
Toward Synthesis of Event-Pattern Detectors for
Event Complex Processing with Using Machine

Learning

Grygoriy Zholtkevych1, Stanislav Lukyanenko2, and
Natalya Polyakovska1

1 Math and Comp. Sci. School, V.N. Karazin Kharkiv National University
4, Svobody Sqr., Kharkiv, 61022, Ukraine

g.zholtkevych@karazin.ua; natalipolyakovska@gmail.com
2 Department of Informatics, Technical University of Munich

3, Boltzmannstr., 85748, Garching, Germany
stlukyanenko@gmail.com

Abstract. The tendency to expand the use of event-driven architec-
ture leads to the need to improve the efficiency of designing components
of such systems, in particular, event-pattern detectors. Authors of the
paper propose to use machine-learning to automate designing processes
of event-pattern detectors. For substantiating their opinion, the authors
conducted a series of computer experiments, showing that the idea is not
groundless. Summing up, the authors draw attention to the issues that
require further research aimed at creating information technology for the
synthesis of event-pattern detectors.

Keywords: event-driven-architecture, self-delimiting Turing machine,
event stream processing, event-pattern detector, machine learning algo-
rithm, computer experiment

1 Introduction

Global network solutions, based on the Internet platform, which include
besides software components various subsystems of information registra-
tion and executive physical subsystems form the class of complex systems
developing successfully nowadays. This class of systems is called Internet-
of-Things (IoT) [1]. It can be considered as the subclass of the more wide
class of systems so-called cyber-physical systems (CPS) [7]. From an archi-
tectural point of view, systems of this class are distributed systems whose
integrity is maintained through the interaction of system components by
messaging. This architectural approach is known as Message-Driven Ar-
chitecture, wich is more known as Event-Driven Architecture (EDA) [2].

Realisation of EDA for information systems is known as Event Stream
Processing (ESP). ESP is a complex of technological tools designed for



assisting the development of event-driven information systems [5]. One of
the most important units of ESP systems is the event-pattern detector.
The main purpose of the detector associated with a system component is
the accumulation of a sequence of messages about events that are relevant
to this component, and at the moment when the accumulated informa-
tion becomes sufficient to make a decision about the class of the current
situation, it transmits the corresponding message to the executive system.

The mathematical model of such a system is proposed in [10], and the
“black box” models associated with such systems is studied in [9].

In this paper, we propose to discuss the possibility of using machine
learning methods for automating synthesis process of one simple but im-
portant class of event-pattern detectors. We use some ideas contained in
[3] and [4].

2 Mathematical Model of Detectors

To build a mathematical model of an event-pattern detector, we need to
establish how the detector interacts with other components of the ESP
system or, in other words, what is the system context of the detector.
This context is presented in Fig. 1. This sequence diagram is the same as
the diagram in [10, Fig. 2, p. 105] excepting some insignificant changes.
We use this sequence diagram as a framework for building a mathematical
model of event-pattern detectors used in ESP systems.

We accept the following series of suggestions, which is the base for
building a mathematical model of the detector.

Suggestion 1. Each message is characterised by its class that is uniquely
determined and belongs the finite predefined set of event classes. A mes-
sage can contain additional information but this information is used by
executive systems only.

Suggestion 2. There are a finite set of event-patterns and each event-
pattern is a language over event classes.

Suggestion 3. Any infinite sequence of messages contains at most one
message that a detector accepts and, therefore, classifies.

Suggestion 4. A detector halts immediately if it has made a decision
about belonging to some class of the received word otherwise it continues
waits for an additional information to continue the analysis.

These suggestions lead us to the following mathematical model, which we
call a pattern-detecting machine.



msg
put(msg)

:Detector

:Dispatcher:Buffer:Listener

start()

loop

set(INITIAL)

loop
get()

msgs

analise(msgs)

decision

opt [decision 6=
UNKNOW]

reset()

:Detector
set(decision)

par

b
job for processing

Fig. 1. Detector Context in an ESP System

Definition 1. Let Σ and Π be finite sets called the event class set and
the pattern set respectively then an event detector is a computable prefix-
free partial mapping from Σ+ into Π .

In this definition the following notation and concepts are used:
Σ+ refers to the set of all finite non-empty sequences (non-empty words)
of elements belonging to Σ ;
a prefix-free partial mapping means that this mapping is defined on a
subset of words that cannot contain a proper prefix of a word if it contains
the word;
a computable mapping means that for the mapping, there exists a Turing



machine that halts on a word if and only if this word belongs to the
domain of the mapping and the mapping value on the word coincides
with output of the Turing machine.

The above suggestions cause to the conclusion that a self-delimiting
Turing machine is adequate and the most general mathematical model of
an event-pattern detector. We give the corresponding definition following
[8, see Sections 4.3 and 4.4] with minor changes.

Definition 2. An event-pattern detector with the class set Σ and the
pattern set Π where Σ and Π are finite sets is a Turing machine with
two tapes, one of which is called the input tape, i.e. it is right-way infinite
and its head can move only to the right, and another is called the working
tape, i.e. it is two-way infinite and the behaviour of its head is not limited.
In addition, Σ is an alphabet of the input type and it is assumed that each
its cell has filled before the start of detector operation.
Finally, elements of Π are uniquely associated with final states of the
machine. Thus, the machine makes a decision at the moment of its halting
and this decision is the element of Π associated with the corresponding
final state.

Bearing in mind that a general self-delimiting Turing machine is an overly
complex object, we confine ourselves to some simple subclass of these
machines, namely, the subclass of those machines that do not have a
working tape.

3 Regular Event-Pattern Detectors

In the case where a self-delimiting Turing machine does not have the
working tape, it can be described similarly to a finite state machine.

Definition 3. A regular event-pattern detector is determined by a quin-
tuple D = (Σ,Π,Q, q0, δ) where

– Σ is a finite alphabet of message classes;
– Π is a finite alphabet of decisions;
– Q is a finite set of machine states;
– q0 ∈ Q is some selected state, called the initial state;
– δ : Q×Σ → Q

⋃
Π is a mapping called the transition function.

Now we define the relation `⊂ Σ+×Π that models deriving the decision
for the given input in the following manner

for a1 . . . an ∈ Σ+ and α ∈ Π , there exists q1, . . . , qn−1 ∈ Q
such that

qk = δ(qk−1, ak) for all 0 < k < n , and α = δ(qn−1, an) .

(1)



Using mathematical induction gives the following statement.

Proposition 1. If u ` α for u ∈ Σ+ and α ∈ Π then u determines
uniquely α , i.e. if u ` α and u ` α′ for α, α′ ∈ Π then α′ = α .

Now we can formulate the idea how to use machine learning for the
synthesis of regular event-pattern detectors.
Let us assume that for the system being designed, an expert community
has found some finite set T = {(uk, αk) ∈ Σ+ × Π | k = 1, . . . N} such
that the subset {uk | k = 1, . . . N} ⊂ Σ+ is prefix-free, in other words,
for any 0 < k 6= l ≤ N , neither uk is a prefix of ul nor ul is a prefix of uk .
Then we need to find a regular event-pattern detector such that ensures
uk ` αk for all (uk, αk) ∈ T and k = 1, . . . , N under condition that the
number of states of the detector is minimal.

4 Regular Detector Synthesis Algorithm

For the synthesis of a regular event-pattern detector according to the
aforementioned idea, we use a two-step method. The first step provides
to build a tree-like detector DT and the second step provides to improve
this detector reducing it while this is possible. The reduced completely
detector D is considered as the required.

The algorithm of the first step is presented in Alg. 1. A simple analysis
of this algorithm shows that detector DT ensures u ` α for some u ∈ Σ+

and α ∈ Π if and only if (u, α) ∈ T .
The algorithm of the second step is presented in Alg 2. A simple

analysis of the presented algorithm shows

1. for any (u, α) ∈ T , the deriving u ` α is preserved for the detector
D ;

2. each step of the algorithm loop does not increase the number of states
of the detector.

5 Estimation of Algorithm Efficiency

To evaluate the algorithm, we use an experimental environment, that
randomly generates a detector D accordingly to Def. 3 based on fixed
alphabet Σ, set of decisions Π and a number of possible states M . In
these experiments we use common set of possible decisions and a common
alphabet. We assign a random α ∈ Π to every possible terminal.

We use such a detector D to generate stochastically paths, ending in
terminal nodes. Such paths represents the behaviour of word recognition,



Data: An alphabets Σ and Π and set T
Result: The tree-like detector DT

q0 ← ε;
Q← {q0};
T∗ = {u ∈ Σ+ | (u, α) ∈ T for some α ∈ Π};
for u ∈ T∗ do

Q← Q
⋃
{u′ ∈ Σ+ | u′ is any proper prefix of u}

end
Q← Q

⋃
{trash};

for u ∈ Q , a ∈ Σ do
if ua ∈ Q then

def δ(u, a) = ua
else if (ua, α) ∈ T then

def δ(u, a) = α
else

def δ(u, a) = trash
end

end
for a ∈ Σ do

def δ(trash, a) = trash
end
return (Σ,Π,Q, q0, δ);

Algorithm 1: Building a tree-like detector

thus for every possible detector D we are able to generate a set of pairs
T = {(uk, αk) ∈ Σ+ × Π | 1 < k ≤ N} of recognised words T∗ as in
Alg. 1.

For every generated detector D from the corresponding DT using the
aforementioned algorithm, we generate a model detector D∗.

The accuracy of the synthesis is estimated as the probability to make
the same decision by both detectors D and D∗ .

Data: A tree-like detector DT

Result: The synthesised detector D
D = DT ;
for q ∈ Q , a ∈ Σ do

if δ(q, a) = trash then
x is the result of random choice from Q

⋃
Π;

redef δ(q, a) = x;
minimise the modified detector D using Hopcroft’s algorithms [6]

end

end
return D

Algorithm 2: Reduction algorithm



After which, we check model’s accuracy based on a D. One can see in

Fig. 2. Consistency between detectors D and D∗

Fig. 2 that the accuracy of the implemented algorithm for a detector with
the two-element set of decisions under certain circumstances can reach up
to 0.891 .

In the Fig. 3, the dependence of accuracy of synthesis on the number
of states of the current detector in the learning process.



Fig. 3. The dependence of synthesis accuracy on the number of states in the etalon
detector

6 Conclusion

Summing up, we can state that the idea of using machine learning algo-
rithms in the design of event detectors is not unreasonable. Nevertheless,
this document raises a number of problems that need to be solved in
the process of creating information technology for the synthesis of event-
pattern detectors on the base machine learning algorithms.

Such problems include

Problem 1. Is it true thatD = Pr− lim
T→D

DT for any regular event-pattern

detector D ?

For the special case, when Π contains only two elements this statement
transforms into the following statement.

Problem 2. Is it true that L = Pr− lim
T→L

T where T is finite and T ⊂ L

for any regular language L ?

Problem 3. Is it possible to improve the convergence of the algorithm by
considering not only the set of confirmatory samples but also the set of
counterexamples?



References

1. Overview of the Internet of Things. Recomendation ITU-T Y.4000/Y.2060, Inter-
national Telecommunication Union (2012)

2. Chandy, K.M., Charpentier, M., Capponi, A.: Towards a theory of events. In:
Proceedings of the 2007 Inaugural International Conference on Distributed Event-
based Systems. pp. 180–187. DEBS ’07, ACM, New York, NY, USA (2007)

3. Dorozhynsky, V.: Regular complex event processing machine. Information Process-
ing Systems 133(8), 82–86 (2015)

4. Dorozhynsky, V.: Mathematical models for specification and analysis of the event-
driven system components. PhD Thesis, School of Mathematics and Computer
Science at V.N. Karazin Karkiv National University, 4, Svobody sqr., Kharkiv,
61022, Ukraine (2016)

5. Etzion, O., Niblett, P.: Event Processing in Action. Manning Publications Co.,
Greenwich, CT, USA (2010)

6. Hopcroft, J.: An n logn algorithm for minimizing states in a finite automaton. In:
Theory of machines and computations. pp. 189–196. Academic Press, New York
(1971)

7. Khaitan, S.K., McCalley, J.D.: Design techniques and applications of cyber phys-
ical systems: A survey. IEEE Systems Journal 9(2), 350–365 (2014)

8. Shen, A., Uspensky, V.A., Vereshchagin, N.: Kolmogorov Complexity and Algo-
rithmic Randomness, Mathematical Surveys and Monographs, vol. 220. American
Mathematical Society (2017)

9. Zholtkevych, G.: Realisation of synchronous and asynchronous black boxes using
machines. In: V. Yakovyna, et al. (eds.) ICT in Education, Research, and Indus-
trial Applications. CCIS, vol. 594, pp. 124–139. Springer Iternational Publishing,
Switzerland (2015)

10. Zholtkevych, G., Novikov, B., Dorozhynsky, V.: Pre-automata and complex event
processing. In: V. Ermolayev, et al. (eds.) ICT in Education, Research, and In-
dustrial Applications. pp. 100–116. CCIS, Springer Cham, Heidelberg New York
Dordrecht London (2014)


