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Abstract. Elliptic curves are mathematical basis for digital signature 
processing. In this case, the processing of the elliptic curve points is based on 
the operations in the Galois fields GF(pm). Comparison of multipliers' hardware 
costs for Galois fields with different characteristics p is carried out in the work. 
The multipliers are intended for use as part of the cryptographic data protection 
system that is implemented on the FPGA. VHDL-descriptions of multipliers 
(cores) were created with the help of the developed core generator. It was found 
that hardware multipliers that process elements of the fields with characteristics 
2, 3 and 7 ) and with approximately equal order and the representation of these 
elements in a polynomial basis have a lower hardware complexity than 
multipliers for Galois fields with other characteristics. Software complexity of 
multipliers for Galois fields GF(pm) with approximately equal order and the 
representation of these elements in a polynomial basis is also investigated. It 
was found that software multipliers that process elements of fields with 
characteristics 3, 5 and 7 have a higher time complexity (software complexity) 
than multipliers for Galois fields with other characteristics. 

Keywords: Galois field GF(dm), multiplier, modified Guild cell, LUT, core 
generator. 

1 Introduction 

In the implementation of algorithms for performing arithmetic operations in finite 
fields [9]  or Galois fields GF(pm) a large number of arithmetic and logical operations 
must be performed. The implementation of complex computational algorithms at the 
level of logic elements is a common practice [6]. 

Currently, in the practice of cryptographic data protection, logical fields GF(2m) 
and simple fields GF(p) are used. Fields with the characteristic p > 2 - GF(pm) are not 
used extensively. In this paper, hardware and software complexity of multipliers for 
Galois field elements GF(pm) with different field characteristics p but with 
approximately the same order is compared.  

In carrying out this work, on the basis of multiplier model proposed in [1 and 5] its 
implementation was carried out and the results of the hardware complexity estimation 



(previously obtained theoretically) was obtained It was shown that the hardware 
complexity will be the smallest for the fields with the characteristic 2. 

In [1, 2] a theoretical comparison of the hardware complexity of the multipliers of 
Galois fields GF(pm) with different characteristics p was made. It was seen that 
multipliers for fields with characteristic 3 and 7 implemented on modern FPGAs that 
have logical blocks with 6 inputs and 1 output  have the least hardware complexity. In 
[1] comparisons of Galois multipliers based on Modified Guild Cells (MGC) were 
considered. The MGC was considered to be an black box (read only memory, ROM) 
or a set of multiplier and adder [1]. In [2] estimation of hardware costs of Galois field 
multipliers in case when the MGC is consist of logical elements was made. The 
Galois field multiplier time complexity was also performed, advantage of Galois 
fields with field characteristics greater than 2 was shown and a comparison of the 
structural complexity [3] of the Galois fields GF(pm) multipliers for different field 
characteristic p was made. 

The most common methods of hacking computer systems are software brute force 
method, that is, a simple override of keys that can be implemented on supercomputers 
or quantum computers. Well known hacking methods were taken into account in 
determining the vulnerability of cryptographic data protection systems that use Galois 
fields with different field characteristics to hacking. In [5] a comparison of software 
implementations of the Galois multipliers was made. Software realizations of the 
multiplier for Galois field elements GF(2m) are well known.  

A multiplier core generator was developed to generate a multiplier for Galois fields 
with different characteristics and field orders. [4] describes methods for constructing 
of core generators. 

The purpose of this work is to compare FPGA hardware and software costs of 
multipliers for Galois field with different characteristics, but approximately the same 
order. The codes of Galois fields elements are represented in a polynomial basis.  

2 Hardware Implementation of Cryptographic Protection Units 
in FPGA 

To estimate the hardware costs of multipliers for various Galois fields, an automated 
system (core generator) for configuration of data protection unit models was 
developed. 

The purpose of the system is to form a VHDL-description of a necessary unit with 
necessary characteristics. To accomplish this task, the generator uses the base 
configurable unit model in the form of its VHDL-description (template) [4]. 

The generator determines which parts of the base model will be needed for a 
selected unit and performs adjustment of corresponding parameters of each selected 
element of the base model. A word processor was developed for VHDL-code 
generation from the base model of the configured unit. 

Configuration options include the type of unit, field characteristic p, and field 
order m. 



The list of cells that can be generated includes modified Guild cells for the field 
with characteristic p, carry generation cells F, as well as the actual multiplier. 

The word processor generates VHDL-description in accordance with the template, 
taking into account the parameters of the unit. The VHDL-generator of the Galois 
field multipliers implements 2 variants of the multipliers: in the first variant the MGC 
is treated as an integer component (black box, read only memory, ROM) and in the 
second variant the MGC consists of a multiplier and an adder. 

The generator of VHDL-descriptions of multipliers consists of the following parts 
(Fig. 1): 

 module for inverter F creation; 
 module for multiplier MUL and adder SUM creation; 
 module for element MGC creation; 
 module for creating and filling the matrix with F elements and the links 

between them; 
 module for creating and filling the matrix with MGC elements and the links 

between them. 
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Fig. 1. Structural diagram of VHDL-descriptions generator of Galois field GF(pm) elements 
multipliers  

The program modules which are responsible for creating the F and MGC elements for 
both cases use the common part of the program to minimize logical functions. 

Intermediate results of the VHDL-descriptions generator are stored in files. This 
allows the user to see what changes occur with the function at each stage. 

In Fig. 2 the internal structure of the MGC is presented in case of its 
implementation a) as a "black box" and b) as modular multiplier and adder, on the 
example of the multiplier for Galois Field GF(34).  

In Fig. 3 the internal structure of generated multiplier for Galois Field GF(34) is 
presented. The inverter F performs operation B=(-A)modp.  

 



 
Fig. 2. Implementation of MGC for Galois fields GF(3m): a) as "black box" (BB); b) as 

“Multiplier plus Adder” (MA). 
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Fig. 3. Diagram of Galois Field GF(34) multiplier MUL (U1 – U16 – multiplier, U17 – U31 - 

modulo convolution unit, divider) 



In the first case, two logical functions S(1) and S(0) which depend on 6 variables 
(C(1:0), B(1:0), A(1:0)) are formed. The function S(1:0) forms the result of 
S = (A * B + C)mod3. In the second variant there are 4 logical functions, each of 
which depends on 4 variables, two of which form the result of multiplication 
F = A * Bmod3, and two others - result of adding S = (F + C) mod3. 

The projects in this work were created and simulated in the Active-HDL 9.1 
environment. The implementation was performed in the Xilinx ISE environment for 
Spartan 6 FPGA. 

The value of hardware costs and time delays for the implementation of the 
multipliers for GF(215), GF(39), GF(56), GF(75), GF(134) fields, which all have 
schemes similar to Fig. 3, are shown in Fig. 4 and Table 1. 

 With the graphics of Fig. 4, it can be seen that multiplier for GF(215) has the 
smallest hardware cost. Multipliers for field GF(215) has also the smallest time delays. 
It should also be noted that the multipliers for GF(39), GF(75) have hardware and 
performance rates, which are somewhat higher than logical fields multipliers. 

 
Fig. 4. Hardware costs of the Galois Field GF(215), GF(39), GF(56), GF(75), GF (134) 

multipliers for Spartan 6 FPGA: a) Multiplier plus Adder; b) "black box". 

3 Software Implementation of Cryptographic Data Protection 
Units 

3.1 Software Complexity.  

The hacking of cryptographic cipher on the basis of elliptic curves is mostly realized 
by the method of "brute force". To assess the stability of the cipher to breakdown, it is 
necessary to analyze the software complexity of arithmetic operations in the Galois 
fields. The most complicated arithmetic operation in the Galois fields GF(pm) is 
multiplication. For analysis, it was assumed that the multiplication operation is 
performed on a matrix multiplier. Matrix multiplier consists of modified Guild cells. 
The modified Guild cell can be considered either as a holistic element or as a set of 
multipliers and adder both by the modulus of the characteristic p of the field. The 



software complexity of multipliers in different Galois fields will be determined by the 
number of logical operations that must be performed to calculate 1 bit of the result. 

Table 1. Hardware costs (LUTs and slices) of Galois Field multipliers for Spartan 6 FPGA. 

Field MGS  
as  

MGC 
number 

Number 
of GF 

elements, 
% 

Number of 
LUTs in 

multipliers  

Number of 
slices in 

multipliers  

Number 
of inputs 

and 
outputs 

max 
delay, 

ns 

GF(215)  BB 435 101,3% 218 82 61 22 
GF(215)  MA 435 101,3% 205 86 61 26 
GF(39) BB 153 96,5% 312 138 74 31 
GF(39) MA 153 96,5% 298 106 74 47 
GF(56) BB 66 89,6% 1946 600 75 49 
GF(56) MA 66 89,6% 439 171 75 42 
GF(75) BB 45 95,4% 2534 963 63 37 
GF(75) MA 45 95,4% 258 103 63 31 
GF(134) BB 28 100% 7395 3031 68 42 
GF(134) MA 28 100% 2949 1018 68 86 

The Table 1 shows that the smallest hardware costs of the multiplier will be in the 
GF(215) field. Fields with characteristic 3 and 7 have higher hardware costs, 
respectively, of 45.36 and 25.85% for MGC as a multiplier and adder 

Table 2 shows the number of logical operations that need to be performed to 
simulate one modified Guild cell for fields with different characteristics. For analysis, 
fields with approximately the same number of elements are taken. The values given in 
Table 2 are based on the results of the synthesis of the corresponding MGS created by 
the core generator of cryptographic data protection units. 

Table 2. The number of logical elements for creating MGC. 

Galois field 
GF(pm) 

MGC is 
holistic 
element 

MGC consists from 
multiplier and adder 

The largest length of the 
MGC column (Fig. 3) 

GF(2100)  2 2 199 
GF(363) 28 30 125 
GF(543) 380 137 85 
GF(735) 440 129 69 
GF(1327) 3124 870 53 

3.2 The First Method of Software Complexity Estimation.  

To estimate the number of operations that need to be performed when modeling a 
MGC, its model is used in the form of a multiplier plus adder (consists of two ROMs, 
Fig. 2, b – the first mode of estimation). An option when the MGC is holistic element 
is not considered, since its software implementation needs in general more operations, 
as can be seen from Table 2. 



Each of MGC’s two elements can be imagined as a ROM, so the hardware 
complexity OMCG(p) of the MGC is the volume of this two ROMs: 
OMCG(p) = 2V(p)=2*2ni*no,  where  plog 22ni   is ROM input bits number and 

 plog 2no   is ROM output bits number.  

Then    p2log
1p2log2

p2log
p2log2

22*2)p(MCGO


 











 . 

The number NMGC of MGC in the Galois fields GF(pm) multiplier is 
NMGC(m) = m(2m-1). The full hardware complexity of the multiplier of the Galois 
field GF(pm) elements can be calculated as 

  1)-m(2m)m(N p2log
1p2log2

2)p(MCGO)p,m(MULO MGC







 . This 

value shows total number of bits which have to be calculated  during multiplication. 
Table 3 shows the hardware complexity of GF(pm) multipliers.  

Table 3. Hardware complexity of GF(pm) multipliers. 

Galois field 
GF(p m )

Hardware 
complexity

Relative 
hardware 

complexity

NC NV Software 
complexity

Relative 
software 

complexity

GF(2100) 159200 1,00 8 16 1244 1,00
GF(363) 20800 0,13 4 16 325 0,26
GF(543) 1403520 8,82 3 16 29240 23,51
GF(735) 927360 5,83 3 16 19320 15,53

GF(1327) 2930688 18,41 2 16 91584 73,64  
The software complexity of GF(pm) multipliers can be estimated as 

NVNC
)p,m(MULO

)p,m(SWO  , where NC is number of processor cores; 

NV is the number of vectors that the processor core can handle [7]. This value shows 
how many Galois Field elements each core can handle at a time. The element code 
length must be equal or less then vector length  plog 2VL   and  mNVNC  .            

The number of vectors NV and their length VL in modern processors are given in 
Table 4 [8]. Results of software complexity estimation are shown in Table 3. This 
mode of software complexity estimation gives incorrect results especially in case of 
Galois fields with big characteristics (Fig. 5). 



Table 4. The number of vectors and their length. 

Vector length, bit (VL) The number of vectors  (NV) 
8 8, 16 
16 4, 8 
32 2, 4, 16 
64 2, 8 
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Fig. 5. The relative software complexity of multiplication (the first method). 

3.3 The Second Method of Software Complexity Estimation.  

The software complexity of multiplication can also be estimated on the basis of 
arithmetic operations that can be performed in each MGC (the second mode of 
estimation). In one MGC, you must perform a multiplication, division, addition and 
re-division  operation. This method can be implemented by the MGC for the Galois 
field. Each MGC will perform 4 arithmetic operations, which have their weight - the 
ratio of its  execution time to execution time of logical operation. Take the weight of 
multiplication and division operation as 8, the weight of addition as 4. Thus, for the 
simulation of the work of the MGC, it is necessary to perform 4 arithmetic operations, 
which are equivalent to 28 logical operations. Estimation results are in Table 5 and in 
Fig. 6. 

3.4 The Third Method of Software Complexity Estimation.  

An estimation of software complexity of the multiplier on the basis of logical 
operations used for multiplication, division, addition is described below (the third 
estimation method). To estimate the complexity of the multiplier  it is necessary to 



calculate the complexity of the MGC. It performs Nbpm=  plog 2  bit-parallel 

multiplication operations, Nbprm=  plog 2  bit-parallel operations of reduction in 
modulus after multiplication (long division), Na=1 serial addition operation and 
Nbpra=1 bit-parallel operations of reduction in modulus after addition (short 
division). If we take that bit-parallel and serial operation have the same execution 
time then the complexity of the MGC can be estimated as total quantity Nbps of such 
operations Nbps =  Nbpm + Nbprm + Na +  Nbpra = 
=     )1plog(22plog2 22  . The scheme of the multiplier and divider is 
shown in Fig. 3. In general, for the implementation of the MGC, it is necessary to 
perform Nlo =     )1plog(8)1plog(24 22   logical operations, since we 
take that each multiplier and divider performs approximately 4 logical operations, for 
the implementation of a field with a characteristic of no more than W (where W is 
width of processor data bus), and     W/plog)1plog 22(8NLO   for a 
field with any other characteristic. MGC number is NMGC=m(2m-1). The formula 
for estimating the number of logical operations that is used to multiply 2 elements of a 
field:     W/)1m2(mplog)1plog 22(8NLOM  . Estimation results are 
in Table 6 and in Fig. 6. 

Table 5. The number of logical operations for the 2nd estimation method. 

Galois fields 
GF(pm) 

The total 
number of 

logical 
operations 

that must be 
performed 
for MGC 

The number of 
MGC in the 
multiplier 

The total number 
of logical 

operations that 
must be performed 

to multiply the 
elements of the 

field 

Relative 
software 

complexity 

GF(2100)  28 19900 557200 1 
GF(363) 28 7875 220500 0,39 
GF(543) 28 3655 102340 0,18 
GF(735) 28 2415 67620 0,12 
GF(1327) 28 1431 40068 0,07 

The results of the comparison of software complexity are shown in Fig. 6. 



Table 6.  The number of logic operations for the third method. 

Galois 
field 

GF(pm) 

The total 
number of 

logical 
operations that 

must be 
performed for 

MGC 

The number 
of MGC in 

the multiplier 

The total number 
of logical 

operations that 
must be performed 

to multiply the 
elements of the 

field 

Relative software 
complexity 

GF(2100)  16 19900 318400 1 
GF(363) 28 7875 220500 0,69 
GF(543) 40 3655 146200 0,45 
GF(735) 40 2415 96600 0,3 
GF(1327) 52 1431 74412 0,23 
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Fig. 6. Comparison of software complexity (squares, triangles – 2nd and 3rd estimation 

methods). 

4 Results 

The obtained results show that the modeling of the multiplier of the Galois field 
elements is better by the method of logical operations.  

 The software complexity of multiplier for a field with a small characteristics is the 
largest. That is, it will be harder to crack them. 

At the same time, the analysis of hardware implementation of multipliers shows 
that the hardware complexity of multipliers for fields with characteristics 2, 3 and 7 is 
the smallest. 



Thus, the use of hardware multipliers in Galois fields with characteristics 2, 3, and 
7 provides the best hardware parameters and complicates the task of modeling their 
work by hackers. 

5 Conclusion 

 
An automated system for configuring VHDL-descriptions of cryptographic data 
protection units has been developed. With its help, a family of multipliers of the 
Galois field elements was generated for the Galois fields with field characteristics 2, 
3, 5 7, 13 and a hardware cost analysis for their implementation on the FPGA of was 
performed. An analysis of the results of multiplier implementation has shown that the 
least hardware costs will be in multipliers of the Galois fields with the field 
characteristic 2. It is also shown that extended fields with approximately the same 
number of elements and small characteristics have low hardware and high software 
complexity. 
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