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Abstract. If one examines the spot price series of electrical power over the 
course of time, it is striking that the electricity price across the day takes a 
course that is determined by power consumption following a day and night 
rhythm. This daily course changes in its height and temporal extent in both, the 
course of the week, as well as with the course of the year. This study deals 
methodologically with non-linear correlative and autocorrelative time series 
properties of the electricity spot price. We contribute the usage of non-fully 
connectionist networks in relation to fully connectionist networks to decompose 
non-linear correlative time series properties. Additionally, we contribute the us-
age of long short-term-memory network (LSTM) to discover and to deal with 
autocorrelation effects. 
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1 Introduction 

Despite all criticism of this approach, the random walk process has established itself 
for the modeling of stock prices. Pricing on electricity markets deviates significantly 
from the pricing on stock markets, as the underlying Markov property cannot be as-
sumed for electricity markets as well. Produced electricity cannot be stored without 
significant losses and, accordingly, temporal arbitrage turns out to be highly ineffi-
cient. If one examines the spot price series of electrical power over the course of time, 
it is striking that the electricity price across the day takes a course that is determined 
by power consumption following a day and night rhythm. This daily course changes 
in its height and temporal extent in both, the course of the week, as well as with the 
course of the year. Accordingly, it can be concluded that the univariate time series 
shows non-linear correlative effects between daily, weekly, and yearly seasonal pat-
terns as well as autocorrelative effects even without taking other explanatory variables 
into account. 

The present study deals methodologically with non-linear correlative and autocor-
relative time series properties of the electricity spot price. Correlation effects are ade-
quately represented in classical fully connectionist networks but they cannot be mean-



ingfully analyzed due to the high complexity of these networks. The research ques-
tions are, if the forecasting accuracy can be improved by (i) using different and com-
plementary ANN-architectures to better reflect correlation effects and (ii) using a 
recurrent ANN-architecture to better reflect autocorrelation effects. To answer these 
questions, we contribute the usage of non-fully connectionist networks in relation to 
fully connectionist networks to decompose non-linear correlative time series proper-
ties.  

Hence, we use (i) different ANN architectures with non-fully and fully connection-
ist networks to discover and to deal with correlation effects on exogenous side / input 
layer, (ii) using a long short-term-memory network (LSTM) to discover and to deal 
with autocorrelation effects, and (iii) an ARIMAX model with daily, weekly, and 
yearly seasonal patterns reflected as binary coded variables as a benchmark for the 
aforementioned models. 

The paper is organized as follows: In section two, the current state of the literature 
is presented, and the research gap is identified. In section three, sample and method-
ology are introduced. In section four, the results are presented and discussed. The 
study closes with a conclusion. 

2 Literature Review and Research Gap 

The number of electricity price forecasting articles has increased significantly in re-
cent years. A particularly good overview can be obtained by Weron (2014). The au-
thor could identify 30 publications with a focus on ARIMA and its extensions. We 
could not identify further more recent articles in this special field of ARIMA-
modelling of electricity prices. More recent electricity price forecasting literature is 
focused mainly on probabilistic forecasting and artificial intelligence. With regard to 
ANN, Weron could identify 56 publications. Subsequently, two further articles were 
published on electricity price forecasting using ANN that were not included in 
Weron’s review (Dudek, 2016; Marcjasz, Uniejewski, & Weron, 2018). 

Comparing ARIMA(X) models of the Spanish and the Californian market with and 
without additional explanatory variables, Contreras, Espinola, Nogales, &  Conejo 
(2003) recognize that additional explanatory variables, such as hydropower, are only 
required in months of a high correlation between the explanatory variable and the 
price, while in months of low correlations these variables do not show significant 
predictive power. The authors were able to show average daily mean errors between 
5% and 10% with and without explanatory variables. 

When forecasting with ARIMA, Conejo, Contreras, Espínola, & Plazas (2005) ar-
gue that it could be necessary to use a different notation of the model for nearly every 
week. Accordingly, ARIMA-models turn out to be very unstable in their predictive 
power over time. Especially in spring and summer where the volatility was very high 
the ARIMA forecast provided poor results. The authors also introduce several other 
techniques, e.g. an ANN with a multilayer perceptron and one hidden layer. The 
ARIMA model outperforms the ANN in every period except for the September. The 



mean week errors with ARIMA are between 6% and 27% whereas the ANN shows 
errors between 8% and 32%. 

Garcia, Contreras, van Akkeren, & Garcia (2005) claimed that ARIMA-GARCH 
models show a better accuracy than seasonal ARIMA models. The authors present 
mean weekly errors of around 10% for relatively calm weeks. Misiorek, Trueck, & 
Weron (2006) compare some linear and non-linear time series models. In contrast to 
the aforementioned authors, the simple ARX model - the exogenous variable is the 
day-ahead load forecast - shows a better result than a model with an additional 
GARCH component. 

Conejo, Plazas, Espinola, & Molina (2005) contributed a specified ARIMA model 
including wavelet transformation which was more accurate than the simple one. The 
wavelet transformation is applied to decompose the time series before predicting the 
electricity prices with ARIMA. This model outperforms the benchmark with a weekly 
error of 5% in winter and spring and 11% in summer and fall. 

Applying a seasonal ARMA(X) process with three different explanatory variables 
of the temperature, Knittel & Roberts (2005) identified an inverse leverage effect with 
positive price reactions increasing the volatility more than negative ones. The authors 
further show that a higher order autocorrelation in the models is important to improve 
the results. The authors were able to show root mean squared errors for the out-of-
sample week between 25.5 and 49.4 in the pre-crisis period and between 66.6 and 
88.6 during the crises period. It is mentioned in the article that the data has a high 
frequency of large price deviations, which leads to these high forecast errors. 

Zareipour, Canizares, Bhattacharya, & Thomson (2006) built an ARMAX and an 
ARX model with an average error in the 24-hour-ahead forecast of 8.1 and of 8.4 
respectively, which is slightly better than the basic ARIMA model with an average of 
8.8. With these models, it could be shown that market information in low-demand 
periods is not as useful as during high-demand periods. In general, the results have 
confirmed the contribution of the authors that market data improves the forecast re-
sults. Nevertheless, none of the models could forecast the extreme prices which in-
creasingly occur in times of high-demand periods adequately. 

Zhou, Yan, Ni, Li, & Nie (2006) suggested that including error correction will lead 
to a more accurate result in forecasting with ARIMA. Therefore, they developed an 
ARIMA approach which is extended by an error series. This novel method turned out 
to show quite good forecasting accuracies with an average error of 2% and lower 
despite of periods with a high price volatility. 

Koopman, Ooms, & Carnero (2007) were using an ARFIMA model, which is an 
ARIMA model with seasonal periodic regressions, and combined it with a GARCH 
analysis. The authors pointed out the importance of day-of-the-week periodicity in the 
autocovariance function when forecasting electricity prices. Beneath the implementa-
tion of the day of the week, binaries were included for the holiday effect to consider 
demand variations. 

With the increase in available computational power in recent years, ANN became 
more and more popular in forecasting and forecasting research. Both, classical multi-
layer perceptron (MLP) and recurrent networks (Hopfield, 1982; Haykin, 2009), es-
pecially long short-term memory (LSTM) (Hochreiter & Schmidhuber, 1997) net-



works, are used for forecasting purposes of time series data. Typically, all ANN archi-
tectures are composed of an input layer, a hidden layer with differing number of units, 
and an output layer. In fully connectionist networks, typically, lags and partially re-
siduals are passed into the propagation function (Zhang, Patuwo, & Hu, 1998; 
Adebiyi, Adewumi, & Ayo, 2014). Each node of a layer is usually fully connected to 
the units of the subsequent layer. MLP as well as LSTM networks are fed with differ-
entiated time series data. The reason is the underlying characteristics of a time series 
itself. If time is the explanatory factor for the values of the endogenous variable, in 
our case the electricity price, the time series must be made stationary by differentia-
tion to avoid spurious correlations. 

Recurrent ANN have the possibility to incorporate the output of latter layer units 
again into earlier layer units, which is not possible in MLP networks. Commonly, the 
units of all hidden layers of recurrent networks are in a chain-like informational loop. 
A hidden unit can use its output as input (direct feedback), or it is connected to a hid-
den unit of the preceding layer (indirect feedback), or it is connected to an unit of the 
same layer (lateral feedback), or it is connected to all other hidden units (fully recur-
rent). The recurrent type of LSTM is typically direct feedback (Malhotra, Vig, Shroff, 
& Agarwal, 2015). The LSTM network, with regard to its inherent properties of “[…] 
maintaining its state over time in a memory cell […]” (Greff, Srivastava, Koutník, 
Steunebrink, & Schmidhuber, 2017), is predestined for usage in time series analysis. 
In opposite to other recurrent network types a LSTM network solves the vanishing 
gradient problem (Hochreiter & Schmidhuber, 1997). 

Fully connectionist MLP are the most used type of ANN for electricity price fore-
casting (Weron, 2014; Dudek, 2016). They differ in usage of different explanatory 
variables, e.g. power consumption, weather, wind conditions, in addition to lag varia-
bles. Furthermore, the results of a MLP serve as benchmarks in comparison with the 
results of other forecasting models like ARIMA. Additionally, MLP is often used as 
the nonlinear part within a hybrid model, e.g. in combination with ARIMA. A further 
type of ANN, occasionally seen in the extent literature, is a recurrent network 
(Weron, 2014), especially a nonlinear autoregressive exogenous model (NARX), a 
descendant of a recurrent network (Marcjasz, Uniejewski, & Weron, 2018). 

Weron (2014) concluded that forecasting with univariate time series models is well 
known in the extent literature. Accordingly, including the right external input factors 
into the models, as well as dealing with nonlinear dependencies between endogenous 
and exogenous variables and among exogenous variables will become more im-
portant. In contrast to the author, we do not see that the time for univariate time series 
analysis of electricity prices is already over, as we still cannot see a satisfactory ap-
proach to meaningfully deal with the time-series characteristics of electricity prices. 
Although the Bayes-approach offers possibilities, it is rather unsuitable for practical 
use due to the high load of computer capacities during simulation operations. Hence, 
we see a research gap in handling the non-linear correlative effects between the exog-
enously modelled daily, weekly, and yearly seasonal patterns as well as autocorrela-
tive effects within the time series and among the exogenously modelled variables. Our 
contribution is to close this research gap by using an ANN-based methodology. We 
perform a time series analysis for the German EEX “Phelix” Data using (i) different 



ANN architectures with non-fully and fully connectionist networks to discover and to 
deal with correlation effects on exogenous side / input layer, (ii) using a long short-
term-memory network (LSTM) to discover and to deal with autocorrelation effects, 
and (iii) an ARIMAX model with time series features as binary coded variables as a 
benchmark for the aforementioned models. 

3 Sample and Methodology 

3.1 Sample Selection 

At the European Energy Exchange (EEX), electricity spot prices (EPEX Spot), as 
well as future contracts are traded. The vast number of German municipal utility 
companies, but also large industrial consumers on the demand side, and European 
electricity suppliers on the supply side take part at the electricity trading at the EEX. 
The electricity volumes can be traded on the same day (intraday) or for the following 
day (day-ahead). Purchase and sale orders can be placed on an hourly basis as well as 
for time blocks. The blocks are “baseload” (0.00am - 12.00pm) or “peakload” 
(8.00am - 8.00pm). These orders can be placed until 12.00pm of every trading day for 
the next calendar day and will be processed primarily over the internet. A computer 
system ensures the automatic settlement of the purchase and sale orders and the fixing 
of the exchange price. Finally, around 12.40pm the prices for the next day will be 
published via the internet and other data agencies. 

The sample data used for this analysis is the EEX Phelix-DE day-ahead spot rate. It 
has established itself as a benchmark contract for European electricity. We considered 
time series data from January 1st 2015 until January 1st 2018 (Fig. 1). Each individual 
day has got 24 hourly price observations. The data underlying this analysis is com-
plete 

 

Fig. 1.  Time Series for EPEX Spot  

Since the storage of electrical power is not possible without significant efficiency 
losses, the price shows daily, weekly, and yearly seasonality patterns. The seasonality 
of the time series certainly has its origin in the electricity demand over a day and 

Date

E
le

ct
ric

ity
 P

ric
e 

(E
U

R
/M

W
h)

2015.0 2015.5 2016.0 2016.5 2017.0 2017.5 2018.0

-1
00

0
50

10
0

Time series for EPEX Spot



night rhythm (Fig. 2). Due to the daily, weekly and yearly seasonality patterns binary 
variables (“dummies”) for these categories were introduced. To capture the seasonali-
ty, our models contain 23 hour-dummies for the daily seasonality, 6 weekday-
dummies for the weekly seasonality and 11 month-dummies for the yearly seasonali-
ty. 

 

Fig. 2.  Average electricity prices per hour for selected month 

Beneath seasonal and calendar day effects, the effects of wind power and solar en-
ergy increase the volatility of the time series which is particularly challenging in the 
prediction of the spot prices (Bierbrauer, Menn, Rachev, & Trück, 2007). More and 
more often, even negative electricity prices are documented at the EEX, which is 
mainly observable in times of weak demand combined with sunlight or strong wind. 
Since the present study focusses on seasonality patterns, other explanatory variables 
(e.g. wind or temperature) were not included into the models. 

In this study, our models are trained on a training data set of two years prior the 
predicted months. We predict the months March, June, September, and December 
2017. The root mean squared error (RMSE) is selected to assess and compare the 
different models. In most of the extent papers, this is the standard forecasting accura-
cy measure (Weron, 2014). 

3.2 ARIMAX-Model with Seasonality 

The ARIMAX-model used in this study is an extension of the classical ARIMA-
model, introduced by Box & Jenkins (1971). To include seasonality into the model, 
the binary variables for hour, weekday, and month are applied in the X-term of the 
model, which means, that these variables are supplemented as additional regressor in 
the AR-Term. We used the Hyndman-Khandakar algorithm to find the best notation 
for the ARIMAX model (Hyndman & Khandakar, 2008). The algorithm is using the 
KPSS tests to determine the number of differences (d) for the training dataset first. In 
a second step, the values of (p) and (q) are chosen for the training time series by min-
imizing the Akaike Information Criterion (AIC) out of every probable combination of 
these two parameters. As a result of this procedure, an ARIMAX(3,1,3) model with 
40 dummy variables is used for the analysis. 
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3.3 ANN-Models 

As described above, usually ANN are designed as fully connectionist networks. We 
suggest a slightly different approach to discover information about correlation of ex-
ogenous variables. Therefore, a four step approach is introduced: (i) Single Layer 
Perceptron (SLP), (ii) Multilayer Perceptron (MLP) with hidden layer and particular 
mapping (non-fully connectionist network), (iii) Multilayer Perceptron (MLP) with 
hidden layer without particular mapping (fully connectionist network), and (iv) Long 
Short-Term Memory (LSTM) with hidden layer, without particular mapping and di-
rect feedback. A synopsis of the used architectures is illustrated in Fig. 3. 

 
ANN-Model (i) – Single Layer Perceptron 
(SLP) 

 

ANN-Model (ii) – Multi Layer Perceptron (MLP, 
non-fully connectionist) 

ANN-Model (iii) - Multi Layer Perceptron 
(MLP, fully connectionist) 

ANN-Model (iv) – Long Short-Term Memory 
(LSTM) 

 

Fig. 3.  Synopsis of used ANN-architectures 

The input layer is composed of units for hours, weekdays, and months as well as of 
units for lags. The lag units are lag 1, lag 2 and lag 3 hours to be in line with the 
ARIMAX-model later. The hidden layers in model (ii) to (iv) consist of four units. 
The first three units in the hidden layer in (ii) are aggregated units. The first unit 
stands for an aggregated hourly information and gets its information only from the 
corresponding hourly input units. The second hidden unit is an aggregated weekday 
hidden unit and gets its information from all weekday input units. The third hidden 
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unit represents an aggregated month hidden unit and gets its information only from all 
month input units. The fourth hidden unit can be seen as an all-unit which gets its 
information from all input units including the lagged variables. The hidden layer in 
(iii) differs from (ii). Each unit in the hidden layer gets its information from all units 
of the input layer. There is not such a particular mapping like in (ii). The LSTM mod-
el in (iv) is equally designed as the MLP model in (iii), despite the direct feedback for 
each hidden unit. 

The ARIMAX model, which is used as a benchmark model at this point, is able to 
recognize endogenous autocorrelation of the time series using the lag variables. The 
binary-coded seasonal variables control the seasonality as additive constants for cer-
tain hours, certain days of the week, and certain months via the ARX-term. Relation-
ships between these seasonal components cannot be recognized by this type of model. 

ANN-model (i) is essentially equivalent to OLS regression but additionally, it is 
able to adopt to non-linearities. It is therefore comparable to the ARX term of the 
ARIMAX model. If ANN model (i) should yield better results than the ARIMAX 
model, this is due to the ability to map nonlinear relationships as well. 

The ANN model (ii) allows the explicit modeling of daily, weekly and annual sea-
sonality through its aggregated units, but prevents the consideration of exogenous 
correlative effects among these seasonalities. In this respect, it serves as a benchmark 
for model (iii), which explicitly allows the consideration of exogenous correlative 
effects. If ANN-model (iii) now delivers better results than ANN-model (ii) we can 
assume that one reason must be unconsidered exogenous correlation, but its’ nature 
cannot be determined. 

Expected better results of ANN-model (iv) would emerge the conclusion that the 
time series must have autocorrelative effects between seasonal binary variables, too. 

4 Results 

The model forecasting accuracies in terms of the root mean squared error (RMSE) for 
the five models as well as for all tested cases can be found in Table 1. In the light of a 
monthly forecast horizon, the forecasting accuracies are in line with the expectation. 
In the extent literature, winter season is known to be more volatile and the price is 
more influenced by exogenous correlation effects, e.g. wind power. Accordingly, the 
comparatively poorer forecasting result in December is also in line with expectations 
from literature. It is striking, that the ARIMAX benchmark outperforms the SLP as 
well as both MLP in three out of four tested periods. Only in the December period all 
ANN models show better results than the ARIMAX model. Overall, however, the 
LSTM network provides the best results compared to all other models. 
  



Table 1. Model Forecasting Accuracy Results 
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Model Type 
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40 
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42  
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ANN 
(i)  SLP  
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10.
879  

11.
523  
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11.
051  
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20.
171  

ANN 
(iii)  MLP (fully connectionist)  

8.9
14 

11.
433  

11.
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19.
462  

ANN 
(iv)  LSTM  

6.9
47 

8.1
89  

9.5
51  

19.
273  

 
The coefficients and model statistics of the ARIMAX model are given in Table 2 

in the appendix. The coefficients show well pronounced daily, weekly and yearly 
seasonalities. Although the results are in line with expectation, the annual seasonality 
is based on only a few observations, resulting in high standard errors. The daily and 
weekly seasonality, on the other hand, can be described as stable, as inference is 
based on a large number of observations. It is evident that the daily and weekly sea-
sonalities are far less exposed to structural changes than the annual ones. Neverthe-
less, the drift term of the ARIMAX model shows only low coefficients. By visual 
examination of the forecast, it can be seen that the ARIMAX model predicts repetitive 
daily patterns that oscillate slightly across the course of the week. Examples of this 
behavior for the months of March and December can be found in the charts in appen-
dix 2. 

The daily, weekly and annual seasonality already evident in the ARIMAX model 
coefficients are reflected in the weights of the SLP as well. Accordingly, it can be 
assumed, that due to the similarity to the ARX term of the ARIMAX, the poorer fore-
casting accuracy of the SLP is due to the nonexistence of the MA term in ANN or due 
to poorer adoption to the data as a consequence of the nonlinear activation function in 
the ANN. In the visual inspection, the model shows a less predictable behavior, in 
which daily patterns are recognizable but in a clearly distorted manner. The weaker 
forecasting quality is not surprising in this respect, although not in line with expecta-
tions. Which factor determines these distortions is not recognizable. 

The importance of individual hidden units can be determined in ANN model (ii) by 
their weights to the output layer. It is striking that both, the hour unit, the day unit, 
and the month unit receive almost no weight and are therefore almost irrelevant to the 
model result. Only through the all-unit the electricity price forecast is achieved. Since 
the all-unit is comparable to the SLP, ANN model (ii) does not lead to a much better 
result than the SLP model. A possible explanation for this behavior is that only the 
interaction of the seasonal components and the lags provide a sufficient basis for the 
forecast. By visual examination of the forecast, it can be seen that the model shows a 
more repetitive result than the SLP, although here also unforeseeable distortions char-
acterize the forecast. 



In contrast to ANN model (ii), the weights in ANN model (iii) do no longer show 
seasonal structures. An interpretation of the individual weights is no longer possible. 
Even if there is still a strong weighting of a single hidden unit, the strongly correlative 
influence of the other hidden units on the forecast is clearly given. As already seen in 
the other MLP models, unpredictable distortions also shape the visual image of this 
model. 

Comparable to ANN model (iii), the LSTM of ANN model (iv) shows strongly 
correlative influence, but strictly divided in two hidden units, whereof one hidden unit 
shows an excitatory and another hidden unit an inhibitory behavior. Two further hid-
den units show low weights, so that their influence is very limited. Due to the compa-
rable architecture with ANN model (iii) the significantly higher forecasting accuracy 
is due to the ability to store the output of each unit and to feed it into this unit again 
(direct feedback). In other words: Not only the three lag variables fed into our model 
reflect autocorrelative effects but also the values stored inside the nets’ units to deal 
with long-term dependencies. Accordingly, the LSTM achieves significantly smooth-
er daily patterns, similar to the ARIMAX model. Like all other models, the LSTM is 
also unable to predict exogenous shocks, leading to some distortions. 

The superiority of the ARIMAX model and the LSTM network in comparison to 
the other ANN-architectures clearly shows that an additive consideration of seasonal 
effects for electricity prices is entirely sufficient. An alternative consideration of cor-
relation effects does not provide improved forecasting accuracy. Thus, the problem of 
electricity price prediction focuses on autocorrelation effects, which can be better 
considered in the LSTM network than in ARIMAX. 

Due to the fact, that all models are fed with the same data – including lagged vari-
ables – it is surprising, that the SLP and the MLP models are not able to smoothen the 
forecast. 

5 Conclusion 

The electricity price at the electricity exchange EEX shows daily, weekly, and annual 
seasonality patterns. Due to the cyclicality of the considered seasonal components 
there are non-linear correlative relationships between them. Thus, the present study 
deals methodologically with non-linear correlative and autocorrelative time series 
properties of the electricity spot price. We propose a systematic ANN-based approach 
to address this problem. The usage of different architectures sheds light on the 
strength of these relationships and their influence on electricity price prediction. 

A single layer perceptron shows lower forecasting accuracy than a standard 
ARIMAX model with binary coded seasonalities used as a benchmark. Possible rea-
sons for the poorer predictive quality can be specified: The non-linear activation func-
tion of the SLP and, above all, the missing MA term, which smooths the results in the 
ARIMAX model. 

A non-fully connectionist multi-layer perceptron (MLP) with seasonally specified 
aggregated units in the hidden layer is able to improve the forecasting accuracy only 
slightly, as correlative relationships of the components are taken into consideration 



individually. The non-fully connectionist MLP shows only low correlations and a 
specialization of one unit considering all information. Accordingly, the forecasting 
accuracy cannot be better than in the single layer perceptron by large extent. This gap 
is closed by the fully-connectionist MLP, where all interactive relationships between 
these components find their way into the forecasting model. Last but not least, the 
long short-term memory (LSTM) model provides the most accurate forecast, which, 
in addition to the correlative relationships already mentioned, also included autocor-
relative relationships on the endogenous side over several periods into the forecast. 

Appendix 

Table 2. Results of the ARIMAX-Model 

 March June September December 

value s.e. value s.e. value s.e. value s.e. 

ar1 16,785 0.0818 17,605 0.0824 16,935 0.0894 0.7862 0.1255 

ar2 -11,043 0.1066 -12,112 0.1092 -11,114 0.1202 0.1662 0.1668 

ar3 0.3519 0.0380 0.3903 0.0381 0.3529 0.0425 -0.0721 0.0563 

ma1 -15,174 0.0814 -16,130 0.0824 -15,439 0.0894 -0.6353 0.1257 

ma2 0.8308 0.0931 0.9595 0.0970 0.8666 0.1068 -0.2651 0.1491 

ma3 -0.3018 0.0280 -0.3372 0.0285 -0.3128 0.0306 -0.0772 0.0371 

Drift 0.0005 0.0044 0.0001 0.0042 0.0002 0.0042 0.0010 0.0054 

hour_2 -18,453 0.1422 -17,613 0.1392 -17,176 0.1398 -17,153 0.1446 

hour_3 -30,859 0.2203 -29,943 0.2139 -29,378 0.2151 -28,786 0.2218 

hour_4 -37,111 0.2784 -36,319 0.2701 -35,291 0.2719 -34,848 0.2807 

hour_5 -32,652 0.3187 -3,191 0.310 -31,394 0.3122 -30,797 0.3232 

hour_6 -14,848 0.3459 -14,952 0.3372 -15,193 0.3402 -13,675 0.3559 

hour_7 41,501 0.3649 38,950 0.3562 37,464 0.3600 39,900 0.3811 

hour_8 109,063 0.3791 105,241 0.3704 101,211 0.3750 103,164 0.4006 

hour_9 129,781 0.3905 126,016 0.3816 121,805 0.3868 124,477 0.4156 

hour_10 116,282 0.3994 115,104 0.3906 111,091 0.3960 112,707 0.4266 

hour_11 97,316 0.4059 95,963 0.3972 92,259 0.4027 94,941 0.4342 

hour_12 90,601 0.4097 89,239 0.4012 85,333 0.4066 88,454 0.4387 

hour_13 6,581 0.411 65,081 0.4026 61,004 0.4080 62,931 0.4401 

hour_14 50,199 0.4097 49,358 0.4012 44,923 0.4066 46,252 0.4387 

hour_15 42,780 0.4059 41,889 0.3972 37,259 0.4027 38,261 0.4342 

hour_16 53,135 0.3994 52,199 0.3906 48,610 0.3961 50,092 0.4266 

hour_17 70,571 0.3905 69,398 0.3816 66,280 0.3868 69,080 0.4156 

hour_18 123,009 0.3792 121,728 0.3704 117,915 0.3750 121,331 0.4007 

hour_19 152,748 0.3649 149,034 0.3562 145,497 0.3600 148,915 0.3811 

hour_20 158,221 0.3460 152,503 0.3373 149,039 0.3402 151,111 0.3560 

hour_21 121,306 0.3188 117,335 0.3101 114,028 0.3123 116,188 0.3233 

hour_22 83,177 0.2784 80,509 0.2702 77,582 0.2719 80,662 0.2808 

hour_23 66,735 0.2204 63,935 0.2140 61,303 0.2152 63,509 0.2219 

hour_24 18,964 0.1423 17,294 0.1393 17,434 0.1400 19,562 0.1448 

month_2 22,998 22,506 0.0658 22,414 -0.1652 22,475 0.7607 23,861 

month_3 46,908 35,353 0.9387 30,205 0.3728 30,296 19,532 32,245 



month_4 147,643 39,119 -19,747 35,096 -27,742 35,208 -11,062 37,491 

month_5 103,643 41,226 180,039 39,284 168,511 39,372 198,808 41,808 

month_6 93,538 42,189 147,728 42,176 156,443 41,431 192,500 44,097 

month_7 87,065 42,244 137,409 42,218 149,274 42,407 189,628 45,211 

month_8 53,909 41,181 95,537 41,188 118,970 42,519 160,880 45,387 

month_9 61,107 39,078 92,912 39,026 100,672 39,184 161,780 44,395 

month_10 73,183 35,688 97,470 35,608 104,586 35,773 89,663 42,306 

month_11 23,042 30,485 36,872 30,405 42,197 30,533 59,004 37,933 

month_12 47,579 23,006 52,791 22,842 55,008 22,983 57,146 24,238 

wd 1 0.9330 0.3424 12,777 0.3340 11,154 0.3353 11,521 0.3483 

wd 2 2,440 0.436 26,445 0.4270 24,740 0.4301 25,381 0.4457 

wd 3 29,576 0.4654 29,748 0.4607 29,731 0.4627 29,139 0.4810 

wd 4 27,587 0.4625 27,150 0.4577 28,138 0.4592 25,464 0.4775 

wd 5 23,663 0.4211 25,284 0.4171 25,871 0.4173 22,658 0.4356 

wd 6 20,898 0.3233 21,893 0.3221 20,446 0.3230 17,206 0.3371 

sigma^2 13.51 13.17 13.28 14.38 

log likeli -47705.96 -47481.28 -47557.49 -48251.5 

AIC 95507.92 95058.56 95210.98 96599.01 

AICc 95508.19 95058.83 95211.25 96599.27 

BIC 95881.00 95431.63 95584.05 96972.08 

 
  



  

  

  

  

  

Fig. 4. Out of Sample Excerpt: Forecast vs Real Time Series on March (l) and December (r). 
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