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Abstract. Event-based knowledge representation models providing sufficient 

detail in space and time are often necessary for real-time GIS-based decision sup-

port systems. The paper is devoted to developing such a model based on a plau-

sible event tree network, which is built over a spatial model of a terrain discre-

tized with a grid of uniform-sized cells. Each event has not only time reference, 

but also spatial reference, and describes a transition of the cell from one state to 

another. It combines different kinds of likelihood assessments (probability, 

fuzzy, or rough) using various plausibility models. The paper describes the event 

tree network-based knowledge representation, which can be used to describe a 

multitude of interacting processes on the terrain. An experiment based on real 

data describing a forest fire cascade has been conducted and has confirmed the 

validity and usability of the proposed model for the considered class of GIS-based 

decision support systems. 

Keywords: Knowledge Representation Model, Event Tree Network, Likeli-

hood, Spatial Configuration, Decision Support System 

1 Introduction 

Natural systems include a multitude of interacting processes, which evolve in space and 

time. Some of them are destructive and cause deaths, injuries, and a huge damage to 

property and infrastructure. Now, people face a problem of real-time decision making 

in conditions of natural destructive processes. However, developing the decision sup-

port systems (DSS) is a complex and non-trivial task because most of such processes 

arise unexpectedly, proceed fleetingly, evolve in space and time transiently, non-line-

arly, and have a stochastic nature. Processes of a destructive nature distributed over a 

confined terrain give rise to a variety of hazards, threats, and risks to various objects 

[1]. Often they can lead to emergencies. Thus, a GIS-based real-time DSS for the nat-

ural emergencies response is a topic of current interest. 

Giving the fact that natural emergencies are poorly modeled and unpredictable, well-

studied classical decision support approaches cannot be used for such kind of processes 
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[2]. The efficiency of response operations strongly depends on the availability of ob-

servations of destructive processes, as well as on the validity and usefulness of the ob-

served information representation. 

The most frequently observed information is represented as event streams, which 

represent series of time-stamped events [3]. Usually, event sequence analysis looks at 

the sequence of events and time gaps between events [4]. 

Knowledge representation about a multitude of events occurring jointly and simul-

taneously has been studied in many fields of knowledge. The greatest number of formal 

ways of presenting knowledge about events was proposed in the field of natural lan-

guage processing, such as Rich Entities, Relations, and Events (Rich ERE); Light En-

tities, Relations, and Events (Light ERE); Event Nugget (EN); Event Argument Extrac-

tion (EAE); Richer Event Descriptions (RED); and Event-Event Relations (EER) [5]. 

Those representation models are focused on event processing and event-event relations 

aimed at inference, causal relationships, and anomaly detection across several lan-

guages [6]. 

Event-based structures are considered as building blocks for creating and updating 

situation models related to comprehension [7]. The definition of an event is “a segment 

of time at a given location that is conceived by an observer to have a beginning and an 

end” [8]. All of the above-mentioned approaches are based on semantic meaning, use 

strictly-defined notions of events, time and space and do not use the hierarchical struc-

tures of time and space necessary for GISs-based real-time DSSs [9]. 

Approaches, where representations do not take on semantic meaning, include Causal 

events, Force dynamics, Stochastic Context-Free Grammars, and Spatio-Temporal De-

rivatives [10]. Despite the fact that they differ in methods, they employ the event struc-

ture representations, which are very hard for decision-maker interpretation.  

Taking into account the nature of the events, we can emphasize the existence of two 

basic approaches, probabilistic and non-probabilistic. Probabilistic approaches include 

Variance propagation, Monte Carlo sampling, variations of the dynamic Bayesian net-

work, Hidden Markov Models, and imprecise probabilities [11]. Non-probabilistic 

methods include those based on fuzzy sets theory and possibility theory [12]. 

However, an insufficiency of statistical data for probabilistic models, a lack of well-

known membership functions or degree of possibility for non-probabilistic models, as 

well as their common feature of a high computational complexity prevent their efficient 

use. Extensive reviews on this topic with respect to a considered class of DSSs have 

been presented in the literature [13, 14].  

The event trees allow modeling of a sequence of events, forming the structures of 

any level of complexity [15]. The event trees can be adapted to different ways of un-

certainty accounting (probabilistic, fuzzy, rough, etc.). The limitation of the event trees 

used in the existing works lies in the fact that the events are referenced to time points 

rather than to spatial locations. However, this method is very flexible, is open to using 

hierarchical structures and have a big potential for evolution.  

The above-mentioned review enables to conclude that existing event-based 

knowledge representation models correspond very weakly to the systems of the consid-

ered class, and do not provide the acceptable efficiency of DSS. This paper is dedicated 



to developing the event-tree knowledge representation model, where events are refer-

enced to certain time and locations and can be organized into hierarchical structures 

with respect to time and space. Such model should be suitable for solving the problems 

of decision-making on natural emergencies response in real-time GIS-based DSS 

providing required efficiency. 

2 Spatial Model 

Assume that the destructive processes spread over a certain area of interest (AOI).  

Consider a three-dimensional Euclidean space C , which contains the AOI as an 

openly connected subspace X C . Suppose that each point x X  has a non-empty 

finite set of attributes  1,... mA a a , 
iaV  is a domain of ia A , 

i ia A aV V , and f  is 

an attribute value function such that :f X A V   for each x X .  

A spatial model is discretized at three levels: the lower level contains cells of equal 

size, the middle level consists of spatial regions of different sizes, and the upper level 

represents large spatial areas. 

At the lower level, we impose a metrical grid of coordinate lines with size   on C  

using a linear map   such that coordinate lines form a set D  of the cubic cells with 

the size being     , : D C  . Thus, space C  is discretized by a grid  xyzD d  

of isometric cubic cells 
xyzd . A cell d D  is a spatial object of a minimal size. Each 

cell d D  is associated with a set of attribute values, which is called the cell state, via 

the value function  ,f d A . The proposed discretization assigns the equal values of the 

attributes to each point belonging to a certain cell d , therefore each cell d D  repre-

sents a homogeneous area of the AOI in the sense of the attribute values A . Thus, each 

cell d D  can be reduced to a point of X , and all points of this cell are A -indiscern-

ible:       1 2 1 2, , ,d d D a A f d a f d a        .  

At the middle level, the subspace X  can also be divided into a finite set of disjoint 

objects having geometric shapes, which represent the certain homogeneous areas of the 

AOI. Consider a non-empty subset of attributes iA A . Define an iA -indiscernibility 

relation [10]       , , , ,iA

D m n j i m j n jR d d D D a A f d a f d a       on the set of cells D . 

If  , iA

m n Dd d R , it means that all pairs of different points , zy  that belong to the different 

cells ,m nd d  have the same values of attributes ,...j m ia a A  as all pairs of different points 

,x y  of each cell md , nd . Thus, we define a middle-level structural element of the spa-

tial model as the homogeneous spatial area that is uniform in the sense of attribute’s 

values and can be represented by the approximating set of cells. Such element is called 

a region and denoted by h . All the cells belonging to the region h  are iA -indiscernible. 

Each region can represent the object of a certain class on a GIS map that is named as 

geotaxon. The geotaxons cannot overlap or cover one another, but they can be adjacent 

or adjoin to one another. Thus, a continuity and a connectivity are their important fea-

tures (spatial concentration of the underlying cells).  



However, we often need to analyze the spatial areas containing a plurality of objects 

with the certain relations between them. Such spatial areas may consist of a plurality of 

separate regions spatially distributed over X , and represent zones homogenous in the 

sense of definite assessments of some indicators (e.g. danger, threat, and risk), which 

depend on the values of attributes 
jA A . Obviously, they do not have the property of 

the continuity. Consider a set of regions  1,... kH h h . Define the 
jA -indiscernibility 

relation     , ,  , ,  , , , ,jA

H l q m n m l n q k j m k n kR h h H d d D d h d h a A f d a f d a            

on the set of regions H  [16]. Obviously, all regions belonging to jA

HR  are iA -indiscern-

ible in the sense of the same values of attributes ,...l p ja a A . Thus, we define distributed 

spatial area H  as an upper-level structural element of the spatial model that is uniform 

in the sense of attribute’s values and is represented by the approximating set of regions.  

3 Events and States 

Suppose the set of attributes A  can be divided into subsets: not changing over time 

(static) attributes SA , time-varying (dynamic) attributes DA , slowly changing (envi-

ronmental) attributes EA , S D EA A A A   . We next define the cell state categories.  

Suppose  0,... ,...i FW w w w  is an ordered set of the cell state categories (modes), 

where 0w  is the initial mode, Fw  is the final mode, and iw  is the transitional mode. 

Suppose   is a category function such that : D A W   . Each category w W  has 

three subcategories: the cell status  S Sw A , the cell condition  C S Ew A A  , and 

the cell stage  D Dw A . Each state category (and subcategory) is a certain subspace 

of the n -dimensional attribute values space 
1

... ...
i na a aV V V    .  

Each random change of values of any subset of dynamic parameters k DA A  can 

change the cell condition Cw  in such a way that the cell stage Dw  must also change. 

This change is not necessary, but possible. If the cell condition Cw  changes, the cell 

possibly goes into another state category iw  (mode of behavior).  

We define an accessibility relation 
ACC D DR W W   (reflexive, asymmetric, and non-

transitive) on a set of stages DW  and a compatibility relation 
COM C DR W W   (non-

reflexive, symmetric, and non-transitive), taken the cell condition C Cw W  onto the cell 

stage D Dw W . The accessibility can be determined by a function  :acc D Df W W   , 

which returns the possibility of the transition from one stage to another, whereas the 

compatibility can be determined by a function  : ,com C Df W W true false   taking into 

account that some stages may be incompatible with the certain conditions (e.g., sandy 

areas, which are not covered with vegetation, usually cannot be exposed to burning).  

We consider each significant (perhaps, jump-like [17]) change of the cell attribute’s 

value, which forces the cell to change its state, as an event, and denote it by y , so that 

: i jw wy . It is clear that the model of the destructive process can be represented as a 



model of dynamic change of states of a subset of cells covered by the process within 

the spatial model. Assume, during the destructive process, the cell moves through a 

sequence of qualitatively different classes (categories) of states. The states should be 

evaluated during continuous observations (monitoring) that allow obtaining time-or-

dered sequences of events (random event flow without consequences).  

We formalize the event, the events model, and the event stream, taking [18] as a 

basis and introducing parameters of time and space into the model. 

4 Event Model 

Consider a time point set T  with the initial moment 0t T  and an order relation T , 

which sets a fully ordered timescale 0, , Tt T   over T .  

In order to consider various aspects of a recorded event depending on the accuracy 

of its observation, it is possible to classify the events using taxonomy hierarchy. This 

hierarchy is denoted by 1I  and corresponds to a set of classes  
1

n

i i
Class c


 , where ic  

is an event class. A partial order relation 1  over 1I  arranges observed information in 

order from abstract to detailed, e.g. 1 1 2c c  means that the event class 1c  contains less 

information than 2c .  

Notice, that any event can be a part of one or more complex event structures, such 

as coupled, concatenated, or triggered events and their chains. Thus, it is advisable to 

build a composition hierarchy 2I  that corresponds to a certain composition of events 

such as 
j k l вy y y , where в  is disjoint union. The partial order relation 2  over 2I  

arranges the inclusion of the observed events in the complex chains, where 2k jy y , 

means that 
jy  is a composition with 

ky  being its constituent.  

Besides that, we can build a spatial hierarchy 3I  within the spatial model with a set 

of elements like {cells, regions, areas} and the partial order relation 3  over it, as well 

as a time hierarchy 4I  with the set of elements like {seconds, minutes, hours, days...} 

and a full-order relation T  over it. The spatial and temporal hierarchies are the basis 

for building the adequate space-and-time-referenced event model. 

Thus, the basic element for developing the event model is the hierarchy. 

Suppose each hierarchy i  is a triple: , ,i i i iI   , where iI  is a set of some 

elements, each of which corresponds to a certain relation i  among them (e.g. taxo-

nomic 1 , inclusion 2 , spatial 3 , temporal 4 , accessibility 5 , compatibility 6 , 

and so on), i  is the order relation over iI , and i  is the least element of i . 

Define an event signature z  as a tuple  
1

,
m

i i
A


 z , where A  is a set of param-

eters, and  
1

m

i i
  is a set of hierarchies i  induced by the corresponding relations i . 

Consider the event model , ,E   z , where   is a variable set,   is a set of re-

strictions, and z  is the signature. 



Define the event y  in the model E  as a structure , , , ,Y c t d Ayy = , where 

.Y E  is a unique label, 
1. .c E I z  is an event class, t T  is a time point (observation 

moment, 4. .t E I z ), d D  is a spatial point (observation georeference, 
3. .d E I z ), 

and Ay  is a set of event parameters, A Ay . Thus, the event y  is a complex object 

that belongs to a certain class of events c Class  and gets the values of parameters of 

the corresponding cell d D , which contains the georeference point. Since the condi-

tions and the accuracy of observation differ at various time points, each event y  can 

be described by the parameters that also differ in values and accuracy.  

An event sequence S  in the model E  is an aggregate of events ordered by T ,

 1 2, ,... nS  y y y , such that it holds 1 2. . ... .T T T nt t t  y y y  for all events. One should 

refer to the event y  of the sequence iS  with the index j  as i

jy , .i jt t T y . 

To formalize any kinds of relations established between the events and the variables 

in the event model E , we introduce the notion of an event path. The event path 

 ,i jd d  is a sequence of events spreading along a chain from the cell id  to the cell 

jd . Two or more paths can be combined using a concatenation operator. 

5 Assessment of Event Likelihood 

Suppose L  is a non-empty carrier set with multiplicative   and additive   operators. 

If they satisfy the conditions of idempotency, commutativity, associativity, and distrib-

utivity for any , ,x y z L , we obtain a distributive quasi-lattice , ,R L   . Setting 

two zero-ary operations 0 and 1, as well as their absorption conditions, we obtain a 

bounded distributive lattice (semiring) , , ,0,1Z L    that is not closed with respect 

to the union [19]. Therefore, , ,1L   is a monoid, , ,0L   is a commutative monoid.  

Taking into account the idempotency of the additive operator   with respect to L  

and the properties of the semiring Z , we can define an order relation Z  such that 

, ,    Zx y z L x y x z y     . Thus, Z  is the partial order on L  that makes it pos-

sible to compare the various elements of the carrier set, so that x y  means that the 

value y  is preferable than x .  

The proposed semiring model and the partial order relation can serve us as the frame-

work. Choosing the corresponding initial carrier set L , defining the additive   and 

multiplicative   operators over Z , and equipping the lattice with operations of taking 

the exact lower edge inf and upper edge sup, we can build a likelihood model , which 

can express the degree of likelihood as a measure of belonging to the carrier set.  

Thus, we use a relative likelihood assessment on the scale [0,1] instead of probability 

to evaluate events as more possible, less possible, equally possible based on the numer-

ical value (degree) of their likelihood. It makes possible to combine estimates of prob-

abilities based on statistical observations, with assessments of the possibilities formed 



by experts, within the single framework, taking into account the possible incomplete-

ness and inaccuracy of information represented by fuzzy or rough sets. 

6 Plausible Event Tree Networks 

Let us build an event tree network over the model E , based on the joint mapping of a 

set of induced hierarchies into the event tree structure [20].  

Consider oriented connected multigraph ,g v e , which doesn’t contain cycles, 

where v  is a set of vertices, and e  is a set of arcs. Subdivide a nonempty set of vertices 

v  into three disjoint sets: a set of leaf nodes r v , a set of roots, which contains ver-

tices of higher level u v , and a set of nodes b , which are neither roots nor leaves, 

such that g u b r = , u b u r b r   = = = . Subdivide a nonempty set of arcs e  

into subsets 1 ... ne e e  = , each of which reflects a certain relation i  over v .  

We can use the likelihood model  for labeling arcs with the coefficients of likeli-

hood, which belong to the carrier set L . The presence of a transition (arc 
ie e  ) be-

tween two nodes is a reflection of some relationship i  between the events represented 

by the nodes. Based on , the measures 
i L   can be assigned to the arcs, expressing 

the degree of the existence of a relationship between two nodes connected by this arc.  

The model  (Fig.1) can be based on the deterministic formalism (D), or the proba-

bilistic theory (P) for evaluation of probabilities of transitions between nodes, or the 

fuzzy set theory (F) for evaluation of possibilities of transitions between nodes, or the 

rough set theory (R) for evaluation of necessities/possibilities of the transition between 

nodes, of the temporal theory (T) for evaluation of transition times between nodes.  

 

Fig. 1. The likelihood models 

A composite likelihood model   is a model built on the base of models 
i
 and 

j
 so 

that the semi-ring Z  of the compositional model is the Cartesian product of semi-rings 

i jZ Z Z   . A complex likelihood model   is a shared set  
1

n

i i
 of simple and com-

posite models i .  

Let us introduce a multigraph g  over the model E .  



The plausible event tree network (PETN) in the model E  over the event stream 

 1,... nS  y y  such that .i E zy  is a structure  
1

, , , , , ,
k

i i i
G g      


 , , where g  is 

an acyclic connected multigraph, : r S   is a mapping of each leaf node r  into a 

certain event from the sequence S , : r T   is a mapping of each leaf node r  into a 

set of time values 
4. .E Iz , : r X   is a mapping of each leaf node r  into a spatial 

location 
3. .E Iz , : r   is a mapping of each leaf node r  into a certain restriction 

from a set of restrictions  , .
: 2

E A
v 

.z  is a mapping of each node v  into a set of 

parameters from . .E Az , and  
1

k

i i
 is a set of partial order relations 

i
 over a set of 

nodes v , each of which is induced by a relation i  and represented by a subset of arcs 

ie e  ,   is the complex likelihood model, : j

i je


   is a mapping that labels each 

arc 
1je e   with a likelihood estimate 

j  within the model  .  

The root nodes h u  of PETN G  determine a set of sequences consisting of all 

events in the leaf nodes r r  ordered by  i . Each leaf node r r  corresponds to 

certain parameters  , a time point  , and a spatial location  . Each non-leaf node 

represents a significant event sequence, where each event is represented by the leaf 

node r r . Thus, each PETN node corresponds to the event sequence represented by 

h , and its descendants represent a certain chain of the parent sequence.  

PETN can be used to formalize partially ordered sets of events that occur simultane-

ously and jointly. In this case, the leaf nodes represent the elementary (observed) 

events, and the non-leaf nodes correspond to the aggregate events (sequences of ele-

mentary events). An important feature of the formalized PETN is its ability to 

expanding the set of representable relations between events by any new relations 
k  

adding a corresponding subset of arcs 
ke  to e  and implementing a corresponding order 

relation 
k

. A complex composition structure can be created in the presence of several 

event sequences within the model E  and some different relations between them. For-

tunately, the composition hierarchy 2I  allows us to consider PETN as a composite 

structure, which includes the other tree structures as elements.  

A composite event tree network within the model E  with respect to the event se-

quence set  
1

n

j j
S


, 

1 ,...j j

j mS    y y  such that .j

i E zy  is a structure like 

1 ... nG G G в ве . The structure Gе  can be represented as a forest of poly-multi-trees. 

A fragment of the fuzzy-temporal (FT-)PETN is shown in Fig. 2.  

We can notice that an aggregate event 
111y  is a sequence with an event 

1111y  and 

possibly (with a degree 0.8) the event 
1112y  following with an interval of 1 to 5 minutes. 

Also, if the event 
111y  is a part of an abstract event 

11y , it is possible (with the degree 

0.5) that event 
112y  should occur within an interval of 2 to 6 minutes.  

The proposed formalization of the PETN can be considered as an abstraction of the 

known model of the Belief Network [14].  

 



 

Fig. 2. A fragment of fuzzy-temporal (FT) PTEN 

7 PETN Implementation 

The proposed plausible event-tree networks were implemented as PETN dynamic li-

brary written in Python, which provides a high-level programming interface to the 

developer. 

The PETN library includes a set of classes and methods that allow creating complex 

structures of events on the fly and maintaining them. The structure of the PETN Library 

is illustrated in Fig. 3. 

 

Fig. 3. Structure of PETN dynamic library 



The main class of the library is the Event class. The sequences of events are collected 

in ordered lists that representing event streams. Thus, objects of the event class are 

building blocks for the objects of the Event streams class.  

Event model class allows describing a multitude of event streams, variables, and 

constraints, as well as defining necessary hierarchies for events and setting their attrib-

utes. Thus, a certain event model environment can be constructed.  

Hierarchies can be described as the ordered lists of elements, where the first element 

is always the least element.  

PETN class describes interconnected sets of nodes and arcs, where each node object 

is associated with a certain event object from Event model, as well as each arc object 

gets its estimate from the corresponding likelihood model.  

The main feature of the PETN object is that each event and, consequently, each node 

of PETN has reference to the corresponding time point and geolocation. 

All classes of PETN library have a unified CRUD interface that implements the cor-

responding set of methods (create, read, update, and delete). In addition, all ordered 

lists of objects have an additional interface, which takes into account their indexing. 

Classes Shrubs and Clusters are very important because they allow cutting and sep-

arately handling a certain part of the tree-like structure. The Shrubs class allows getting 

some node of PETN as root, and then pull out the entire set of nodes and arcs connecting 

them from the PETN structure. The resulting subtree growing from the root node can 

be further considered as an independent PETN structure with all the possibilities for its 

processing and analysis. On the contrary, the Clusters class allows to simultaneously 

specifying a non-empty set of root nodes, so the whole bundles of bushes growing from 

these roots can be processed and analyzed.  

Objects of Event and Event stream classes can be serialized and deserialized using 

a data source associated with a certain PostgreSQL database. Objects of PETN class 

can also be serialized and deserialized but its data source is associated with another 

PostgreSQL database. Thus, event streams are accumulated and stored in one database, 

while the corresponding event-tree networks are grown and stored in another, separate 

database. This makes it much easier to monitoring events. 

The goal of PETN Library is to make the development of PETN structures using 

Python as quick, flexible, and elegant as possible using its programmable interface. 

However, for use in the DSS, it is necessary to implement an interface that allows 

the operator to perform certain operations with PETN structures without directly pro-

gramming. Therefore, a PETN description and manipulation language (PETN-DML) 

interpreter were developed and used to translate requests of DSS into series of method 

calls for PETN objects through the PETN library.  

8 PETN Model Implementation in the DSS  

The proposed knowledge representation model based on the plausible event tree net-

work was implemented using the PTEN Dynamic libraries. 

To make the development of GIS-based DSS quick and flexible, it uses Python pro-

gramming language as well as the following tools (Fig. 4): 



 

Fig. 4. Structure of the DSS implementation 

 DBMS PostgreSQL; 

 Geospatial extension PostGIS for PostgreSQL; 

 PostgreSQL adapter psycopg2 for Python; 

 Framework Django; 

 GIS extension GeoDjango; 

 GDAL/OGR geospatial libraries; 

 GEOS Geometry Engine library; 

 Mapnik – open source toolkit for rendering maps; 

 pyproj – library for cartographic transformations and geodetic computations;  

 Shapely – planar geometry library; 

 PETN dynamic library;  

 PETN interpreter; 

 OpenLayers mapping library. 

The web-oriented GIS-based DSS use the WGS84 datum and GeoJSON as an open 

format for encoding geographic data structures, as well as GML (geographic markup 

language) as an open XML-based standard for the exchange of GIS data. 

The OGR library is used to read and write geodata in vector format, which was ob-

tained from the Natural Earth website.  

The Mapnik library takes the geodata from the PostGIS database and turns it into 

clearly visualized images. It provides a Map object, representing the map as a whole, 

Layer objects representing thematic layers with the content of the map, and Style ob-

jects that tell how to draw various layers.  

Shapely is based on the dynamic library GEOS (the engine used in PostGIS) and 

manage spatial rather than geospatial data. It assumes that the geodata is already pro-

jected to a two-dimensional coordinate plane before they can be manipulated, and the 

results can be converted to geographic coordinates if desired. 



The geospatial extension PostGIS is used for storing spatial data and working with 

them in the object-relational database PostgreSQL. 

Using PostGIS and Mapnik, we ensure that the geospatial data is split into a large 

number of regular cells organized into rows and columns that are elements of a regular 

cubic grid in a certain data model. Thus, each cell is geographically referenced, that is, 

it has its own coordinates within the Map object. 

Applying PostGIS from the Python programs, we have to use PostgreSQL DBMS 

as well as the psycopg2 PostgreSQL database adapter for Python. 

9 The Results of the Research 

The developed GIS-based real-time DSS is based on the PETN model implementation 

and allows evaluating a number of indicators, e.g. danger degrees, threats, and risks, 

for a given set of target objects, as well as providing the geospatial analysis of emer-

gencies in real time disaster situations.  

Fig. 5 depicts the map of Tsurupinsk forestry (Kherson region, Ukraine), which has 

been implemented using the proposed spatial model grid with the variable cell size.  

 

Fig. 5. Representation of the Tsurupinsk forestry in GIS-based DSS Forest Project 

To examine a validity and an efficiency of the proposed PETN model, we have con-

ducted an experiment based on the information on series of large-scale forest fires, 

which had been taken place in Tsyurupinsk and Golopristan forestries (Kherson region, 

Ukraine) on July 20-31, 2007.  

We have modeled the ongoing processes via PETN and evaluated the total time of 

decision-making as well as the losses at the end of the processes. We have also varied 

the number of ignitions investigating its impact on the DSS assessment time, which 

enabled the evaluation of the influence of these parameters upon a risk assessment per-

formance. The number of ignitions has been varied from 1 to 8, and the corresponding 

number of nodes in obtained PETN has been respectively varied from 1,438 to 18,582.  



Although the performed experiment would benefit from comparing our results with 

results based on some alternative implementation, we did not have an adequate software 

library for comparison. Therefore, we have compared the results obtained with the im-

plemented DSS, with the results obtained with manual decision-making. 

The results of the experiment are depicted in Fig. 6.  

 

 

Fig. 6. Total time of decision making (a) and total losses (b) vs. number of ignitions 

As our results indicate, the PETN model provides an opportunity to represent the 

dynamics of destructive processes adequately. The use of the proposed model makes it 

possible to accelerate the decision-making process under destructive process conditions 

by about 60% (for 5 ignitions) and above. The graph Fig. 6(a) shows the tendency to a 

significant increase of DSS efficiency with an increase of the number of ignitions (from 

6 and above) as a consequence of the limitation of human heuristic capabilities (without 

DSS). The achieved acceleration of the decision-making process leads to decreasing 

the total losses by 35% and above in the same conditions.  

A general view of the DSS performance curve in Fig. 6 shows that the dependence 

of the decision-making time on the ignition points number is linear. Since the depend-

ence of the number of PETN nodes on the number of ignition points is also linear, it is 

confirmed that PTEN inference time depends linearly on the time with respect to the 

number of nodes. 



10 Conclusions 

The knowledge representation model based on the plausible event tree networks is built 

as a result of conducted research. The model represents a sequence of cell state transi-

tions considered as events within the spatial model. Unlike the other known approaches, 

PETN allows referencing events to both the time and spatial points over the digital 

terrain model. Thus, we can closely integrate the proposed PETN model into GIS-based 

DSS, and, as a result, provide an adequate mapping of the dynamics of the spatially-

distributed processes. Another important advantage of the proposed PETN model is its 

satisfactory performance, which ensures DSS operability in real time.  

The proposed knowledge representation method based on plausible event tree net-

works also gives the opportunity to describe events based on incomplete and unreliable 

observed parameters as the likelihood assessments of transitions of the cell from one 

state to another. Unlike to well-known probabilistic or possibilistic approaches, PETN 

formalism can combine time measures and various likelihood measures (probability, 

possibility, fuzzy, or rough) in one frame depending on the specific conditions of the 

uncertainty of observations.  

The proposed PETN model is applicable in all domains, which can be considered as 

a multitude of interacting spatially-distributed processes evolving in space and time. 

Such processes often give rise to a danger and risk due to dynamic locations and dy-

namic spatial relationships of interacting objects. In most cases, this causes their de-

structions and can lead to critical situations or emergencies. Solving such problems 

requires real-time GIS-based DSS containing a digital model of confined space (ter-

rain). Thus, the proposed PETN model can be the basis of real-time GIS-based DSSs.  

The proposed PETN model has been used in GIS-based DSS for a natural emergency 

response. Currently, intensive research is also being conducted on the use of the PETN 

model for solving problems of safety assessment in vehicle-onboard control systems 

and threat assessment in computer security systems. Research results show that the pro-

posed approach significantly reduces the computational complexity of problem-solving 

in the above-mentioned domains. 
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