
On the tractability of certain answers for SQL
nulls in relational algebra with inequalities

Etienne Toussaint

School of Informatics, University of Edinburgh

Abstract. Missing values in theoretical models of incomplete database
are often represented with marked nulls, while in SQL databases missing
values are all denoted by the same syntactic NULL object. Even practi-
cal algorithm to approximate certain answers (answers which are true
regardless of how incomplete information is interpreted) are often de-
veloped in the model with marked nulls. However computing certain
answers for marked nulls is co-NP complete even for the most simple
queries when inequalities are allowed. In this short paper we study the
tractability of certain answers for SQL nulls in a fragment of relational
algebra where selection with inequalities is permitted. We define the frag-
ment and present an algorithm to compute certain answers. We also show
that if we add even small features to the fragment, computing certain
answers becomes intractable. This study emphasises the necessity of a
specific certain answers approximation scheme for SQL nulls and offers
ideas to design it.

1 Introduction

The standard way of answering queries on incomplete databases is to compute
certain answers: those that do not depend on the interpretation of unknown data.
However, evaluating certain answers for core relational algebra is co-NP com-
plete in data complexity [9]. As a consequence the community has developed
sound tractable approximation schemes (which return a subset of the certain
answers). Most of those schemes have been produced with the marked nulls
model of incompleteness [3,7], and it is well known that even the simplest query
with inequalities is intractable for marked nulls [1]. However nulls used in SQL
databases are different. In this paper we study a fragment of relational algebra
with inequalities for which computing certain answers for SQL nulls is tractable.
This demonstrates the complexity gap between those two models of incomplete-
ness and therefore emphasizes the need of a specific approximation scheme for
SQL nulls.

We consider incomplete databases with nulls interpreted as missing informa-
tion [5]. Below we recall definitions that are standard in the literature. Databases
are populated by two types of elements: constants coming from countably in-
finite set denoted by Const, and the syntactic object NULL. The occurrences of
NULL in an SQL database are typically interpreted as non-repeating elements of
a set Null. That is, an SQL database can be seen as a Codd database where

each occurrence of NULL is replaced by a fresh distinct marked null [4]. Therefore
we denote by Null(D) = {⊥1 . . .⊥n} the set of distinct marked nulls in the
database D.

A valuation v on a database D is a map v : Null(D) → Const that assigns
constant values to nulls occurring in the database. By v(D) we denote the result
of replacing each ⊥i with v(⊥i) in D. A relational query Q of arity k takes a
complete database D and returns a bag of k-tuples over Const(D). If such a
query Q is asked on an incomplete database D, to answer it we compute for
each t ∈ (Const∪Null(D))k the bag of certain answers denoted �(Q,D) which
verify :

#(t,�(Q,D)) = min
v a valuation

#(v(t), Q(v(D))).

Where

#(t, R) =

{
n if t ∈n R
0 if t /∈ R

and we use t ∈n R to say that t has a multiplicity n in the bag R [2]. If the
multiplicity of a tuple in �(Q,D) is equal to 0, this tuple does not belong to the
certain answers.

In order to add boolean queries to relational algebra we add the operator
π∅ such that for any complete database D and any query Q, π∅(Q)(D) = ∅ if
Q(D) = ∅ and π∅(Q)(D) = {()} otherwise.

2 Relational algebra fragment with efficient evaluation

Our goal is to find a fragment for which we can build an efficient algorithm
to compute all certain answers. As a motivation we take inspiration from the
hierarchical queries from probabilistic databases [8] to define the restricted hier-
archical relational algebra defined below. We start with two subclasses of unions
of CQs with inequalities.

Q1 :=Q1 ∩Q1 | Q1 ∪Q1 | σθ(Q1) | πα(Q1) | R
Q2 :=Q2 ∪Q2 | σθ(Q2) | πα(Q2) | R

Note that the only difference between the two classes is that Q1 allows intersec-
tion while Q2 does not. We denote by Q1 resp. Q2 the set of query induced by
the grammar Q1 resp. Q2. Based on them we define the class RAH :

Q0 := Q0 ∪Q0 | Q1 \Q2 | σθ(Q0) | πα(Q0) | π∅(Q0) | R

A relational algebra query is called non-repeating if every relation symbol oc-
curs at most once [8]. We denoteRAH,NR = {Q | Q ∈ RAH∧Q is non-repeating}
the fragment of restricted hierarchical relational algebra where queries are non-
repeating.

Our main result is :

Theorem 1. For every query Q ∈ RAH,NR and every database D computing
�(Q,D) is tractable.

We now outline the proof of Theorem 1. As the restricted hierarchical frag-
ment of relational algebra imposes that every binary operation in selection con-
ditions is between attributes of the same relation or constants, then for each
query in the fragment we can build an equivalent query where selection occurs
only on relation symbols.

Lemma 1 For every Q ∈ RAH there exists Q′ ∈ RAH such that |Q′| = O(|Q|)
and for every complete database D, �(Q,D) = �(Q′, D) and every selection
operator of Q′ occurs on a relation symbol.

Now we show that for Q1 ∈ Q1 computing �(Q1, D) is tractable. One starts
by applying the lemma 1 to push every selection operator. Its queries are now
given by : Q1 := Q1 ∩Q1 | Q1 ∪Q1 | σθ(R) | πα(Q1) | R. Then computation is
done inductively by the following rules :

#(t,�(Q ∩Q′, D)) =min(#(t,�(Q,D)),#(t,�(Q′, D)))

#(t,�(Q ∪Q′, D)) =#(t,�(Q,D)) + #(t,�(Q′, D))

#(t,�(R,D)) =#(t, R)

#(t,�(πα(Q), D) =
∑

u,πα(u)=t

#(u,�(Q,D))

#(t,�(σθ(R), D)) =

#(t, R) if ∀v a valuation, v(t) = t ∧ θ(t)
1 if ∃v a valuation, v(t) 6= t ∧ θ is a valid formulae
0 otherwise

Therefore for every query Q ∈ Q1, the evaluation of �(Q,D) is tractable. The
computation rules above are sound and complete only because the relations
hence the nulls can not repeat.

Then we show how to evaluate �(Q0, D). Informally in order to evaluate
Q0 one has to compute the possible answers of Q2 which match an element of
Q1. But first notice that as intersection is not allowed in Q2 we can push the
projection operators :

Lemma 2 For every Q ∈ Q2 there exists Q′ ∈ Q2 such that |Q′| = O(|Q|) and
for every complete database D, Q(D) = Q′(D) and every projection operator of
Q′ occurs on a relation symbol, or on a selection operator over a relation symbol.

Then from lemmas 1 and 2 we just have to consider queries of the form:
Q0 = Q1 \

⋃
R∈Q2

παR(σθR(R)) with Q1 ∈ Q1 ∧Q2 ∈ Q2

For every R ∈ Q2,∀t ∈ R we build a set:

⇓Q1,R (t) = {u ∈ �(Q1, D) | ∃v a valuation, θR(v(t)) ∧ παR(v(t)) = v(u)}

As the relations hence the nulls can not repeat, �(Q1, D) can be computed
independently of Q2 and is at most of the size of D, then for each R, the set

⇓Q1,R can be built in polynomial time.
Moreover for every u ∈ �(Q1, D) we build a bag:

∀t ∈ (Const ∪Null)∗,#(t,⇑Q2
(u)) =

∑
R∈{R∈Q2|u∈⇓Q1,R

(t)}

#(t, R)

Here, ⇑Q2
(u) is the bag of elements in

⋃
R∈Q2

R which unify with u ∈ �(Q1, D).

Then a tuple u belongs to certain answers of Q0 if and only if the multiplicity
of u in �(Q1, D) is higher than the number of elements in ⇑Q2

(u).

Proposition 1 Let Q0 = Q1 \
⋃
R∈Q2

παR(σθR(R)) with Q1 ∈ Q1 ∧ Q2 ∈ Q2.
Then #(u,�(Q0, D)) = max(0, | ⇑Q2

(u)|−#(u,�(Q1, D))), and the evaluation
of �(Q0, D) is tractable.

However there exists a query Q0 such that ∀u,#(u,�(Q0, D)) = 0 and
�(π∅(Q0), D)) 6= ∅. In order to compute �(π∅(Q0), D), we want to check if
there exists a matching between �(Q1, D)) and the elements that unify with it.

Proposition 2 Let Q0 = Q1 \
⋃
R∈Q2

π(σθR(R)) with Q1 ∈ Q1 ∧ Q2 ∈ Q2.
Then �(π∅(Q0), D) = ∅ if and only if there exists an injective function
m : �(π∅(Q1), D)→

⋃
R∈Q2

R such that ∀t ∈ �(π∅(Q1), D),m(t) ∈⇑Q2 (t).

m is a 2DM matching, and the evaluation of �(π∅(Q0), D) is tractable [6].

3 Extending the fragment

In this section we discuss the difficulties of extending the fragment RH,NR to
obtain tractable evaluation of certain answers.

Proposition 3 For each of the following extensions of RH,NR :

– allowing cross-product.
– allowing repetition of relation symbols.
– allowing intersection on the right-hand side of the Q1 \Q2 operator.
– allowing difference on the right-hand side of the Q1 \Q2 operator.

the data complexity of evaluating certain answers is co-NP hard.

4 Conclusions

In this paper we have exhibited a fragment for which computing certain answers
for SQL nulls is tractable. We have also shown that adding features to the
fragment quickly lead to intractability. The next question that arises is toward
maximality, in order to find a dichotomic property for certain answers with SQL
nulls one would have to consider equivalently expressive classes of query. As soon
as we fully understand what leads to intractability we will be able to design a
more accurate approximation scheme for SQL nulls.

References

1. Serge Abiteboul, Paris Kanellakis, and Gösta Grahne. On the representation and
querying of sets of possible worlds. Theoretical Computer Science, 78(1):159–187,
1991.

2. Marco Console, Paolo Guagliardo, and Leonid Libkin. On querying incomplete
information in databases under bag semantics. IJCAI.

3. Paolo Guagliardo and Leonid Libkin. Correctness of SQL Queries on Databases
with Nulls. ACM SIGMOD Record, 46(3):5–16, 2017.

4. Paolo Guagliardo and Leonid Libkin. On the Codd semantics of SQL nulls. Alberto
Mendelzon Workshop, 36t, 2017.

5. Tomasz Imieliński and Witold Lipski Jr. Incomplete information in relational
databases. Journal of the ACM (JACM), 31(4):761–791, 1984.

6. Eugene L Lawler. Combinatorial optimization: networks and matroids. Courier
Corporation, 1976.

7. Leonid Libkin. SQL’s three-valued logic and certain answers. ACM Transactions
on Database Systems (TODS), 41(1):1, 2016.

8. Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Probabilistic
databases. Synthesis Lectures on Data Management, 3(2):1–180, 2011.

9. Moshe Y Vardi. The complexity of relational query languages. In Proceedings of the
fourteenth annual ACM symposium on Theory of computing, pages 137–146. ACM,
1982.

	On the tractability of certain answers for SQL nulls in relational algebra with inequalities

