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Abstract. This paper reports on the refinement of the THD algorithm, developed 

in the OntoElect framework. This baseline THD algorithm used exact string 

matches for key term comparison. It has been refined by introducing an appro-

priate string similarity metric for grouping the terms having similar meaning and 

looking similar as text strings. To choose the most appropriate metric, several 

existing metrics have been cross-evaluated on the developed test set of multi-

word terms in English. The rationale for creating this test set is also presented. 

Further, the refined algorithm for measuring terminological difference has been 

cross-evaluated with the baseline THD algorithm. For this cross-evaluation, the 

bags of terms extracted from the TIME collection of scientific papers were used. 

The experiment revealed that using the refined algorithm yielded better and 

quicker terminological saturation, compared to the baseline. 

Keywords: Automated Term Extraction, OntoElect, Terminological Difference, 

Key Term, Linguistic Similarity Metric, Bag of Terms, Terminological Satura-

tion. 

1 Introduction 

The research presented in this paper is the part of the development of the methodolog-

ical and instrumental components for extracting representative (complete) sets of sig-

nificant terms from the representative sub-collections of textual documents having min-

imal possible size. These terms are further interpreted as the required features for engi-

neering an ontology in a particular domain of interest. Therefore, it is assumed that the 

documents in a collection cover a single and well circumscribed domain. The main 

hypothesis, put forward in this work, is that a sub-collection can be considered as rep-

resentative to describe the domain, in terms of its terminological footprint, if any addi-

tions of extra documents from the entire collection to this sub-collection do not notice-

ably change this footprint. Such a sub-collection is further considered as complete and 
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therefore yields a representative bag of significant terms describing its domain. The 

approach to assess the representativeness does so by evaluating terminological satura-

tion in a document (sub-)collection [1], [31]. 

Detecting saturation is done by measuring terminological difference (thd) among the 

pairs of the consecutive incrementally enlarged datasets, as described in Section 4. This 

set measure is of course based on measuring differences between individual terms.   

A (baseline) THD algorithm [1] has been developed and implemented in the OntoElect 

project1. This THD algorithm, however, uses a simple string equivalence check for de-

tecting similar individual terms. The objective of the research presented in this paper 

was to find out if it is possible to achieve better performance in measuring terminolog-

ical difference by using a proper string similarity measure to compare individual terms.  

The remainder of the paper is structured as follows. Section 2 reviews the related 

work. Section 3 reports on the implementation of the chosen string similarity measures 

and selecting the proper term similarity thresholds for their use. Section 4 sketches out 

the approach of OntoElect for measuring thd and our refinement of the baseline THD 

algorithm. Section 5 presents the set-up and results of our evaluation experiments. Our 

conclusions and plans for the future work are given in Section 6.  

2 Related Work 

The work reported in this paper aims at improving the measures of terminological dif-

ference between the bags of terms extracted from textual documents. The improvement 

is sought via the proper choice and use of existing string metrics for measuring linguis-

tic (dis)similarity between extracted terms, as opposed to the baseline THD algorithm 

[1] which uses text string equality measures for comparing terms. It is also the premise 

in our approach that the bags of terms are multi-word, extracted from plain text files, 

and accompanied by numeric significance (rank) values. The terms are also expected 

to be English. Therefore, the work related to the presented research is sought in auto-

mated term extraction (ATE) from English texts and string similarity (distance) meas-

urement of the pairs of text strings containing one to several words.  

In the majority of approaches to ATE, e.g. [2] or [3], processing is done in two con-

secutive phases: Linguistic Processing and Statistical Processing. Linguistic proces-

sors, like POS taggers or phrase chunkers, filter out stop words and restrict candidate 

terms to n-gram sequences: nouns or noun phrases, adjective-noun and noun-preposi-

tion-noun combinations. Statistical processing is then applied to measure the ranks of 

the candidate terms. These measures are [4] either the measures of “unithood”, which 

focus on the collocation strength of units that comprise a single term; or the measures 

of “termhood” which point to the association strength of a term to domain concepts. 

For “unithood”, the metrics are used such as mutual information [5], log likelihood 

[6], t-test [2], [3], the notion of ‘modifiability’ and its variants [7], [3]. The metrics for 

“termhood” are either term frequency-based (unsupervised approaches) or reference 

corpora-based (semi-supervised approaches). The most used frequency-based metrics 

                                                           
1  https://www.researchgate.net/project/OntoElect-a-Methodology-for-Domain-Ontology-Re-

finement  
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are TF/IDF (e.g. in [8], [9]), weirdness [10] which compares the frequency of a term in 

the evaluated corpus with that in the reference corpus, domain pertinence [11]. More 

recently, hybrid approaches were proposed, that combine “unithood” and “termhood” 

measurements in a single value. A representative metric is c/nc-value [12]. C/nc-value-

based approaches to ATE have received their further evolution in many works, e.g. [2], 

[11], [13] to mention a few. 

Linguistic Processing is organized and implemented in a very similar fashion in all 

ATE methods, except some of them that also include filtering out stop words. Stop 

words could be filtered out also at a cut-off step after statistical processing. So, in our 

review and selection we look at the second phase of Statistical Processing only. Statis-

tical Processing is sometimes further split in two consecutive sub-phases of term can-

didate scoring, and ranking. For term candidates scoring, reflecting its likelihood of 

being a term, known methods could be distinguished by being based on (c.f. [8]) meas-

uring occurrences frequencies (including word association), assessing occurrences con-

texts, using reference corpora, e.g. Wikipedia [14], topic modelling [15], [29]. 

Perhaps the most cited paper that compares string similarity (distance) metrics is 

[17]. In their cross-evaluation aimed at finding the proper metric for approximate name 

matching in databases, the authors of [17] used two metric functions based on edit dis-

tance: Levenstein distance [18]; and Monger-Elkan distance [19] metrics. Among the 

metrics based on other principles, they also mentioned Jaro [20], Jaro-Winkler [21] 

metrics; token-based Jaccard similarity index [22], TF/IDF based cosine similarity and 

several other corpus-based metrics.  

The authors of [23] also acknowledge that there is a rich set of string similarity 

measures available in the literature, including character n-gram similarity [24], Leven-

stein distance [15], Jaro-Winkler measure [21], Jaccard similarity [22], tf-idf based co-

sine similarity [25], and Hidden Markov Model-based measure [26].   

To the best of our knowledge, none of the published techniques in ATE use text 

string similarity (distance) measures to group linguistically similar terms. This is done 

in the work presented in this paper. Furthermore, none of the techniques, except Onto-

Elect [1], [16], use terminological saturation measures to minimize the sets of docu-

ments necessary for extracting the bags of terms which represent a domain. 

3 Implementation of String Similarity Measures  

and the Choice of Term Similarity Thresholds 

From the variety of metrics, mentioned above, due to the specifics of our task of the 

approximate comparison of short strings containing a few words, we filtered out those: 

(i) that require long strings or sets of strings of a considerably big size; (ii) that are 

computationally hard. We also tried to keep the representatives of all kinds of string 

metrics in our short list as much as it was possible. As a result, we formed the following 

list of measures to be considered for further use:  

 Levenstein distance, Hamming distance [27], Jaro similarity, and Jaro-Winkler sim-

ilarity – edit distance based syntactic measures 



 

 Jaccard similarity index – a token based measure 

 Sørensen-Dice coefficient [28] – a bi-gram comparison based measure 

Among those, Levenstein and Hamming distances appeared to be the least appropriate 

in our context due to their limitations. Levenstein returns an integer number of required 

edits, while the rest of the measures return normalized reals. So, it has not been clear if 

normalizing Levenstein would really make the result comparable to the other measures 

in a way to use the same term similarity threshold. Hamming is applicable only to the 

strings of equal lengths. So, adding spaces to the shorter string would really lower the 

precision of measurement. Therefore, it has finally been decided to use Jaro, Jaro-Win-

kler, Jaccard, and Sørencen-Dice for implementation and cross-evaluation in our work. 

Further, it is briefly explained how should the selected measures be computed and re-

ferred to their implementation code. After that, it is explained how term similarity 

thresholds have been chosen for these implemented measures.   

Jaro similarity simj between two strings S1 and S2 is computed (1) as the minimal 

number of one character transforms to be done to the first term (string) for getting the 

second string in the compared pair.   
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where: |S1|, |S2| are the lengths of the compared strings; m is the number of the matching 

characters; and t is the half of the number of transposed characters. The characters are 

matching if they are the same and their distance from the beginning of the string differs 

by no more than  ⌊𝑚𝑎𝑥(|𝑆1|, |𝑆2|)/2⌋ − 1. The number of matching but having differ-

ent sequence order symbols is the number of transposed characters.  

Jaro-Winkler similarity measure simj-w refines Jaro similarity measure simj by using 

a prefix scale value p which assigns better ratings to the strings that match from their 

beginnings for a prefix length l.  Hence, for the two strings S1 and S2 it is computed as 

shown in (2).  

 simj-w = simj + l*p*(1 –  simj), (2) 

where l is the length of a common prefix (up to a maximum of 4 characters); p is a 

constant scaling factor for how much the similarity value is adjusted upwards for having 

common prefixes (up to 0.25, otherwise the measure can become larger than 1; [21] 

suggests that p=0.1). 

Sometimes Winkler’s prefix bonus l*p*(1 –  simj) is given only to the pairs having 

Jaro similarity higher that a particular threshold. This threshold is suggested [21] to be 

equal to 0.7.  

Jaccard similarity index simja is a similarity measure for finite sets, characters in our 

case. It is computed, for the two strings S1 and S2, as the ratio between the cardinalities 

of the intersection and union of the character sets in S1 and S2 as shown in (3). 

 )/()( 2121 SSSSsim ja   (3) 
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Finally, Sørensen-Dice coefficient, regarded as a character string similarity measure, 

is computed by counting identical character bi-grams in S1 and S2 and relating these to 

the overall number of bi-grams in both strings – as shown in (4). 

 )/(
21

2 SSsd nnnsim   , (4) 

where: n is the no of bi-grams found in S1 and also in S2; 
21 SS nn , are the numbers of 

all bi-grams in S1 and S2. 

The functions for all four string similarity measures have been implemented2 in Py-

thon 3.0 and return real values within [0, 1].   

For the proper use of those functions it is however necessary to determine what 

would be a reasonable threshold to distinguish between (semantically) similar and not 

similar terms. For determining that, the following cases in string comparison need to 

be taken into account: 

 Character strings are fully the same – Full Positives (FP). This case clearly falls 

into similar (the same) terms. 

 Character strings are very different and the terms in these strings carry different 

semantics – Full Negatives (FN). This case is also clear and is characterized by low 

values of similarity measures.  

 Character strings are partially the same and the terms in these strings carry the 

same or similar semantics – Partial Positives (PP).  

The terms in such strings are similar, though it may not be fully clear. The following 

are different categories of terms that bring us about this case: words in the terms have 

different endings (e.g. plural/singular forms); different delimiters are used (e.g. “-”, or 

“–”, or “ - ”); a symbol is missing, erroneously added, or misspelled (a typo); one term 

is a sub-string of the other (e.g. subsuming the second); one of the strings contains 

unnecessary extra characters (e.g. two or three spaces instead of one, or noise).  

 Character strings are partially the same but the terms in these strings carry differ-

ent semantics – Partial Negatives (PN) 

The terms in such strings are different, though it may not be fully clear. The follow-

ing are the categories that bring us about this case: the terms carried by the compared 

strings differ by a few characters, but have different meanings (e.g. “deprecate” versus 

“depreciate”); the compared terms have common word(s) but fully differ in their mean-

ings (e.g. “affect them” versus “effect them”). These false positives are the hardest case 

to be detected.  

The test set of term pairs falling into the cases described above has been manually 

developed3. For each pair of terms in this test set all four string similarity measures 

have been computed.  

                                                           
2  These functions are publicly available at: https://github.com/EvaZsu/OntoElect   
3  The test set and computed term similarity values are publicly available at 

https://github.com/EvaZsu/OntoElect/blob/master/Test-Set.xls  
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We have computed the average values of all four similarity measures for each cate-

gory using all the test set term pairs falling into this category. The results are given in 

Table 1. 

Table 1: Average similarity measure values for different categories of term pairs  

from the test set 

Case / Category Items in 

Test Set 

Sørensen-

Dice 

Jaccard Jaro Jaro-

Winkler 

Different strings (FN) 6 0.03 0.45 0.55 0.55 

Identical strings (FP) 3 1.00 1.00 1.00 1.00 

Similar Semantics (PP) 32 0.71 0.72 0.63 0.70 

- Unnecessary (extra) characters 7 0.8401 0.8820 0.8714 0.8784 

- Common parts (words) 6 0.7122 0.7280 0.6375 0.7043 

- Typos 6 0.7797 0.8637 0.8863 0.9220 

- Different delimiters 6 0.7860 0.8473 0.9125 0.9442 

- Different endings 7 0.8911 0.9135 0.9410 0.9590 

Different Semantics (PN) 18 0.89 0.89 0.89 0.91 

- Common parts (words) 11 0.4336 0.5221 0.6161 0.6408 

- Very few character differences 7 0.8826 0.8845 0.8914 0.9059 

Total: 59     

 

Term similarity thresholds have to be chosen such that full and partial negatives are 

regarded as not similar, but full and partial positives are regarded as similar. Hence, for 

the case of partial positives, the thresholds have to be chosen as minimal of all the case 

categories, and for the partial negatives – as the maximal of all the case categories. The 

values of case thresholds are shown bolded in Table 1 and provide us with the margins 

for relevant threshold intervals in our experiments. These intervals have been evenly 

split in four points as presented in Table 2.  The requirements for partial positives and 

negatives unfortunately contradict to each other. For example, if a threshold is chosen 

to filter out partial negatives, also some of the partial positives will be filtered out. 

Therefore, subsuming that partial negatives are rare, it has been decided to use the 

thresholds for partial positives.  

Table 2: Term similarity thresholds chosen for experimental evaluation 

 Term Similarity Thresholds 

Min Ave-1 Ave-2 Max 

Sørensen-Dice 0.71 0.76 0.83 0.89 

Jaccard 0.72 0.77 0.83 0.89 

Jaro 0.63 0.72 0.80 0.89 

Jaro-Winkler 0.70 0.77 0.84 0.91 

4 OntoElect and the Refinement of the THD Algorithm 

OntoElect, as a methodology, seeks for maximizing the fitness of the developed ontol-

ogy regarding what the domain knowledge stakeholders think about the domain. Fitness 



 

is measured as the stakeholders’ “votes” – a measure that allows assessing the stake-

holders’ commitment to the ontology under development – reflecting how well their 

sentiment about the requirements is met. The more votes are collected – the higher the 

commitment is expected to be. If a critical mass of votes is acquired (say 50%+1, which 

is a simple majority vote), the ontology is considered to satisfactorily meet the require-

ments.  

Unfortunately, direct acquisition of requirements from domain experts is not very 

realistic as they are expensive and not really willing to do the work falling out of their 

core activity. So, we focus on the indirect collection of the stakeholders’ votes by ex-

tracting these from high quality and reasonably high impact documents authored by the 

stakeholders.  

An important feature to be ensured for knowledge extraction from text collections is 

that the dataset needs to be representative to cover the opinions of the domain 

knowledge stakeholders satisfactorily fully. OntoElect suggests a method to measure 

the terminological completeness of the document collection by analyzing the saturation 

of terminological footprints of the incremental slices of the document collection [1]. 

The full texts of the documents from a retrospective collection are grouped in datasets 

in the order of their timestamps. As pictured in Fig. 1a, the first dataset D1 contains the 

first portion (inc) of documents. The second dataset D2 contains the first dataset D1 

plus the second incremental slice (inc) of documents. Finally, the last dataset Dn con-

tains all the documents from the collection.  

 

 

 
(a) (b) 

Fig. 1: (a) Incrementally enlarged datasets in OntoElect; (b) an example of a bag of terms ex-

tracted by UPM Term Extractor [30]. 

At the next step of the OntoElect workflow the bags of multi-word terms  

B1, B2, …, Bn are extracted from the datasets D1, D2, …, Dn, using UPM Term Ex-

tractor software [30], together with their significance (c-value) scores. Please see an 

example of an extracted bag of terms extracted in Fig. 1b.   

At the subsequent step, every extracted bag of terms Bi, i = 1, …, n is processed as 

follows: 

 Normalized scores are computed for each individual term:  

n-score = c-value / max(c-value) 

 Individual term significance threshold (eps) is computed to cut off those terms 

that are not within the majority vote. The sum of n-scores having values above 

eps form the majority vote if this sum is higher that ½ of the sum of all n-scores.  



 

 The cut-off at n-score < eps is done   

 The result is saved in Ti 

After this step only significant terms, whose n-scores represent the majority vote, 

are retained in the bags of terms. Ti are then evaluated for saturation by measuring pair-

wise terminological difference between the subsequent bags Ti and Ti+1,  

i = 0, …, n-1. So far it has been done by applying the baseline THD algorithm4 [1] 

presented in Fig. 2. 

Algorithm THD. Compute Terminological Difference between Bags of Terms 

Input:  

 Ti, Ti+1 – the bags of terms with grouped similar terms. 

      Each term Ti.term is accompanied with its T.n-score.  

      Ti, Ti+1 are sorted in the descending order of T.n-score. 

 M –  the name of the string similarity measure function to compare terms 

 th – the value of the term similarity threshold from within [0,1] 

Output: thd(Ti+1, Ti), thdr(Ti+1, Ti) 

1.  sum := 0 

2.  thd := 0 

3.  for k := 1, │Ti+1│ 

4.    sum :=  sum + Ti+1.n-score[k]  

5.    found : = .F.  

6.    for m := 1, │Ti│ 

7.    if (Ti+1.term[k] = Ti.term[m])  if (M(Ti+1.term[k], Ti.term[m], th)) 

8.           then  

9.             thd += │Ti+1.n-score[k] - Ti.n-score[m]│ 

10.            found := .T. 

11. end for 
12. if (found = .F.) then thd += Ti+1.n-score[k]  
13. end for 
14. thdr := thd  / sum  

 

Fig. 2: THD algorithm [1] for measuring terminological difference in a pair of bags of terms. It 

uses string equalities for comparing terms and therefore needs to be refined as outlined by the 

rounded rectangles. The refined THD has two more input parameters (M and th) and uses M for 

comparing terms (line 7) instead of checking the equality of character strings.   

In fact, THD accumulates, in the thd value for the bag Ti+1, the n-score differences 

if there were the same terms in Ti and Ti+1. If there was no the same term in Ti, it adds 

the n-score of the orphan to the thd value of Ti+1. After thd has been computed, the 

relative terminological difference thdr receives its value as thd divided by the sum of 

n-scores in Ti+1. 

Absolute (thd) and relative (thdr) terminological differences are computed for fur-

ther assessing if Ti+1 differs from Ti more than the individual term significance thresh-

old eps. If not, it implies that adding an increment of documents to Di for producing 

Di+1 did not contribute any noticeable amount of new terminology. So, the subset Di+1 

of the overall document collection may have become terminologically saturated. How-

ever, to obtain more confidence about the saturation, OntoElect suggests that some 

                                                           
4 The baseline THD algorithm is implemented in Python and is publicly available at 

https://github.com/bwtgroup/SSRTDC-modules/tree/master/THD  

 

https://github.com/bwtgroup/SSRTDC-modules/tree/master/THD


 

more subsequent pairs of Ti and Ti+1 are evaluated. If stable saturation is observed, 

then the process of looking for a minimal saturated sub-collection could be stopped.  

Our task was to modify the THD algorithm in a way to allow finding not exactly the 

same but sufficiently similar terms by applying string similarity measures with appro-

priate thresholds – as explained in the previous Section 3. For that, the preparatory 

similar term grouping step has been introduced to avoid duplicate similarity detection.  

For each of the compared bags of terms Ti and Ti+1 the similar term grouping (STG) 

algorithm is applied at this preparatory step – see Fig. 3.  

 
Algorithm STG. Group similar terms in the bag of terms 

Input:  

 T  – a bag of terms. Each term T.term is accompanied with its  

      T.n-score. T is sorted in the descending order of T.n-score. 

 M – the name of the string similarity measure function to compare  

     terms 

 th – the value of the term similarity threshold from within [0,1] 

Output: T with grouped similar terms 

1.  sum := 0 

2.  for k = 1,│T│ 

3.    term :=  T.term[k] 

4.    n-score := T.n-score[k] 

5.    count := 1  

6.    for m = k+1,│T│ 

7.     if M(term, T.term[m], th)  

8.           then  

9.             n-score += T.n-score[m]  

10.            count += 1 

11.            remove(T[m]) 

12.   end for 

13.   T.n-score[k] := n-score / count 

14. end for 
 

Fig. 3: Similar Term Grouping (STG) algorithm  

After term grouping is accomplished for both bags of terms, the refined THD algorithm 

(Fig 2 – rounded rectangles) is performed to compute the terminological difference be-

tween Ti and Ti+1.  

5 Cross-Evaluation 

This section reports on our evaluation of the refined THD algorithm against the baseline 

THD [1]. This evaluation is done following the workflow of OntoElect Requirements 

Elicitation Phase [31] and using the TIME document collection.  



 

5.1 Set-up of the Experiment 

The objective of our experiment was to find out if using the refined THD algorithm 

yields quicker and smoother terminological saturation compared to the use of the base-

line THD algorithm. We were also looking at finding out which string similarity meas-

ure best fits for measuring terminological saturation.  

For making the results comparable, the same datasets created from the TIME docu-

ment collection – as described in Section 5.2 – has been fed into both the refined and 

baseline THD algorithms. We applied:  

(i) The refined THD – sixteen times – one per individual string similarity measure M 

(Section 3) and per individual term similarity threshold th (Table 3); and  

(ii) The baseline THD – one time 

The values of: (i) the No of retained terns; (ii) absolute terminological difference 

(thd); and (iii) the time taken to perform term grouping by the STG algorithm (sec); 

were measured.   

Finally, to verify if the refined THD is correct, we checked if it returns the same 

results as the baseline THD when the term similarity threshold is set to 1.0.    

All the computations have been run on a Windows 10 64-bit PC with: Intel® Core™ 

2 Duo CPU, E7400 @ 2.80 GHz; 4.0 Gb on-board memory. 

5.2 Experimental Data 

TIME document collection contains the full text papers of the proceedings of the TIME 

Symposia series5. The domain of the collection is Time Representation and Reasoning. 

The publisher of these papers is IEEE. It contains all the papers published in the TIME 

symposia proceedings between 1994 and 2013, which are 437 full text documents.  

These papers have been processed manually, including their conversion to plain texts 

and cleaning of these texts. So, the resulting datasets were not very noisy. We have 

chosen the increment for generating the datasets to be 20 papers. So, based on the avail-

able texts, we have generated 22 incrementally enlarged datasets D1, D2, …, D226 us-

ing our Dataset Generator7. The chronological order of adding documents has been 

used.  

5.3 Results and Discussion 

The results of our measurements of terminological saturation (thd) are pictured in a 

diagrammatic form in Fig. 4. The diagrams showing the time spent by the STG algo-

rithm for detecting and grouping similar terms, based on the chosen term similarity 

thresholds are in Fig. 6. The diagrams in Fig. 4 and 6 have been built using the values 

                                                           
5  http://time.di.unimi.it/TIME_Home.html  
6  The TIME collection in plain text and the datasets generated of these texts are available at: 

https://www.dropbox.com/sh/64pbodb2dmpndcy/AAAzVW7aEpgW-JrXHaCEqg2Sa/ 

TIME?dl=0 
7  The dataset generator is available at: https://github.com/bwtgroup/SSRTDC-PDF2TXT  

http://time.di.unimi.it/TIME_Home.html
https://www.dropbox.com/sh/64pbodb2dmpndcy/AAAzVW7aEpgW-JrXHaCEqg2Sa/TIME?dl=0
https://www.dropbox.com/sh/64pbodb2dmpndcy/AAAzVW7aEpgW-JrXHaCEqg2Sa/TIME?dl=0
https://github.com/bwtgroup/SSRTDC-PDF2TXT


 

of the measurements from the four tables – one per term similarity threshold point (Min, 

Ave-1, Ave-2, and Max)8.  

 Saturation (thd) measurements reveal that the refined THD algorithm detected ter-

minological saturation faster than the baseline THD algorithm – no matter what was 

the chosen term similarity measure (M) or the similarity threshold (th). If the results for 

different measures are compared, then it may be noted that the respective saturation 

curves behave differently, depending on the similarity threshold point.  

 

 
         (a) Min term similarity thresholds    (b) Ave-1 term similarity thresholds 

 
         (c) Ave-2 term similarity thresholds    (d) Max term similarity thresholds 

Legend:  

Fig. 4: Terminological saturation measurements grouped in four different term similarity thresh-

old (th) points: (a) Min; (b) Ave-1; (c) Ave-2; and (d) Max. The legend shows the colors for 

different string similarity measures.   

Overall, as it could be seen in Fig 4 (a) – (d), the use of the Sørensen-Dice measure 

demonstrated the least volatile behavior along the term similarity threshold points. This 

measure resulted in making the refined THD algorithm to detect saturation slower than 

the three other measures for Min, Ave-1, and Ave-2. For Max, it was as fast as Jaro and 

slightly slower than Jaccard and Jaro-Winker.  

One more observation was that, integrally, all the implemented term similarity 

measures coped well with retaining important terms. These are indicated by terminol-

ogy contribution peaks in the diagrams (a)-(d) of Fig. 4. It is well seen in Fig. 4(d), for 

the Max threshold point, that all the string similarity method curves follow the shape of 

the baseline THD curve quite closely. Hence, they have the peaks exactly in the same 

thd measurement points where the baseline has, pointing at more new significant terms.  

                                                           
8  The tables are not presented in the paper due to the page limit, though are publicly available 

at: https://github.com/EvaZsu/OntoElect. File names are Results-Alltogether-{min, ave, ave2, 

max}-th.xlsx 

https://github.com/EvaZsu/OntoElect


At Min, Ave-1, and Ave-2, however, the method that have been most sensitive to 

terminology peaks, was Sørensen-Dice. This sensitivity is also confirmed by Fig. 5.  

 

 

Fig. 5: Proportions of retained to all extracted terms for different term similarity measures 

Fig. 5 pictures the proportions of the retained to all extracted terms computed at 

different term similarity threshold points. It is clear from Fig. 5 that Sørensen-Dice 

retains the biggest number of terms at all used term similarity thresholds.   

 

  
         (a) Min term similarity thresholds    (b) Ave-1 term similarity thresholds 

 
         (c) Ave-2 term similarity thresholds    (d) Max term similarity thresholds 

    Legend:   

Fig. 6: Time (sec) spent for finding similar terms, grouped similarly to Fig. 4 

Finally, it has to be noted that the introduction of string similarity measures in the 

computation of terminological difference (THD algorithm) increases the computational 

complexity of the algorithm quite substantially. Fig. 6 pictures the times (in seconds) 

taken by the pre-processor STG algorithm. As it could be noticed in Fig. 6(a)-(d), the 

times grow with the value of the term similarity threshold (th) and reach thousands of 

seconds for Max threshold values. It is interesting to notice that Sørensen-Dice and 

Jaccard are substantially more stable to the increase of th than Jaro and Jaro-Winkler.  

Sørensen-Dice takes, however, roughly an order of magnitude more time than Jaccard. 



 

From the other hand, Jaccard was not very sensitive to terminological peaks and re-

tained significantly less terms than Sørensen-Dice. 

To sum up, the findings are put in Table 3 to rank the evaluated string similarity 

measures on a scale 1 (the best) to 5 (the worst).  

Table 3: The ranking of the evaluated string similarity measures 

 Rank (1-5) 

Evaluation aspect Baseline 

THD 

Sørensen-

Dice 

Jaccard Jaro Jaro-

Winkler 

Faster detection of termino-

logical saturation 

5 3 1 4 2 

More significant terms re-

tained 

1 2 3 5 4 

Less time taken 1 3 2 5 4 

Total: 7(2) 8(3) 6(1) 14(5) 10(4) 

 

Probably surprisingly, Jaccard, which is the most lightweight string similarity meas-

ure (Fig. 6), demonstrated the best performance among the rest, including the baseline 

THD. As it was well balanced on all evaluation aspects. This balance was also good in 

the case of Sørensen-Dice. However, Sørensen-Dice lost to Jaccard and baseline THD 

as it took too much time for term grouping. Jaro and Jaro-Winkler were clear negative 

outliers. Therefore, at an expense of a slightly higher execution time, the THD refined 

by Jaccard string similarity measure is the preferred choice for measuring terminologi-

cal saturation in OntoElect.  

6 Conclusions and Future Work 

In this paper, we investigated if a simple string equivalence measure used in the base-

line THD algorithm may be outperformed if a proper string similarity measure is used 

instead. For finding this out, we: (i) have chosen the four candidate measures from the 

broader variety of the available, based on the specifics of term comparison; (ii) devel-

oped the test set of specific term pairs to decide about term similarity thresholds for the 

chosen measures; (iii) implemented these measures, the algorithm for similar terms 

grouping (STG), and the refinement of the baseline THD algorithm; (iv) cross-evalu-

ated the refined THD algorithm against the baseline, and also all individual measures 

against each other; (v) gave our recommendation about the use of the refined THD 

algorithm with Jaccard measure which demonstrated the most balanced performance in 

our experiments.  

For the experiments we used the datasets generated, using our instrumental software 

suite, from the TIME document collection. This collection contains real scientific pa-

pers acquired from the proceedings series of the Time Representation and Reasoning 

Symposia.  

 Our future work is planned based on the results of the presented experiments and 

some additional observations we made. Firstly, we would like to explore the ways to 

improve the performance of the Sørensen-Dice measure implementation as its higher 



 

computational complexity is the only flaw against the Jaccard measure implementation. 

Secondly, we are interested in finding out if a similar term grouping algorithm, using a 

sensitive similarity measure, like Sørensen-Dice, would be plausible for grouping fea-

tures while building feature taxonomies. This task is on the agenda for the second (Con-

ceptualization) phase of OntoElect [32]. Thirdly, we are keen to check if the evaluation 

results on the other document collections will be similar to that presented in this paper. 

To find this out we plan to repeat the same cross-evaluation experiments but on the 

datasets generated from DMKD and DAC collections [16].  
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