
The Property Graph Database Model

Renzo Angles

1 Dept. of Computer Science, Universidad de Talca, Chile
2 Center for Semantic Web Research

Abstract. Most of the current graph database systems have been de-
signed to support property graphs. Surprisingly, there is no standard
specification of the database model behind such systems. This paper
presents a formal definition of the property graph database model. Specif-
ically, we define the property graph data structure, basic notions of in-
tegrity constraints (e.g. graph schema), and a graph query language.

1 Introduction

A graph database system, or just graph database, is a system specifically designed
for managing graph-like data following the basic principles of database systems
[5]. The graph databases are gaining relevance in the industry due to their use in
several domains where graphs and network analytics are required [17]. Popular
graph databases are Neptune [1], Cosmos [10], Neo4j [18] and Titan [19].

The fundamental abstraction behind a database system is its database model.
A Database Model should define three main components: a set of data structure
types (i.e. the data model), a set of query operators or inference rules (i.e. the
query language), and a set of integrity rules [7]. In the context of graph databases,
a Graph Database Model is a model where data structures for the schema and/or
instances are modeled as graphs (or generalizations of them), the data manipu-
lation is expressed by graph-oriented operations (i.e. a graph query language),
and appropriate integrity constraints are defined over the graph structure [4].

Despite all of the work already developed around graph databases, the cur-
rent market of graph databases is fragmented, starting with the lack of consensus
about a unique graph data model over which all the systems could be developed.
Although most of the systems are designed to store property graphs (i.e. labeled
multigraphs where both nodes and edges can contain pairs of the form property-
value), there could be considerable differences among the provided components
and their features, specially the definition of query languages and integrity con-
straints. The absence of such standardization causes several problems. In par-
ticular, the research on methods and techniques applicable to all the systems is
very restricted due to the absence of a common theoretical foundation.

The main contribution of this paper is a formal definition of the property
graph database model. Specifically, we define the property graph data struc-
ture (Section 2), propose basic notions of integrity constraints (Section 3), and
describe a graph query language (Section 4).



1.1 Related work

The notion of property graph was introduced by Rodriguez and Neubauer in
[15]. It is possible to find several works presenting informal definitions of the
property graph model (e.g. [18]), but the number of works presenting a formal
definition is reduced [6,9,16]. Several notions of integrity constraints for graph
databases are presented in [4]. However, the literature about integrity constraints
for property graph databases is very restricted [11,13,12]. There is no standard
query language for property graphs, although some proposals are available [2].
G-CORE [3] is a recent proposal which integrates the main and relevant features
provided by current graph query languages like Cypher [8] and PGQL [14].

2 The property graph data model

Informally, a property graph is a directed labelled multigraph with the special
characteristic that each node or edge could maintain a set (possibly empty) of
property-value pairs. From a data modeling point of view, a node represents
an entity, an edge represents a relationship between entities, and a property
represents an specific feature of an entity or relationship. Next we present a
formal definition of the abstract notion described above.

Assume that L is an infinite set of labels (for nodes and edges), P is an
infinite set of property names, V is an infinite set of atomic values, and T is a
finite set of datatypes (e.g., integer). Given a set X, we assume that SET+(X)
is the set of all finite subsets of X, excluding the empty set. Given a value
v ∈ V, the function type(v) returns the data type of v. The values in V will be
distinguished as quoted strings.

Definition 1. A property graph is a tuple G = (N,E, ρ, λ, σ) where:

1. N is a finite set of nodes (also called vertices);
2. E is a finite set of edges such that E has no elements in common with N ;
3. ρ : E → (N × N) is a total function that associates each edge in E with a

pair of nodes in N (i.e., ρ is the usual incidence function in graph theory);
4. λ : (N ∪ E) → SET+(L) is a partial function that associates a node/edge

with a set of labels from L (i.e., λ is a labeling function for nodes and edges);
5. σ : (N∪E)×P→ SET+(V) is a partial function that associates nodes/edges

with properties, and for each property it assigns a set of values from V.

Given two nodes n1, n2 ∈ N and an edge e ∈ E, such that ρ(e) = (n1, n2),
we will say that n1 and n2 are the “source node” and the “target node” of
e respectively. Additionally, given a property (o, p) ∈ (N ∪ E) × P and the
assignment σ(o, p) = {v1, . . . , vn}, we will use (o, p) = vi with 1 ≤ i ≤ n as a
shorthand representation for a single property where o is the “property owner”,
p is the “property name” and v is the “property value”. Note that our definition
supports multiple labels for nodes and edges, and multiple values for the same
property.



Fig. 1. Example of property graph representing bibliographic information.

Figure 1 presents a graphical representation of a property graph that contains
bibliographic information. Following our formal definition, we will have that:

N = {n1, n2, n3, n4, n5, n6, n7}
E = {e1, e2, e3, e4, e5, e6, e7}
λ(n1)={Author}, (n1, fname)=“Mariano”, (n1, lname)=“Consens”
λ(n2)={Author}, (n2, fname) = “Alberto”, (n2, lname) = “Mendelzon”
λ(n3)={Author}, (n3, fname)=“Peter”, (n3, lname)=“Wood”
λ(n4)={Article}, (n4, title)=“GraphLog ...”, (n4, numpages)=“13”, (n4, keyword)=“Datalog”
λ(n5)={Article}, (n5, title)=“Finding ...”, (n5, numpages)=“24”
(n5, keyword)=“recursive queries”, (n5, keyword)= “paths”
λ(n6)={Conference}, (n6, title)=“PODS”, (n6, year)= “1990”, (n6,month)=“April”
λ(n7)={Journal}, (n7,title)=“SIAM ...”, (n7,year)=“1995”, (n7,vol)=“24”, (n7,num)=“6”
ρ(e1) = (n4, n1), λ(e1)={has author}, (e1,order)=“1”
ρ(e2) = (n4, n2), λ(e2)={has author}, (e2,order)=“2”
ρ(e3) = (n5, n2), λ(e3)={has author}, (e3,order)=“1”
ρ(e4) = (n5, n3), λ(e4)={has author}, (e4,order)=“2”
ρ(e5) = (n5, n4), λ(e5)={cites}
ρ(e6) = (n4, n6), λ(e6)={published at}, (e6,pages)=“404–416”
ρ(e7) = (n5, n7), λ(e7)={published at}, (e7,pages)=“1234–1258”

3 Integrity Constraints

Integrity constraints are general statements and rules that define the set of con-
sistent database states or changes of state or both [7]. In the literature about
graph database models we can find the following notions of integrity constrains:
schema instance-consistency, identity and referential integrity constraints, func-
tional and inclusion dependencies [4]. In this paper we concentrate our interest
on constraints related to schema-instance consistency.

A data schema is a powerful data modeling feature that allows to describe
the structure of the data and enforce its consistency. In this sense, a graph
schema allows to define the graph structure by specifying the types of nodes,
the types of edges, and the properties for such types. Next, we introduce a basic
notion of property graph schema which is enough to be supported by current
graph databases. Additionally, we present a set of special constraints that can
be added to define more strict schemas.



Fig. 2. Example of property graph schema for modeling bibliographic information.

3.1 Property graph schema

Recall that L is an infinite set of labels, P is an infinite set of property names, and
T is a finite set of datatypes (e.g., String, Integer, etc.). Informally, a property
graph schema defines the node types, the edge types, and the properties for such
types (including the corresponding datatypes).

Definition 2. A property graph schema is a tuple S = (TN , TE , β, δ) where:

1. TN ⊂ L is a finite set of labels representing node types;
2. TE ⊂ L is a finite set of labels representing edge types, satisfying that TE

and TN are disjoint;
3. β : (TN ∪ TE) × P → T is a partial function that defines the properties for

node and edge types, and the datatypes of the corresponding values;
4. δ : (TN , TN ) → SET+(TE) is a partial function that defines the edge types

allowed between a given pair of node types.

Figure 2 presents a graphical representation of a property graph schema for
the property graph presented in Figure 1. The formal description of such schema
is given as follows:

TN = { Entry, Author, InProceedings, Article, Proceedings, Journal }
TE = { has author, cites, booktitle, published in }
β(Entry,title) = String, . . . , β(Journal,num) = Integer,
β(has author,order) = Integer, . . . , β(published in,pages) = String
δ(Entry,Author) = {has author}, δ(Entry,Entry) = {cite},
δ(InProceeedings,Proceedings) = {booktitle}, δ(Article,Journal) = {published in}

Schema-instance consistency. The notion of schema-instance consistency implies
that an instance property graph satisfies the structural restrictions stablished by
a given property graph schema. Such notion is formally defined as follows.

Definition 3. Given a property graph G = (N,E, ρ, λ, σ) and a property graph
schema S = (TN , TE , β, δ), we say that G is valid with respect to S when:

1. For each node n ∈ N , it applies that λ(n) ⊆ TN ;



2. For each edge e ∈ E, it applies that λ(e) ⊆ TE;
3. For each node or edge property (o, p) = v in G, it satisfies that there exists

β(to, p) = dt in S such that to ∈ λ(o) and type(v) = dt;
4. For each edge e ∈ E such that ρ(e) = (n, n′), it satisfies that there exist

le ∈ δ(t, t′) such that le ∈ λ(e), t ∈ λ(n) and t′ ∈ λ(n′).

Assume that a graph database is a pair D(S,G) where S is a property graph
schema and G is a property graph. We will say that D satisfies the schema-
instance consistency constraint if G is valid with respect to S.

3.2 Additional constraints

Note that the definition of property graph schema is basic in the sense of allowing
the description of the minimal characteristics for the data in a graph database.
However, such basic definition can be extended to support additional constraints.

Mandatory and optional properties / edges. Note that the function β in Defini-
tion 2 does not differentiate between required and optional properties. In order
to support such feature, we can define that the domain of β can be divided in
two sets Pm and Po, i.e. Pm ∪ Po = dom(β), where Pm is the set of mandatory
properties and Po the set of optional properties. Additionally, we need to include
the following restriction in Definition 3: “For each pair (t, p) ∈ Pm, and every
node / edge o in G such that t ∈ λ(o), it applies that (o, p) ∈ dom(σ), i.e. the
node / edge o contains the property p”. A similar approach could be applied to
introduce mandatory and optional edges.

Unique attributes. Given a node (or edge) type t, it could be useful to define
an attribute whose value is unique for each instance of t. Given a property
graph schema S = (TN , TE , β, δ), assume that Pu ⊂ dom(β) is the set of unique
properties. Given a property graph G = (N,E, ρ, λ, σ), we say that G satisfies a
unique property (t, p) ∈ Pu iff, for each pair of distinct objects o1, o2 such that
t ∈ λ(o1) and t ∈ λ(o2) it applies that (o1, p) 6= (o2, p).

Cardinality constraints. A cardinality constraint could define the number of
occurrences of a given property (for a node or edge type), or the precise number
of outgoing edges for a given node type. Mandatory and optional constraints
could be viewed as cardinality constraints (e.g. an optional property is defined
by a minimal cardinality of 0 and a maximum cardinality of 1).

4 Query Language

In this section we present a basic graph query language for the property graph
data model defined above. In general terms, a query takes as input a graph (called
the target graph), applies graph pattern matching, and returns a table of values as
output. The syntax of the language is a combination of three representative query
languages (i.e. SQL, SPARQL and Cypher). The semantics of the language are
defined in terms of a transformation to non-recursive safe Datalog with negation.



4.1 Syntax

The syntax of the query language is based on four main clauses: SELECT, FROM,
MATCH and WHERE. These clauses allow to express basic pattern matching queries.
Additionally, the query language introduces the UNMATCH and UNION clauses in
order to support the negation and union of graph patterns respectively.

Pattern matching. The core feature of the language is the support to express a
graph pattern which is matched against the target graph. Example 1 shows an
example of pattern matching query. In general terms, the SELECT clause defines
the output of the query (specifically, a table of values), the FROM clause defines
the input graph, the MATCH clause defines a graph pattern, and the WHERE clause
defines conditions over the graph pattern. Next we describe each clause in detail.

Example 1. Example of pattern matching query. The query returns the names
of authors which have papers in common, i.e. the co-authorship relationship.

1 SELECT n2.fname AS Author1, n3.fname AS Author2, n1.title AS EntryTitle
2 FROM "biblio"
3 MATCH (n1:Entry)-[e1:has_author]->(n2:Author), (n1)-[e2:has_author]->(n3)
4 WHERE n2 != n3 AND e1.order < e2.order

Assume that a property graph database is a collection of property graphs,
each one having a name. Hence, the FROM clause defines a comma separated list
of graph names that conforms the graph to be queried. In the Example 1, the
FROM clause defines a single target graph named “biblio” which corresponds to
the one presented in Figure 1. In the case of having multiple graphs, the target
graph will be the union of nodes and edges occurring in all the graphs.

The MATCH clause allows to define a graph pattern which is a collection of
basic graph patterns. A basic graph pattern (BGP) is an expression of the form
(v1 : t1)− [v2 : t2]− > (v3 : t3) where v1 and v3 are variables referencing nodes,
v2 is a variable referencing an edge, t1 and t3 are node type labels, and t2 is
an edge type label. The expression (v1 : t1) is also a valid BGP which allows to
obtain the nodes in the graph. To be valid, a BGP must contain at least a node
variable. A set of BGPs is called a join graph pattern. In our example, the join
GP matches the nodes n1, n2 and n3 such that n1 is of type Entry, n2 is of type
Author, n3 does not specify a type. Both n2 and n3 are connected with n1 by an
edge has author, and the corresponding edges are bound by variables e1 and e2.

The WHERE clause allows to define a filter condition that restrict the subgraphs
obtained by the pattern matching step. A filter condition is defined as a set
of equality conditions and build-in functions, connected by the operators AND,
OR and NOT. The expressions v1 θ v2, v1.p1 θ v2.p2 and v1.p1 θ a are equality
conditions where v1 and v2 are variables, p1 and p2 are property names, a is an
atomic value, and θ is an equality operator in the set {=, ! =, >,>=, <,<=}. In
our example, the filter condition indicates that the Authors n2 and n3 must be
distinct, and the order of Author n2 is lower than the Author n3. Note that the
former condition applies to a node variable, and the latter applies to an edge
variable.



Finally, the SELECT clause defines the output of the query called the result
table. A result table is a tabular structure (equivalent to a relational table)
where the head contains property names and the body contains atomic values.
The SELECT clause defines a comma separated list of expressions of the form v.p
AS c where, v is a variable ocurring in the MATCH clause, p is a property name,
and c is the name of the corresponding column in the result table. Hence, the
SELECT clause in Example 1 allows to return the following result table.

Author1 Author2 EntryTitle
"Mariano" "Alberto" "GraphLog: a Visual Formalism ..."
"Alberto" "Peter" "Finding regular simple paths ..."

Negation. The negation of graph patterns is supported by including the UNMATCH

clause, which also includes a graph pattern expression. In general terms, the
MATCH clause is evaluated as a positive graph pattern matching whereas UNMATCH

is evaluated as a safe negation of graph patterns. In order to satisfy such safe
condition, it is mandatory that at least one node variable of the UNMATCH clause
also occurs in the MATCH clause. The UNMATCH clause can be accompanied by its
own WHERE clause.

Example 2 shows a negation of graph patterns. First, the MATCH and the WHERE

clauses allow to obtain all the pairs of nodes (n2, n3) of type Author (i.e. the
cartesian product of authors). Then, the UNMATCH clause allows to remove the
pairs of authors having a paper in common. Hence, the result of the pattern
matching step is the set of pairs of authors having no papers in common.

Example 2. Negation of graph patterns. The query returns the names of authors
having no papers in common.

1 SELECT n2.fname AS Author1, n3.fname AS Author2
2 FROM "biblio"
3 MATCH (n2:Author), (n3:Author)
4 WHERE n2 != n3
5 UNMATCH (n1)-[:has_author]->(n2), (n1)-[:has_author]->(n3)

Union. Given two join graph patterns, P1 and P2, a union graph pattern is
an expression of the form P1 UNION P2. In general terms, the UNION operator
combines the solution of P1 with the solutions of P2, the variables of P1 plus the
variables of P2. Example 3 shows a query expressing the union of graph patterns.

Example 3. Union of graph patterns. The query returns the list of entries in the
database, and for each entry it includes the conference’s title or the journal’s
title when necessary.

1 SELECT n1.title AS EntryTitle, n2.title AS Booktitle, n3.title AS Journal
2 FROM "biblio"
3 MATCH (n1:Entry)-[:booktitle]->(n2:Proceedings)
4 UNION (n1:Entry)-[:published_in]->(n3:Journal)

The result of the query in Example 3 is the following result table:

EntryTitle Booktitle Journal
"GraphLog: a Visual Formalism ..." "PODS" null
"Finding regular simple paths ..." null "SIAM J. Comput."

Note that above result table contains null values. It occurs when the set of
variables of the join graph patterns, connected by the UNION, are different.



4.2 Semantics

In order to provide a semantics for our query language, we present a method
to translate a property graph and a query into a Datalog program. The query
transformation allows to show the expressive power of our query language. For
the sake of space, the method will be informally presented by using examples.

Data transformation. Assume that G is the property graph presented in Figure
1. Then, G could be transformed into the set of Datalog facts presented in
Example 4.

Example 4. Datalog rules obtained from a property graph.

1 Node(10), Label(10,"Author"), Prop(101,10,"fname","Mariano"), Prop(102,10,"lname","Consens"),
2 Node(11), Label(11,"Author"), Prop(111,11,"fname","Alberto"),
3 Prop(112,11,"lname","Mendelzon"),
4 Node(12), Label(12,"Author"), Prop(121,12,"fname","Peter"), Prop(122,12,"lname","Wood"),
5 Node(13), Label(13,"Entry"), Label(13,"InProceedings"), Prop(131,13,"title","Graphlog ..."),
6 Prop(132,13,"numpages","13"), Prop(133,13,"keyword","Datalog"),
7 Node(14), Label(14,"Entry"), Label(14,"Article"), Prop(141,14,"title","Finding ..."),
8 Prop(142,14,"numpages","24"), Prop(143,14,"keyword","recursive queries"),
9 Prop(144,14,"keyword","paths"),

10 Node(15), Label(15,"Proceedings"), Prop(151,15,"title","PODS"),
11 Prop(152,15,"year","1990"), Prop(153,15,"month","April"),
12 Node(16), Label(16,"Journal"), Prop(161,16,"title","SIAM ..."), Prop(162,16,"year","1995"),
13 Prop(163,16,"vol","24"), Prop(164,16,"num","16"),
14 Edge(20,13,10), Label(20,"has_author"), Prop(201,20,"order","1"),
15 Edge(21,13,11), Label(21,"has_author"), Prop(211,21,"order","2"),
16 Edge(22,14,11), Label(22,"has_author"), Prop(221,22,"order","1"),
17 Edge(23,14,12), Label(23,"has_author"), Prop(231,23,"order","2"),
18 Edge(24,14,13), Label(24,"cites"),
19 Edge(25,13,15), Label(25,"booktitle"), Prop(251,25,"pages","404-416"),
20 Edge(26,14,16), Label(26,"published_in"), Prop(261,26,"order","1235-1258")

Let us explain the meaning of all the facts shown in Example 4. The fact
Node(10) encodes a node where 10 is the node identifier. Label(10,"Author")

encodes the type of the node having identifier 10 (the same applies to edges).
The fact Prop(101,10,"fname","Mariano") encodes a property where 101 is the
property identifier and 10 is the identifier of the node having the property (the
same applies to edges). edge(20,13,10) encodes an edge where 20 is the edge
identifier, 13 is the source node identifier, and 10 is the target node identifier.
Note that there are identifiers for nodes, edges and properties. In the case of the
properties, the identifiers are fundamental to support multivalued properties.

Query transformation. Given the extensional database (of facts) presented above,
we can add intentional predicates to query the data, i.e. a Datalog query. For
each example graph query Q presented above, we will present a Datalog query
Q′ satisfying that Q and Q′ are equivalent, i.e. their results are equivalent.

Example 5 shows a datalog query which is equivalent to the graph query pre-
sented in Example 1. The datalog query defines specific predicates to represent
the main clauses in the graph query, i.e. select(...), match(...) and where(...).
Additionally, the predicate gp(...) indicates a graph pattern, jpgX(...) indi-
cates a join graph pattern, and condX(...) indicates a filter condition. In general
terms, a pattern matching query is transformed into a set of positive rules.



Example 5. Datalog query equivalent to the query presented in Example 1.

1 select(v1,v2,v3):- match(n1,e1,n2,e2,n3), Prop(p1,n2,"fname",v1),
2 Prop(p2,n3,"fname",v2), Prop(p3,n1,"title",v3)
3 match(n1,e1,n2,e2,n3):- gp(n1,e1,n2,e2,n3), where(n1,e1,n2,e2,n3)
4 gp(n1,e1,n2,e2,n3):- jgp1(n1,e1,n2,e2,n3)
5 jgp1(n1,e1,n2,e2,n3):- bgp1(n1,e1,n2), bgp2(n1,e2,n3)
6 bgp1(n1,e1,n2):- Node(n1), Label(n1,"Entry"), Node(n2), Label(n2,"Author"),
7 Edge(e1,n1,n2), Label(e1,"has_author")
8 bgp2(n1,e2,n3):- Node(n1), Node(n3),
9 Edge(e2,n1,n3), Label(e2,"has_author")

10 where(n1,e1,n2,e2,n3):- cond1(n1,e1,n2,e2,n3), cond2(n1,e1,n2,e2,n3)
11 cond1(n1,e1,n2,e2,n3):- jgp1(n1,e1,n2,e2,n3), n2 != n3
12 cond2(n1,e1,n2,e2,n3):- jgp1(n1,e1,n2,e2,n3), Prop(id1,e1,"order",v1),
13 Prop(id2,e2,"order",v2), v1 < v2

Example 6. Datalog query equivalent to the query presented in Example 2.

1 select(v1,v2):- match(n2,n3), Prop(p1,n2,"fname",v1), Prop(p2,n3,"fname",v2)
2 match(n2,n3):- gp(n2,n3), where(n2,n3), not unmatch(n2,n3)
3 gp(n2,n3):- jgp1(n2,n3)
4 jgp1(n2,n3):- bgp1(n2), bgp2(n3)
5 bgp1(n2):- Node(n2), Label(n2,"Author")
6 bgp2(n3):- Node(n3), Label(n3,"Author")
7 where(n2,n3):- cond1(n2,n3)
8 cond1(n2,n3):- jgp1(n2,n3), n2 != n3
9 unmatch(n2,n3):- jgp2(n1,n2,n3)

10 jgp2(n1,n2,n3):- bgp3(n1,n2), bgp4(n1,n3)
11 bgp3(n1,n2):- Node(n1), Node(n2), Edge(e,n1,n2) Label(e,"has_author")
12 bgp4(n1,n3):- Node(n1), Node(n3), Edge(e,n1,n3) Label(e,"has_author")

Example 7. Datalog query equivalent to the query presented in Example 3.

1 select(v1,v2,v3):- match(n1,n2,n3), Prop(p1,n1,"title",v1),
2 Prop(p2,n2,"title",v2), Prop(p3,n3,"title",v3)
3 match(n1,n2,n3):- gp(n1,n2,n3)
4 gp(n1,n2,n3):- ugp1(n1,n2,n3)
5 ugp1(n1,n2,n3):- bgp1(n1,n2), Null(n3)
6 ugp1(n1,n2,n3):- bgp2(n1,n3), Null(n2)
7 bgp1(n1,n2):- Node(n1), Label(n1,"Entry"), Node(n2), Label(n2,"Proceedings"),
8 Edge(e,n1,n2), Label(e,"booktitle")
9 bgp2(n1,n3):- Node(n1), Label(n1,"Entry"), Node(n2), Label(n2,"Journal"),

10 Edge(e,n1,n2), Label(e,"published_in")
11 Null("null")

Example 6 shows a datalog query which is equivalent to the graph query
presented in Example 2. The main difference is given by the use of the predicate
unmatch(...) to implement the negation of graph patterns. In the line 10, we
can see that the bindings for unmatch(n2,n3) are given by the join graph pattern
jgp2(n1,n2,n3). Additionally, the rule presented in line 3 shows the use of the
not operator to implement the “negation by failure” of the predicate unmatch. In
order to generate a safe datalog program, we need to ensure that all the variables
occurring in unmatch(...) also occur in gp(...).

Example 7 shows a datalog query which is equivalent to the graph query
presented in Example 3. In this case, the predicate ugp1(n1,n2,n3) encodes a



union graph pattern that combines the predicates bgp1(n1,n2) and bgp2(n1,n3).
Considering that bgp1 and bgp2 have disjoint variables, we need to use the Null

predicate in order to assign the "null" value when necessary. In this sense, the
datalog program must contain the fact Null(null) (see line 13).

The examples presented above show that any graph query can be transformed
into a Datalog query. Moreover, it is possible to see that our language supports
the same types of queries provided by Datalog, i.e. join, union and equalities.

Acknowledgments. Renzo Angles is funded by the Millennium Nucleus Center
for Semantic Web Research under Grant NC120004.

References

1. Amazon Neptune - Fast, reliable graph database build for cloud:
https://aws.amazon.com/neptune/

2. Angles, R., Arenas, M., Barceló, P., Hogan, A., Reutter, J., Vrgoĉ, D.: Foundations
of modern query languages for graph databases. CSUR 50(5) (2017)

3. Angles, R., Arenas, M., Barceló, P., Boncz, P., Fletcher, G., Gutierrez, C., Lin-
daaker, T., Paradies, M., Plantikow, S., Sequeda, J., van Rest, O., Voigt, H.: G-core:
A core for future graph query languages. In: SIGMOD (2018)

4. Angles, R., Gutierrez, C.: Survey of graph database models. CSUR 40(1) (2008)
5. Angles, R., Gutierrez, C.: Introduction to graph data management. Tech. rep.,

https://arxiv.org/abs/1801.00036 (December 2017)
6. Ciglan, M., Averbuch, A., Hluchy, L.: Benchmarking Traversal Operations over

Graph Databases. In: ICDE Workshops. pp. 186–189 (2012)
7. Codd, E.F.: Data Models in Database Management. In: Workshop on Data ab-

straction, Databases and Conceptual Modeling. pp. 112–114. ACM Press (1980)
8. Cypher - Graph Query Language: http://neo4j.com/developer/cypher-query-

language/
9. Hartig, O.: Reconciliation of RDF* and Property Graphs. Tech. rep.,

http://arxiv.org/abs/1409.3288 (2014)
10. Microsoft Azure Cosmos DB: https://docs.microsoft.com/en-us/azure/

cosmos-db/introduction
11. Pokorný, J.: Conceptual and database modelling of graph databases. In: IDEAS.

pp. 370–377. ACM (2016)
12. Pokorný, J., Valenta, M., Kovačič, J.: Integrity constraints in graph databases.

Procedia Computer Science 109, 975 – 981 (2017)
13. Rabuzin, K., Sestak, M., Konecki, M.: Implementing unique integrity constraint in

graph databases. In: ICCGI. pp. 48–53 (2016)
14. van Rest, O., Hong, S., Kim, J., Meng, X., Chafi, H.: PGQL: a property graph

query language. In: GRADES. p. 7. ACM (2016)
15. Rodriguez, M.A., Neubauer, P.: Constructions from dots and lines. Bul. Am. Soc.

Info. Sci. Tech. 36(6), 35–41 (2010)
16. Rodriguez, M.A., Neubauer, P.: The graph traversal pattern. Tech. rep., AT&Ti

and NeoTechnology (April 2010)
17. Sakr, S., Pardede, E.: Graph Data Management: Techniques and Applications. IGI

Global, 1st edn. (2011)
18. The Neo4j Graph Platform: https://neo4j.com/
19. Titan - Distributed Graph Database: http://titan.thinkaurelius.com/


