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Abstract. The aim of this paper is to propose the approach to choosing the most 
reliable architecture of reactor trip system. The industrial case is based on the 
systems developed by the use of the platform «RadICS produced by RPC «Ra-
diy». The two-channel three-chassis and three-channel two-chassis architectures 
were analyzed using their reliability block diagrams (RBDs). The results of 
analysis show that no architecture among the given ones can be unconditionally 
considered the most reliable. The choice of the best alternative in terms of re-
liability can be made using the formulae proposed in the given paper, which al-
low to take into account the reliabilities of the blocks of RBDs and the percents 
of common failures for certain types of elements. The analytical expressions for 
the mean of the advantage and the percent of superiority cases in terms of relia-
bility were obtained for the considered architectures using the aforementioned 
formulae. The approach to searching the cases of maximal superiority in relia-
bility for the analyzed architectures has been proposed. The aforesaid analysis 
can be conducted for an arbitrary pair of architectures represented by their 
RBDs. 
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1 Introduction 

1.1 Motivation 

Reliability of reactor trip systems (RTS) is of great importance for safety of a nuclear 
power plant. Among such systems the ones based on the FPGA platform RadICS, 
developed and produced by RPC «Radiy», deserve considerable attention [1, 2]. As 
this platform allows implementation of systems with different architectures, it is ne-
cessary to have an approach to their comparison in terms of reliability. The two-
channel three-chassis architecture (2C3), briefly described in [1], and the three-
channel two-chassis (3C2) one, outlined in [2], are good examples of the aforesaid 
multeity. Their reliability block diagrams (RBDs) are given in Figure 1. 



 
 
Figure 1. Two-channel three-chassis (left) and three-channel two-chassis (right) RTSes [1, 2]. 

 
The signals of RTSes considered in this paper are formed on the basis of output 

signals of independent channels according to 1-out-of-2 (for 2C3) or 2-out-of-3 (for 
3C2) voting logic. The elements implementing these logics are designated in Figure 1 
as «1/2» and «2/3» blocks. Each channel uses output signals of its underlying chassis 
to generate a signal in obedience to one of the aforesaid voting logics [1, 2]. 

The chassis consist of five components: analogue and digital input modules, logic 
module, analogue and digital output modules. Each of these components is based on 
FPGA chips. All modules must be in working states to provide the failure-free opera-
tion of the chassis, the reliability of which is affected by physical and design faults. 
Therefore, the chassis are represented in Figure 1 as serially connected «pf» (physical 
faults) and «df» (design faults) blocks [2]. 

Usually RTS is developed using 2C3 architecture. It is caused by special require-
ments to safety critical systems which are joint by the principle of independence. This 
principle implies, firstly, independent forming of main and diverse signals for RTS by 
redundant and diverse channels, and, secondly, their separate placing in different 
constructions (for example, cabinets) [3]. However, in terms of reliability, 3C2 archi-
tecture can be more appropriate. Hence, there are two reasons to compare these archi-
tectures: 

1) it’s possible that there are other application areas where requirements regarding 
independence are not strong; 

2) in terms of safety, the benefits due to higher reliability could be more irrefutable 
than ones caused by independence. 

1.2 Objectives and an approach 

The aim of this research is to propose the approach to choosing the most reliable ver-
sion from the aforementioned pair of architectures. The proposed analysis algorithm 
can be performed in case of arbitrary pair of RBDs. 



Within the scope of this work the elements of the same type are considered to pos-
sess equal reliability. In the rest of this paper the RBDs and corresponding architec-
tures are designated as «left» and «right» for the purpose of brevity. 

The paper is structured as follows. Sections 2-4 are dedicated to consecutive con-
sideration of three cases, which differ in the number of parameters. The analysis be-
gins with the ideal case, where «1/2» and «2/3» blocks are absolutely reliable, and 
each next occasion generalizes the previous one. Section 5 is devoted to study of the 
case in which the underlying elements have such failure rates as in [1] and [2]. The 
obtained results and possible directions for further research are discussed in Section 6. 
Besides, this section gives some recommendations for choosing between the analyzed 
architectures. 

1.3 Related work 

There are a lot of papers [4-7] where typical KooN (1oo2, 2oo3, etc.) architectures 
have been researched. However, the RBDs in Figure 1 are more complex and imple-
ment the principle of a structural-version redundancy to minimize risk of common 
cause failures [8]. 

Besides, the reliability of such structures depends on more initial parameters, in 
particular, rates of failures due to physical and design faults of channels (versions), 
failure rates of voting units, diversity metrics and so on. 

Hence, choosing the most reliable architecture from the considered pair should be 
based on a detailed analysis of the effect of the aforesaid parameters on reliability 
indicators. 

2 Ideal case: Absolutely reliable «1/2» and «2/3» elements 

Let r denote the reliability of inputs of «1/2» and «2/3» blocks. In this case the relia-
bility formulae for absolutely reliable «1/2» and «2/3» elements are 2r - r2 and  
3r2 - 2r3 [9]. Thus, the reliability formulae for the left and right RBDs are 

 
                                    PL(p,q) = 2q(3p2 - 2p3) - q2(3p2 - 2p3)2,                               (1) 

                                   PR(p,q) = 3(2pq - p2q2)2 - 2(2pq - p2q2)3,                              (2) 
 

where p and q are reliabilities of the blocks prone to potential failures caused by «pf» 
(physical faults) and «df» (design faults), respectively.  

It can be supposed that for some values of p and q the right RBD surpasses the left 
one in terms of reliability, while for other values of the parameters the left RBD is the 
most reliable. Optimization algorithms for multivariate functions can be used to find 
such a pair (p, q) for which the reliability advantage of the right RBD over the left one 
is maximal (or minimal). This problem can be solved by the search of maximum and 
minimum of ∆P(p,q) = PR(p,q) - PL(p,q) with the constraints p, q ∈ (0; 1]. The com-
puting environment MATLAB can be used for the given purpose. 



The script for searching maximum and minimum of ∆P(p,q) can be written in the 
following way: 

 
dp = @(p,q) ((3*(2*p*q - p^2*q^2)^2 - ... 
2*(2*p*q - p^2*q^2)^3) - (2*q*(3*p^2 - 2*p^3) - ...  
q^2*(3*p^2 - 2*p^3)^2)); 
lp = createOptimProblem('fmincon','x0',[0.5,0.5], . .. 
'objective',@(x)(dp(x(1),x(2))),'lb',[0,0],'ub',[1, 1]); 
hp = createOptimProblem('fmincon','x0',[0.5,0.5], . .. 
'objective',@(x)(-dp(x(1),x(2))),'lb',[0,0],'ub',[1 ,1]); 
gs = GlobalSearch(); 
lr = run(gs, lp); 
hr = run(gs, hp); 
disp(join([" Minimum: ", lr, newline, "Maximum: ", hr])); 
 
The aforementioned computations lead to the results given in Table 1. 
 
Table 1. Cases of a maximal reliability advantage for the left and right RBDs. 
 

Advantageous structure p q ∆P 

Left structure 0.75 0.17333 0.1226 
Right structure 0.33333 1 0.1317 

 
The plot of ∆P(p,q), which is given in Figure 2, can be built using the given script: 
 

dp = @(p, q) ((3*(2*p*q - p^2*q^2)^2 - ... 
2*(2*p*q - p^2*q^2)^3) - (2*q*(3*p^2 - 2*p^3) - ...  
q^2*(3*p^2 - 2*p^3)^2)); 
fsurf(dp, [0, 1, 0, 1], "EdgeColor", "none", ... 
"MeshDensity", 200); 
colormap(gray); xlabel("p"); ylabel("q"); box on; 
 



 
 

Figure 2. The plot of ∆P(p,q). 
 

Brighter areas of the given plot correspond to higher values of ∆P(p,q), which indi-
cate a greater reliability advantage of the right RBD over the left one. 

Consider the expression H(∆P(p,q)), where H(x) is Heaviside step function, which 
equals 0 for x < 0 and 1 for x ≥ 0. This composite function is equal to 0 if for a pair 
(p, q) the left RBD surpasses the right one in terms of reliability. In other cases its 
value is 1. 

Figure 3 represents the plot of H(∆P(p,q)). The black area corresponds to the value 
pairs of p and q for which the left RBD is more reliable than the right one. The script 
for the given plot can be constructed as follows: 

 
dp = @(p, q) heaviside((3*(2*p*q - p^2*q^2)^2 - ...  
2*(2*p*q - p^2*q^2)^3) - (2*q*(3*p^2 - 2*p^3) - ...  
q^2*(3*p^2 - 2*p^3)^2)); 
fsurf(dp, [0, 1, 0, 1], "EdgeColor", "none", ... 
"MeshDensity", 200); 
colormap(gray); xlabel("p"); ylabel("q"); box on; 
 



 
 

Figure 3. The plot of H(∆P(p,q)). 
 
Let A denote the average value of ∆P(p,q) over all p, q ∈ (0; 1]. It can be found us-

ing the formula from [10] for the average value of a function over a region as follows: 
 

1 1

0 0

∆P(p,q)A = dpdq∫ ∫  

 
Let S denote the percent of cases in which the right RBD is more reliable than the 

left one. It can be obtained as multiplied by 100 average value of H(∆P(p,q)) over all  
p, q ∈ (0; 1]. By dint of the approach used for A, the following formula is found: 

 
1 1

0 0

H(∆P(p,q))dpdS = 1 q00∫ ∫  

 
The script for calculating the value of A can be written in the following way: 
 

syms p q 
dp = @(p, q) (3*(2*p*q - p^2*q^2)^2 - ... 



2*(2*p*q - p^2*q^2)^3) - (2*q*(3*p^2 - 2*p^3) - ...  
q^2*(3*p^2 - 2*p^3)^2); 
vpaintegral(vpaintegral(dp, p, [0 1]), q, [0 1]) 

 
In the case of S the script can be built as follows: 
 

syms p q 
hdp = @(p, q) 100*heaviside((3*(2*p*q - p^2*q^2)^2 - ... 
2*(2*p*q - p^2*q^2)^3) - (2*q*(3*p^2 - 2*p^3) - ...  
q^2*(3*p^2 - 2*p^3)^2)); 
vpaintegral(vpaintegral(hdp, p, [0 1], "AbsTol", .. . 
0.001), q, [0 1], "AbsTol", 0.001) 
 

The given computations yield A = -0.00537415 and S = 48.15. 

3 Ordinary case: Partially reliable «1/2» and «2/3» elements 

In the case of not absolutely reliable «1/2» and «2/3» elements, which have reliability 
values u and v respectively, the reliability formulae for the left and right RBDs can be 
written in the following way: 
 
                             PL(p,q,u,v) = u(2qv(3p2 - 2p3) - q2v2(3p2 - 2p3)2),                       (3) 
                            PR(p,q,u,v) = v(3u2(2pq - p2q2)2 - 2u3(2pq - p2q2)3).                     (4) 

 
The aforesaid formulae can be obtained using the modification of the approach for 

the ideal case, where the reliability formulae for «1/2» and «2/3» elements are re-
placed with the results of their multiplication by u and v, respectively. 

The script for searching global extrema of ∆P(p,q,u,v) = PR(p,q,u,v) - PL(p,q,u,v) 
with the constraints p, q, u, v ∈ (0; 1] can be written as follows: 
 
dp = @(p, q, u, v)((v*(3*u^2*(2*p*q - p^2*q^2)^2 - ... 
2*u^3*(2*p*q - p^2*q^2)^3) - u*(2*q*v*(3*p^2 - 2*p^ 3) ... 
- q^2*v^2*(3*p^2 - 2*p^3)^2)));  
lp = createOptimProblem('fmincon','x0',[0.5,0.5, .. . 
0.5,0.5],'objective',@(x)(dp(x(1),x(2),x(3),x(4))),  ... 
'lb',[0,0,0,0],'ub',[1,1,1,1]); 
hp = createOptimProblem('fmincon','x0',[0.5,0.5, .. . 
0.5,0.5],'objective',@(x)(-dp(x(1),x(2),x(3),x(4))) , ... 
'lb',[0,0,0,0],'ub',[1,1,1,1]); 
gs = GlobalSearch(); 
lr = run(gs, lp); 
hr = run(gs, hp); 
disp(join([" Minimum: ", lr, newline, "Maximum: ", hr])); 

 



The aforesaid computations yield the results given in Table 2. 
 
Table 2. Cases of a maximal reliability advantage for the left and right RBDs with 
partially reliable «1/2» and «2/3» elements. 

 
Advantageous structure p q u v ∆P 

Left structure 0.99967 1 1 0.5 0.25 
Right structure 0.33333 1 1 1 0.1317 

 
The mean of ∆P(p,q,u,v) is calculated according to the following formula: 

 

( )
11 1

0

1

0 00

∆P p,q,u,v dpdqA dudv = ∫ ∫∫ ∫  

 
The percent of cases in which the right RBD is more reliable: 

 

( )
1 1

0

1 1

0 0 0

H(∆P p,q,u,v )dS = 100 pdqdudv∫∫ ∫∫  

These formulae can be obtained using the corresponding approach for the ideal case. 
The script for calculating the value of A can be constructed in the following way: 
 

syms p q u v 
dp = @(p, q, u, v)((v*(3*u^2*(2*p*q - p^2*q^2)^2 - ... 
2*u^3*(2*p*q - p^2*q^2)^3) - u*(2*q*v*(3*p^2 - 2*p^ 3) ... 
- q^2*v^2*(3*p^2 - 2*p^3)^2)));  
vpaintegral(vpaintegral(vpaintegral(vpaintegral(dp,  ... 
p, [0 1], "AbsTol", 0.001), q, [0 1], "AbsTol", ...  
0.001), u, [0 1], "AbsTol", 0.001), v, [0 1], ... 
"AbsTol", 0.001) 



The value of S can be calculated using the following script: 

syms p q u v  
hdp = @(p, q, u, v) 100*heaviside((v*(3*u^2*(2*p*q - ... 
p^2*q^2)^2 - 2*u^3*(2*p*q - p^2*q^2)^3) - ... 
u*(2*q*v*(3*p^2 - 2*p^3) - q^2*v^2*(3*p^2 - 2*p^3)^ 2)));  
vpaintegral(vpaintegral(vpaintegral(vpaintegral(hdp , ... 
p, [0 1], "AbsTol", 1), q, [0 1], "AbsTol", 1), ...  
u, [0 1], "AbsTol", 1), v, [0 1], "AbsTol", 1) 

 
The given computations yield A ≈ -0.029 and S ≈ 5. 

4 Generalized case: Common failures in «pf» and «df» elements 

The previous case can be generalized by considering all «pf» and «df» blocks as hav-
ing 100h% and 100s% of common failures, respectively. The probability of failure-
free operation for the given RBDs under the condition of absence of common failure 
can be calculated using (3) and (4) by substituting 
 

x = p / (1 - h(1 - p)) for p, 
y = q / (1 - s(1 - q)) for q. 

 
The formulae for x and y represent the reliability of «pf» and «df» elements provided 
that situations leading to common failure do not happen. 

The probability of common failure absence equals 
  

(1 - h(1 - p))(1 - s(1 - q)) = (p / x)(q / y). 
 
The aforementioned RBDs are not able to function properly in case of common 

failure, so their reliability formulae can be written in the following way: 
 
              PL(p,q,u,v,h,s) = u(2yv(3x2 - 2x3) - y2v2(3x2 - 2x3)2)(p / x)(q / y),               (5) 
            PR(p,q,u,v,h,s) = v(3u2(2xy - x2y2)2 - 2u3(2xy - x2y2)3)(p / x)(q / y).            (6) 

 
The mean of ∆P(p,q,u,v,h,s) is calculated as follows: 
 

( )
1 1 1 1

0 0

1 1

0 0 0 0

∆P p,q,u,v,h,s dpdqdudA = vds dh∫ ∫ ∫ ∫ ∫ ∫  

 
The percent of cases in which the right RBD is more reliable: 

 

( )
1 1 1 1

0

1

0 00 0

1

0

H(∆P p,q,u,v,h,s dpdqS = 100 dudvdsdh)∫ ∫ ∫ ∫∫ ∫  



5 Case study: Specified failure rates of «pf» and «df» blocks 

In the papers [1] and [2], where the aforesaid architectures have been investigated in 
terms of Markov analysis, the considered failure rate of «pf» block is 10-4 h-1. For 
«df» elements the examined values of this parameter, given in 10-6 h-1, are 10, 25, 50 
and 75. Other blocks are regarded as absolutely reliable. 

Within the scope of this case study, the analyzed RBDs are considered for parame-
ters chosen as described above. Thus, the reliability formulae for the ideal case, which 
are given in Section 2, can be used. The probability of failure-free operation during t 
hours for «pf» and «df» blocks can be calculated using the following expressions: 

 
Ppf (t) = exp(-λpf ·  t), 
Pdf (t) = exp(-λdf ·  t), 

 
where λpf and λdf are failure rates of «pf» and «df» elements, respectively [11]. Hence, 
the reliability values of the considered RBDs at the time moment t can be obtained 
using (1) and (2) by substituting Ppf (t) for p and Pdf (t) for q. 

The aforementioned approach can be used to prove that if t ≥ 7000 h, each of the 
analyzed RBDs has reliability less than 0.85 for any of the considered failure rate sets. 
Thus, the given architectures should not be used during a larger time spans, if their 
parameters are as described above. Consequently, in this case study it is sufficient to 
analyze the given RBDs only for t less than 7000 h. Other time intervals are irrelevant 
to choosing the preferable architecture and therefore not considered. 

The script for searching minimum of the difference between the reliability values 
of the right and left RBDs in a specified range of time spans can be written as follows: 
 
LP = 1e-4; LD = 10 * 1e-6; ST = 0; FN = 7000;  
p = @(t) exp(-LP * t); 
q = @(t) exp(-LD * t); 
R = @(t) (3*(2*p(t)*q(t) - (p(t))^2*(q(t))^2)^2 - . .. 
2*(2*p(t)*q(t) - (p(t))^2*(q(t))^2)^3); 
L = @(t) (2*q(t)*(3*(p(t))^2 - 2*(p(t))^3) - ... 
(q(t))^2*(3*(p(t))^2 - 2*(p(t))^3)^2); 
m = createOptimProblem('fmincon','x0',[(ST+FN)/2], ... 
'objective',@(t)(R(t) - L(t)),'lb',[ST],'ub',[FN]);  
g = GlobalSearch(); 
[x, y] = run(g, m); 
disp(join([" Minimum: ", y])); 

 
The first line of the given code determines such parameters as λpf, λdf and the ex-

amined range of time intervals, which in this study is set to (0; 7000) h. The result 
returned by this script is nonnegative for each of the aforementioned failure rate sets. 
Thus, for any time interval less than 7000 h the right RBD is more reliable in all cases 
examined above. Hence, the right architecture is preferable for all pairs (λpf, λdf) con-
sidered in this section. 



6 Conclusion 

6.1 Discussion and future steps 

No architecture among the given ones can be unconditionally considered the most 
reliable, so the reliability formulae for their RBDs have been obtained in order to 
make possible the choice of the most reliable alternative. These formulae allow to 
take into account the reliabilities of the underlying elements of the aforementioned 
RBDs and the percents of common failures for «pf» and «df» elements. The aforesaid 
analytical expressions have been used to obtain the formula for the mean of the relia-
bility advantage of the right RBD over the left one as well as the expression for the 
percent of cases in which the right architecture is more reliable. The approach to find-
ing the cases of maximal reliability advantage for the left and right architectures has 
been proposed. The given analysis can be conducted for an arbitrary pair of RBDs. 

Future research can be dedicated to development of a decision-making system for 
choosing between the given architectures, which considers all parameters and stan-
dard requirements for RTS or other similar safety-critical systems. 

6.2 Recommendations for choosing an architecture 

If reliability of the underlying elements can be estimated precisely, a preferable archi-
tecture can be chosen using the aforementioned reliability formulas for the analyzed 
RBDs. In particular, for the case of the underlying blocks having such failure rates as 
described in the first paragraph of Section 5, the right architecture is recommended. 

However, the results of this research also allow to give guidances for some occa-
sions, where the reliability values for elements of the given RBDs are known only 
partially. The most important of these recommendations are listed below. 

In the ideal case, which is described in Section 2, the right architecture should be 
used if the reliability of «df» block is greater than 0.6, and the left one is preferable if 
this parameter is less than 0.29. 

For the ordinary case, which is considered in Section 3, the left architecture is more 
reliable for about 95% of all possible reliability parameter sets characterizing the 
blocks of the given RBDs. Thus, if there is no information about the reliability of the 
underlying elements (e.g., due to their degradation), the left architecture is preferable. 
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