CEUR-WS.org/Vol-2104/paper_267.pdf

Compar ative Reliability Analysis of Reactor Trip System

11

Architectures: Industrial Case

Aleksei Vambat and Vyacheslav Kharchenko

! Department of Computer Systems, Networks and Cyhefisgc
National Aerospace University «KhAl», Kharkiv, Ukra
2Centre for Safety Infrastructure-Oriented Research/malysis,
RPC Radiy, Kropyvnytskyi, Ukraine

{o.vambol,v.kharchenko}@csn.khai.edu

Abstract. The aim of this paper is to propose the approaaoosing the most
reliable architecture of reactor trip system. Theuistrial case is based on the
systems developed by the use of the platform «Ra@iG8uced by RPC «Ra-
diy». The two-channel three-chassis and three-afdamo-chassis architectures
were analyzed using their reliability block diageafRBDs). The results of
analysis show that no architecture among the givas can be unconditionally
considered the most reliable. The choice of the aksrnative in terms of re-
liability can be made using the formulae proposethe given paper, which al-
low to take into account the reliabilities of thiedks of RBDs and the percents
of common failures for certain types of elementse &nalytical expressions for
the mean of the advantage and the percent of sujpgigases in terms of relia-
bility were obtained for the considered architeetuusing the aforementioned
formulae. The approach to searching the cases wihmhsuperiority in relia-
bility for the analyzed architectures has been psepd. The aforesaid analysis
can be conducted for an arbitrary pair of architexs represented by their
RBDs.

Keywords: reliability, reactor trip system, comparative a:s&, common cause
failure, RadICS

I ntroduction

M otivation

Reliability of reactor trip systems (RTS) is of gtémportance for safety of a nuclear
power plant. Among such systems the ones basetheorPGA platform RadICS,
developed and produced by RPC «Radiy», deservadayable attention [1, 2]. As
this platform allows implementation of systems wdlifferent architectures, it is ne-
cessary to have an approach to their comparisaerms of reliability. The two-
channel three-chassis architecture (2C3), brieftigcdbed in [1], and the three-
channel two-chassis (3C2) one, outlined in [2], goed examples of the aforesaid
multeity. Their reliability block diagrams (RBDsheagiven in Figure 1.
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Figure 1. Two-channel three-chassis (left) and three-chatweelchassis (right) RTSes [1, 2].

The signals of RTSes considered in this paper @mdd on the basis of output
signals of independent channels according to 1edat{for 2C3) or 2-out-of-3 (for
3C2) voting logic. The elements implementing thieggcs are designated in Figure 1
as «1/2» and «2/3» blocks. Each channel uses osignals of its underlying chassis
to generate a signal in obedience to one of theesdid voting logics [1, 2].

The chassis consist of five components: analogdedagital input modules, logic
module, analogue and digital output modules. Eddhese components is based on
FPGA chips. All modules must be in working stategtovide the failure-free opera-
tion of the chassis, the reliability of which ideafted by physical and design faults.
Therefore, the chassis are represented in Figaseskrially connected «pf» (physical
faults) and «df» (design faults) blocks [2].

Usually RTS is developed using 2C3 architecturés ttaused by special require-
ments to safety critical systems which are jointhwy principle of independence. This
principle implies, firstly, independent forming owfain and diverse signals for RTS by
redundant and diverse channels, and, secondly; sepiarate placing in different
constructions (for example, cabinets) [3]. Howewerterms of reliability, 3C2 archi-
tecture can be more appropriate. Hence, therenaregasons to compare these archi-
tectures:

1) it's possible that there are other applicatiozaa where requirements regarding
independence are not strong;

2) in terms of safety, the benefits due to higlediability could be more irrefutable
than ones caused by independence.

1.2  Objectivesand an approach

The aim of this research is to propose the apprtachoosing the most reliable ver-
sion from the aforementioned pair of architectuiidse proposed analysis algorithm
can be performed in case of arbitrary pair of RBDs.



Within the scope of this work the elements of tame type are considered to pos-
sess equal reliability. In the rest of this pager RBDs and corresponding architec-
tures are designated as «left» and «right» fopthipose of brevity.

The paper is structured as follows. Sections 2edd@dicated to consecutive con-
sideration of three cases, which differ in the nambf parameters. The analysis be-
gins with the ideal case, where «1/2» and «2/3sKsi@are absolutely reliable, and
each next occasion generalizes the previous o086 is devoted to study of the
case in which the underlying elements have sudbréarates as in [1] and [2]. The
obtained results and possible directions for furtkeearch are discussed in Section 6.
Besides, this section gives some recommendationshfinsing between the analyzed
architectures.

1.3 Related work

There are a lot of papers [4-7] where typical Kodeo2, 2003, etc.) architectures
have been researched. However, the RBDs in Figame Inore complex and imple-
ment the principle of a structural-version redur@ato minimize risk of common
cause failures [8].

Besides, the reliability of such structures depemwlsnore initial parameters, in
particular, rates of failures due to physical amgign faults of channels (versions),
failure rates of voting units, diversity metricsdaso on.

Hence, choosing the most reliable architecture ftioenconsidered pair should be
based on a detailed analysis of the effect of feeaaid parameters on reliability
indicators.

2 Ideal case: Absolutely reliable «1/2» and «2/3» elements

Let r denote the reliability of inputs of «1/2» ar@/3» blocks. In this case the relia-
bility formulae for absolutely reliable «1/2» an@/&» elements are 2r ? and
3r2 - 2P [9]. Thus, the reliability formulae for the lefbd right RBDs are

B.0) = 20(3p- 20) - (3P’ - 29, M
=B.0) = 3(2pq - fr)? - 2(2pq - Po’)’, @)

where p and q are reliabilities of the blocks prameotential failures caused by «pf»
(physical faults) and «df» (design faults), respety.

It can be supposed that for some values of p ahe gght RBD surpasses the left
one in terms of reliability, while for other valuekthe parameters the left RBD is the
most reliable. Optimization algorithms for multiiete functions can be used to find
such a pair (p, q) for which the reliability advage of the right RBD over the left one
is maximal (or minimal). This problem can be sohNmdthe search of maximum and
minimum of AP(p,q) = R(p,q) - R(p,q) with the constraints p, & (0; 1]. The com-
puting environment MATLAB can be used for the giyampose.



The script for searching maximum and minimumA®f(p,q) can be written in the
following way:

dp = @(p,a) ((3*(2*p*q - p"2*q"2)"2 - ...

2*(2*p*q - p/\2*q/\2)/\3) - (2*q*(3*p/\2 — 2*pl\3) -
q2*(3*p"2 - 2*p"3)"2));

Ip = createOptimProblem(‘fmincon’,'x0',[0.5,0.5], .

'objective’,@(x)(dp(x(1),x(2))),'Ib",[0,0],'ub’,[1, 1)
hp = createOptimProblem(‘fmincon’,'’x0",[0.5,0.5], . .
'objective’,@(x)(-dp(x(1),x(2))),'Ib',[0,0],'ub’,[1 AD;
gs = GlobalSearch();

Ir = run(gs, Ip);

hr = run(gs, hp);

disp(join([" Minimum: ", Ir, newline, "Maximum: ", hr]));

The aforementioned computations lead to the regiven in Table 1.

Table 1. Cases of a maximal reliability advantage forl#feand right RBDs.

Advantageous structure p q AP
Left structure 0.75 0.17333 0.1226
Right structure 0.33333 1 0.1317

The plot ofAP(p,q), which is given in Figure 2, can be builhgsthe given script:

dp = @(p, 9) ((3*(2*p*q - p"2*q"2)"2 - ...
2*(2*p*q - p/\z*q/\z)/\g) - (2*(]*(3*[3’\2 - 2*p’\3) -
qh2*(3*p"2 - 2*p"3)"2));

fsurf(dp, [0, 1, O, 1], "EdgeColor", "none", ...
"MeshDensity", 200);

colormap(gray); xlabel("p"); ylabel("q"); box on;
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Figure 2. The plot ofAP(p,q).

Brighter areas of the given plot correspond to @éigihalues ofAP(p,q), which indi-
cate a greater reliability advantage of the rigDRover the left one.

Consider the expression &R(p,q)), where H(X) is Heaviside step function, ethi
equals 0 for x < 0 and 1 forx0. This composite function is equal to O if fopair
(p, q) the left RBD surpasses the right one in seohreliability. In other cases its
value is 1.

Figure 3 represents the plot of A(p,q)). The black area corresponds to the value
pairs of p and g for which the left RBD is moreiable than the right one. The script
for the given plot can be constructed as follows:

dp = @(p, q) heaviside((3*(2*p*q - p2*q2)"2 - ...
24(2p*q - P"2°q"2)"3) - (2*0*(3*p"2 - 2°p"3) - .
q2+(3*p72 - 24p3)N2));

fsurf(dp, [0, 1, 0, 1], "EdgeColor", "none", ...
"MeshDensity", 200);

colormap(gray); xlabel("p"); ylabel("g"); box on;
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Figure 3. The plot of HAP(p,q).

Let A denote the average value/A®(p,q) over all p, & (0; 1]. It can be found us-
ing the formula from [10] for the average valueadfinction over a region as follows:

A= |]AP(p,qdpdq

O t—aFr
o

Let S denote the percent of cases in which tha RBD is more reliable than the
left one. It can be obtained as multiplied by 106rage value of H{P(p,q)) over all
p, g€ (0; 1]. By dint of the approach used for A, thédwing formula is found:

11
S = 10[ [H(AP (p,a))dpd
00
The script for calculating the value of A can bétten in the following way:

symspq
dp = @(p, q) (3*(2*p*q - pr2*q2)"2 - ...



2*(2*p*q - p"2*q"2)"3) - (2*q*(3*p"2 - 2*p"3) - ...
q/\2*(3*p/\2 _ 2*p/\3)/\2);
vpaintegral(vpaintegral(dp, p, [0 1]), g, [0 1])

In the case of S the script can be built as foltows

syms p q
hdp = @(p, g) 100*heaviside((3*(2*p*q - p*2*q"2)"2 -
2*(2*p*q - p"2*q"2)"3) - (2*q*(3*p"2 - 2*p"3) - ...

q/\2*(3*p/\2 - 2*p/\3)/\2))’

vpaintegral(vpaintegral(hdp, p, [0 1], "AbsTol", ..

0.001), g, [0 1], "AbsTol", 0.001)

The given computations yield A = -0.00537415 anel48.15.

3 Ordinary case: Partially reliable «1/2» and «2/3» elements

In the case of not absolutely reliable «1/2» ant@x2lements, which have reliability
values u and v respectively, the reliability foramilfor the left and right RBDs can be
written in the following way:

Llﬂ),q,u,V) = U(2qV(3i)- 2p3) - q2V2(3p2 - 26)2)! (3)
#00,0,u,v) = V(34(2pq - Fef)? - 2U%(2pq - BA)?). @)

The aforesaid formulae can be obtained using thdifioation of the approach for
the ideal case, where the reliability formulae «r2» and «2/3» elements are re-
placed with the results of their multiplication byand v, respectively.

The script for searching global extremaA#®(p,q,u,v) = R(p,q,u,v) - R(p,q,u,v)
with the constraints p, q, u,&/(0; 1] can be written as follows:

dp = @(p, g, u, V)((v*(3*u"2*(2*p*q - p"2*q"2)"2 -
Z*UA3*(2*D*C| - p/\z*q/\z)/\g) - U*(Z*q*V*(3*pA2 - Z*p/\ 3)
- q/\z*v/\z*(a*p/\z - Z*pAS)AZ)));

Ip = createOptimProblem(‘fmincon’,'x0',[0.5,0.5, ..
0.5,0.5],'objective’,@(x)(dp(x(1),x(2),x(3),x(4))),

'b',[0,0,0,0],'ub',[1,1,1,1]);

hp = createOptimProblem(‘fmincon’,'x0',[0.5,0.5, ..
0.5,0.5],'objective’,@(x)(-dp(x(1),x(2),x(3),x(4)))

'b',[0,0,0,0],'ub',[1,1,1,1]);

gs = GlobalSearch();

Ir = run(gs, Ip);

hr = run(gs, hp);

disp(join([" Minimum: ", Ir, newline, "Maximum: ", hr]));



The aforesaid computations yield the results ginehable 2.

Table 2. Cases of a maximal reliability advantage for tbft &nd right RBDs with
partially reliable «1/2» and «2/3» elements.

Advantageous structure p q u Y AP
Left structure 0.99967 1 1 0.5 0.25
Right structure 0.33333 1 1 1 0.131)7

The mean oAP(p,q,u,V) is calculated according to the followfogmula:

1111

A :””AP(p,q,u,\) dpdgudv

The percent of cases in which the right RBD is mefiable:

1111
S= lO(ﬂ”H(AP( p.q.u.y )gdgdudy
0000
These formulae can be obtained using the correspgagproach for the ideal case.
The script for calculating the value of A can bastoucted in the following way:

symspqguv

dp = @(p, g, u, V)((v*(3*u"2*(2*p*q - p"2*q"2)"2 -
Z*UA3*(2*p*q - p/\z*q/\z)/\g) - U*(Z*q*V*(3*pA2 - Z*p/\ 3)
- q/\z*v/\z*(a*p/\z - Z*pAS)AZ)));
vpaintegral(vpaintegral(vpaintegral(vpaintegral(dp,

p, [0 1], "AbsTol", 0.001), q, [0 1], "AbsTol", ...

0.001), u, [0 1], "AbsTol", 0.001), v, [0 1], ...

"AbsTol", 0.001)



The value of S can be calculated using the follgvgaript:

symspquv
hdp = @(p, g, u, v) 100*heaviside((v*(3*u"2*(2*p*q -
p/\z*q/\z)/\z - 2*u/\3*(2*p*q - p/\z*q/\z)/\3) -

u*(2*q*v*(3*p"2 - 2*p/\3) _ q"2*v"2*(3*p"2 - 2*p/\3)/\ 2))),
vpaintegral(vpaintegral(vpaintegral(vpaintegral(hdp ) e
p, [0 1], "AbsTol", 1), q, [0 1], "AbsTol", 1), ...

u, [0 1], "AbsTol", 1), v, [0 1], "AbsTol", 1)

The given computations yield A-0.029 and & 5.

4  Generalized case: Common failuresin «pf» and «df» elements

The previous case can be generalized by considalirgf» and «df» blocks as hav-
ing 100h% and 100s% of common failures, respegtivEhe probability of failure-
free operation for the given RBDs under the coaditof absence of common failure
can be calculated using (3) and (4) by substituting

x=p/(1-h(1-p)) forp,
y=q/(1-s(1-q))foraq.

The formulae for x and y represent the reliabitifypf» and «df» elements provided
that situations leading to common failure do nqigen.
The probability of common failure absence equals

(1-h@-p))A-s-a)=(P/x)(/Yy).

The aforementioned RBDs are not able to functiasperly in case of common
failure, so their reliability formulae can be weitt in the following way:

R(p,q,u,v,h,s) = uyv(3x 2x) - YVA(3x* - 2X)°)(p / X)(q / ), (5)
R(p,a,u,v,h,s) = v(3H2xy - Xy?)? - 20°(2xy - Xy*)’)(p / X)(@ / ). (6)

The mean oAP(p,q,u,v,h,s) is calculated as follows:
111111

A= ”””AP(p,q,u,v,h,); dpdqduwds dh
000000

The percent of cases in which the right RBD is nrefiable:

111111

S= 1oq””jH(AP(p,q,u,v,h,)g dpdiu dvdsdr

000000



5 Case study: Specified failurerates of «pf» and «df» blocks

In the papers [1] and [2], where the aforesaid itectures have been investigated in
terms of Markov analysis, the considered failure raf «pf» block is 18 h™. For
«df» elements the examined values of this paramgieen in 10 h*, are 10, 25, 50
and 75. Other blocks are regarded as absolutefptel

Within the scope of this case study, the analyzB®$are considered for parame-
ters chosen as described above. Thus, the refjafitimulae for the ideal case, which
are given in Section 2, can be used. The probgplufifailure-free operation during t
hours for «pf» and «df» blocks can be calculatedguthe following expressions:

Pyt (t) = exp(Rpf - 1),
Par (1) = exp(iqr - 1),

wherel,: andigs are failure rates of «pf» and «df» elements, rethgy [11]. Hence,
the reliability values of the considered RBDs & thtme moment t can be obtained
using (1) and (2) by substituting:kt) for p and R (t) for g.

The aforementioned approach can be used to pratefth> 7000 h, each of the
analyzed RBDs has reliability less than 0.85 for ahthe considered failure rate sets.
Thus, the given architectures should not be usethgla larger time spans, if their
parameters are as described above. Consequenthisinase study it is sufficient to
analyze the given RBDs only for t less than 700Qther time intervals are irrelevant
to choosing the preferable architecture and theeafot considered.

The script for searching minimum of the differerfmmtween the reliability values
of the right and left RBDs in a specified rangdimife spans can be written as follows:

LP = le-4; LD = 10 * 1e-6; ST = 0; FN = 7000;
p = @(t) exp(-LP * 1);

q = @(t) exp(-LD * 1);

R = @(t) (3*(2*p(t)*a(t) - (p())"2*(q(1))"2)"2 - .
2*(2*p(t)*q(t) - (p(1))*2*(a()"2)"3);

L = @(t) (Z*q()*(3*(p()"2 - 2*(p()"3) - ...
(Q(®))"2*(3*(p(1))*2 - 2*(p(1))"3)"2);

m = createOptimProblem(‘fmincon’,'’x0",[(ST+FN)/2],
‘'objective’,@(t)(R(t) - L(t)),'Ib",[ST],'ub’,[FN]);

g = GlobalSearch();

[x, y] = run(g, m);

disp(join([" Minimum: ", y]));

The first line of the given code determines suctapeters ady, Ag and the ex-
amined range of time intervals, which in this stuslyset to (0; 7000) h. The result
returned by this script is nonnegative for eaclhefaforementioned failure rate sets.
Thus, for any time interval less than 7000 h tigatrRBD is more reliable in all cases
examined above. Hence, the right architecture ééepable for all pairsis, i) con-
sidered in this section.



6 Conclusion

6.1 Discussion and future steps

No architecture among the given ones can be untgondily considered the most
reliable, so the reliability formulae for their RBOhave been obtained in order to
make possible the choice of the most reliable mdtitve. These formulae allow to
take into account the reliabilities of the undentyielements of the aforementioned
RBDs and the percents of common failures for «pith @df» elements. The aforesaid
analytical expressions have been used to obtaifotheula for the mean of the relia-
bility advantage of the right RBD over the left oag well as the expression for the
percent of cases in which the right architectunmdge reliable. The approach to find-
ing the cases of maximal reliability advantagetfor left and right architectures has
been proposed. The given analysis can be condtarteah arbitrary pair of RBDs.

Future research can be dedicated to developmemtdetision-making system for
choosing between the given architectures, whicltsidens all parameters and stan-
dard requirements for RTS or other similar safetieal systems.

6.2 Recommendationsfor choosing an ar chitecture

If reliability of the underlying elements can bdiemted precisely, a preferable archi-
tecture can be chosen using the aforementioneabilily formulas for the analyzed
RBDs. In particular, for the case of the underlyiigcks having such failure rates as
described in the first paragraph of Section 5 ritpiet architecture is recommended.

However, the results of this research also allowit@ guidances for some occa-
sions, where the reliability values for elementsttad given RBDs are known only
partially. The most important of these recommemadetiare listed below.

In the ideal case, which is described in Sectioth@,right architecture should be
used if the reliability of «df» block is greateath0.6, and the left one is preferable if
this parameter is less than 0.29.

For the ordinary case, which is considered in 8ac3i, the left architecture is more
reliable for about 95% of all possible reliabiliparameter sets characterizing the
blocks of the given RBDs. Thus, if there is no mfiation about the reliability of the
underlying elements (e.g., due to their degradjtitwe left architecture is preferable.
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