the query q is true, but the only way the OTM is able to compute
the answer to q is by accessing r with the right number (in binary, as a sequence
of values in I, that is 0 or 1). It turns out that guessing the number can be
done in polynomial time with a non-deterministic OTM, but that instead a
deterministic OTM will take exponential time in the worst case (assuming the
schema is not fixed). This suggests that, under a rl oracle and hidden input,
there is a problem that can be decided in non-deterministic polynomial time but
not in deterministic polynomial time, that is P[rl] 6= NP[rl]. We argue that
this observation shows clearly that there is a fundamental difference between
studying access limitations under traditional Turing machines and OTMs, due



case no. query database schema det. upper non-det. upper

#1 atomic variable variable EXP[rl] NP[rl]

#2 CQ variable variable EXP[rl] NP[rl]

#3 atomic variable fixed P[rl] ♠

#4 atomic fixed variable linear[rl] ♠

Fig. 1. Query answering: upper bounds. Uninteresting cases are marked with ♠.

to the necessity of dealing with the hidden input. In fact, when there is no hidden
input the problem of checking whether a relation is non-empty is trivial; on the
contrary, if there is a hidden input, the example above shows that one needs at
least deterministic exponential time.

3 Query Answering

In this section we revisit some results [3, 2], and present novel ones, on Boolean
CQ answering under access limitations, using our new formalism. Due to space
limitations we summarise our results in Figure 1. We assume the database D

to be the only secret input in all cases. We show selected upper bounds for
deterministic and non-deterministic OTMs.

Notice that (cases #1 and #2) we cannot do better than non-deterministic
polynomial time or deterministic exponential time when both the database D

and the schema (in particular, the maximum arity W of predicates) are variable
inputs; this is a consequence of our observations at the end of Section 2 Such
complexity absorbs the inherent intractability of CQ evaluation. Differently, in
cases #3 and #4, the fixed D or W cause the number of accesses to the oracle
to be less than exponential, hence we get lower complexity bounds.

Given that the relationship between complexity classes changes in the pres-
ence of an oracle lower bounds are not at all obvious. Beyond this taster paper,
we plan to further investigate fundamental problems of query answering in this
setting, considering complexity classes of the kind C[rl] based on our OTM
which, we argue, is the most suitable tool to investigate this topic.

Acknowledgments. Andrea Caĺı acknowledges partial support by the EP-
SRC project “Logic-based Integration and Querying of Unindexed Data”
(EP/E010865/1)” as well as from the Birkbeck BEI School Grant “Exposing
the Deep Web in the Linked Data Cloud”.

References

1. Andrea Cal̀ı and Davide Martinenghi. Querying data under access limitations. In
Proc. of ICDE, pages 50–59, 2008.

2. Andrea Caĺı, Davide Martinenghi, Igor Razgon, and Mart́ın Ugarte. Querying the
deep web: Back to the foundations. In Proc. of AMW, 2017.

3. Andrea Caĺı and Igor Razgon. Complexity of conjunctive query answering under
access limitations (preliminary report). In Proc. of SEBD, pages 256–263, 2014.

4. Chen Li and Edward Chang. Answering queries with useful bindings. ACM Trans-

actions on Database Systems, 26(3):313–343, 2001.


