
Design Patterns for Object-Oriented Scientific Software

Serhii Choporov1, Serhii Gomenyuk1, Oleksii Kudin1, and Andrii Lisnyak1

1 Zaporizhzhya National University, Zaporizhzhya, Ukraine
s.choporoff@znu.edu.ua, gserega71@gmail.com,

alexkudin@znu.edu.ua, andrey.lisnyak@gmail.com

Abstract. Software design patterns are general reusable object-oriented solution.

In software engineering, patterns have been proven to offer many benefits. Sci-

entific software also becomes more object-oriented and the importance of design

patterns increases. We present a set of design patterns for object-oriented scien-

tific software. Particularly we develop computer-aided engineering software

based on the Finite element method. Initially, we decompose the problem into

subsystems by applying the commonality and variability analysis. A set of com-

monalities includes following terms: a representation scheme, a mesh, a solver,

etc. A representation scheme is an interface that allows to check whether a point

belong to a solid or not. A mesh is the discrete representation of the solid via a

set of simple geometric shapes. Four basic design patterns for the scientific soft-

ware development have been presented in this paper. There are developed UI–

Model–Analysis, Representation–Mesh, Element–Mesh, and FEA Problem pat-

terns. These design patterns separate pre-processing, the analysis solver, and

post-processing of results.

Keywords: Software Engineering, Software Design Patterns, Scientific Soft-

ware, Finite Element Method, Object-oriented Approach.

1 Introduction

Software design patterns as general reusable solutions were introduced in the end of the

1980s and, since that time, they have been actively explored in software engineering

[1-3]. Until recently, scientific programmers have usually avoided object-oriented ap-

proaches because of their heavy computational over-head [4]. However, scientific soft-

ware becomes larger and requires flexibility, extensibility and maintainability [5]. De-

sign patterns deal with these issues providing generic object-oriented solutions.

CAE software is a kind of scientific software that areas may include the stress anal-

ysis, the thermal analysis, the fluid flow analysis, the multibody dynamics etc. In gen-

eral, a CAE system consists of three subsystems: pre-processing, an analysis solver,

and post-processing of results.

mailto:s.choporoff@znu.edu.ua
mailto:alexkudin@znu.edu.ua

2 Catalogue of Design Patterns

Consider a generic CAE system that uses the finite element method in the solver sub-

system. We can assume that every solid’s model is initially defined by some represen-

tation scheme and then this model is discretized into a mesh.

2.1 UI–Model–Analysis Pattern

The most modern CAE software have integrated graphical user interface (UI). Using

UI controls, user defines the model of the problem and performs the analysis. Hence,

three main packages participate in the high-level decomposition.

The UI package contains classes that implement UI-related responsibilities of soft-

ware. The analysis package is responsible for the numerical analysis. The model pack-

age defines the interface that allows to check whether a point belong to a solid or not.

Naturally, there should be no coupling between the analysis and UI subsystems. How-

ever, the UI package is dependent on pre-processing, the solver and post-processing.

2.2 Representation-Mesh Pattern

We suppose that a domain model is described in terms of some representation scheme.

Boundary representation (BRep), constructive solid geometry (CSG), and function rep-

resentation (FRep) are the most commonly used schemes. A common property of CSG

and FRep that it is easy to check whether arbitrary point belong to the solid or not. We

also can assume that a mesh is an abstract interface that allows generating and iterating

over a collection of elements. In this case, concrete classes derived from the Mesh class

generate collections of elements with appropriate shape using an abstract representa-

tion’ interface to classify a point. Both Representation and Mesh classes participate in

the Representation–Mesh pattern (see Fig. 2). The intent of this pattern is to separate

responsibilities between representations and mesh generation classes.

Both Representation and Mesh classes are an application of the Strategy pattern [1].

The Mesh class and its derivatives can also be implemented as Iterator [1] to traverse a

collection of elements. In addition, some meshing algorithms may be implemented as

Template Methods [1].

Representation

+isInside

FunctionRepresentation

+isInside

Mesh

+isInside

TriangleMesh

+isInside

Uses

Uses

Element
has

Triangle
has

Abstract

Concrete

Fig. 1. The Representation–Mesh pattern

2.3 Element–Node Pattern

In general, an element is a collection of nodes in order is significant. Both two- and

three-dimensional elements have edges (an edge is a straight-line segment connecting

two nodes). In addition, three-dimensional elements have faces that are flat elements

enclosed by edges. Thus, the concrete face is an object of the class that inherits the

Element interface. Hence, Element, Face, Edge, and Node are structural elements of

the Element–Node pattern (see Fig. 2).

The Element class and its derivatives (including faces) can be implemented as Iter-

ator [1] to traverse collections of points and edges. The Iterator pattern can also be

employed in the Node class and its derivatives to iterate a set of adjacent elements.

Edge

Element Node

Face

has

has has

has

Edge

Hexahedron

has

Quadrilateralhas

Node3d

has

has

Abstract

Concrete

Fig. 2. The Element–Node pattern

2.4 FEA Problem Pattern

The FEA Problem pattern can be derived from the Template Method Pattern [1] adding

mesh, boundary conditions, and forces (see Fig. 3). The intent of this pattern is to define

a skeleton of a FEA algorithm and the object composition for boundary conditions and

forces, which participate in the problem.

Forces and boundary conditions implement the FeaValue interface. This interface

allows to obtain the direction and the value in any point. Forces and boundary condi-

tions are usually specified by the UI or DSL model. However, using the Adapter pattern

[1], we can implement the FeaValue interface.

3 Conclusion

This paper has been proposed an approach for the development of scientific software

using design patterns. Particularly, four basic design patterns for the finite element pro-

gramming have been presented in this paper. The first, the UI–Model–Analysis pattern

decomposes software into high-level subsystems. The second, the Representation–

Mesh pattern separates relations between representations and mesh generation classes.

Next, the Element–Node pattern uses object decomposition to define elements of a

mesh. Last, the FEA Problem pattern defines the structure for a generic finite element

problem. These patterns show how object can be organized for greater flexibility and

maintainability. Patterns represent abstractions of the CAE design without restrictions

on the source code.

Acknowledgments. This research is funded by The Ministry of Education and Sci-

ence of Ukraine.

FeaProblem

+assemblyGlobalMatrix()
+assemblyGlobalVector()
+processInitialValues()
+solveLinearSystem()
+processSolution()
+analyse()

FeaValue

+direction(Point)
+value(Point)forces

boundaryConditions

FeaMesh
mesh

FeaElement

+evalShapeFunctions(Point)

elements

assemblyGlobalMatrix();
assemblyGlobalVector();
processInitialValues();
solveLinearSystem();
processSolution();

Fig. 3. FEA Problem Pattern

References

1. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Ob-

ject-Oriented Software. Addison-Wesley (1994).

2. Alexandrescu, A.: Modern C++ Design: Generic Programming and Design Patterns Ap-

plied. Addison-Wesley (2001).

3. Shalloway, A., Trott, J.R.: Design Patterns Explained: A New Perspective on Object-Ori-

ented Design. Addison-Wesley (2004).

4. Blilie, C.: Patterns in Scientific Software: an Introduction. Computing in Science and Engi-

neering 4(3), 48-53 (2002).

5. Cickovski, Tr., Matthey, Th., Izaguirre, J.A.: Design Patterns for Generic Object-Oriented

Scientific Software. Technical Report TR 2004-29. University of Notre Dame, Notre Dame

(2004).

6. Heng, B.C.P., Mackie, R.I.: Using design patterns in object-oriented finite element program-

ming. Computers and Structures 87(15–16), 952–961 (2009).

