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Abstract. In this work we address the problem of fast and scalable
learning of neuro-symbolic representations for general biological knowl-
edge. Based on a recently published comprehensive biological knowl-
edge graph (Alshahrani, 2017) that was used for demonstrating neuro-
symbolic representation learning, we show how to train fast (under 1
minute) log-linear neural embeddings of the entities. We utilize these
representations as inputs for machine learning classifiers to enable im-
portant tasks such as biological link prediction. Classifiers are trained by
concatenating learned entity embeddings to represent entity relations,
and training classifiers on the concatenated embeddings to discern true
relations from automatically generated negative examples. Our simple
embedding methodology greatly improves on classification error com-
pared to previously published state-of-the-art results, yielding a maxi-
mum increase of +0.28 F-measure and +0.22 ROC AUC scores for the
most difficult biological link prediction problem. Finally, our embedding
approach is orders of magnitude faster to train (≤ 1 minute vs. hours),
much more economical in terms of embedding dimensions (d = 50 vs.
d = 512), and naturally encodes the directionality of the asymmetric
biological relations, that can be controlled by the order with which we
concatenate the embeddings.
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1 Introduction

Over the last decade there has been a very popular trend of merging neural
and symbolic representations of knowledge for the large, general-purpose knowl-
edge graphs such as FreeBase [1] and WordNet [2]. The utilized methods can
be roughly divided into two groups: i) multi-relational knowledge graph em-
beddings [3, 4] and ii) graph embeddings [5, 6]. The former aims at learning
representations of both entities and relations, while the latter focus on the un-
typed graphs, where each relation’s type can be dropped without introducing
ambiguities. Both approaches aim at solving the problem of link prediction, i.e.,
modeling the probability of an instance of a relation (e.g., (u, v) ∈ r) based on



d-dimensional vector representations (e.g., e(u), e(v), e(r) ∈ Rd) and binary op-
erations defined on them. Thus, in the case of multi-relational knowledge graphs
we seek to embed both entities and relations into d-dimensional vector space,
and we model the probability of a triple (labeled arc of a graph) (u, r, v) as
P ((u, v) ∈ r) = 〈e(u) + e(r), e(v)〉 (Euclidean dot product). In the case of unla-
beled graphs we drop the labels of the arcs (or edges in case the relations can
be treated as symmetric), we therefore do not embed the relations, and model
one single arc (or edge) directly as P (u, v) = 〈e(u), e(v)〉. The Euclidean dot
product is only of the many ways to model a probability of having a link (with
a label r in the multi-relational case) between the two entities u, v. In fact, the
underlying geometry may not necessarily be Euclidean, for more in-depth survey
of link prediction methodologies please see [4]. In the context of Semantic Web
technologies and the Resource Description Framework (RDF) and Web Ontology
(OWL) technology stack specialized knowledge graph embedding methodologies
have also recently been proposed [7, 8].

In the bioinformatics domain Alshahrani et al. [9] recently proposed a novel
methodology for representing nodes and relations from structured biological
knowledge that operates directly on Linked Data resources, leverages ontolo-
gies, and yields neuro-symbolic representations amenable for down-stream use
in machine learning algorithms. The authors base their methodology on the
DeepWalk algorithm, which performs random walks on the unlabeled and undi-
rected graphs (i.e., with symmetric relations) [5] and embeds entities through an
approach inspired by the popular Word2Vec algorithm [10]. This methodology
is further tuned for multi-relational data by explicitly encoding the sequences
of intermingled entities and relations. Such complex intermingled sequences al-
leviate the innate undirected nature of the random walks, at the expense of
increased number of parameters to train. Unfortunately, training such models is
computationally expensive (hours on a modern intel core i7 desktop machine)
and requires relatively large embedding dimensions (d = 512). This manuscript
builds upon this seminal work and proposes a more economical, fast and scalable
way of learning neuro-symbolic representations. The neural embeddings obtained
with our approach outperform published state-of-the-art results, with specific as-
sumptions on the structure of the original knowledge graph, and with the smart
encoding of links based on the embeddings of the entities. Among other things
the contributions of this work are based on the following hypotheses:

– There is no need for a sophisticated labeled DeepWalk [5, 9] to account for
all the complexity of the interconnectivity of biological knowledge, since
all (considered) biological relations have clear non-overlapping domain and
range separations,

– We can train faster and more economical log-linear neural embeddings with
StarSpace [11], whose quality is comparable to the state-of-the-art results
(improves on all but one link prediction task) when considering standard
classifiers based on logistic regression as in [9],



– Using the concatenation of the neural embeddings naturally encodes the
directionality of the asymmetric biological relations, and fully exploits the
non-linear patterns that can be uncovered by the neural network classifiers.

2 Materials and methods

2.1 Dataset and evaluation methodology for link prediction used

In this work we consider the curated biological knowledge graph, presented in [9].
This knowledge graph is based on the three ontologies: Gene Ontology [12], Hu-
man Phenotype Ontology [13] and the Disease Ontology [14]. It also incorporates
the knowledge from several biological databases, including human proteins in-
teractions, human chemical-protein interactions and drug side effects and drug
indications pairs. We refer the reader to [9] for the detailed description on prove-
nance of the data, and on data processing pipelines employed to obtain the final
graph. For the purpose of this work, we summarize the number of biological
relation instances present in this knowledge graph in Table 1.

relation number of instances

has-target 554366
has-disease-annotation 236259
has-side-effect 54806
has-interaction 188424
has-function 212078
has-gene-phenotype 153575
has-indication 6704
has-disease-phenotype 84508

Table 1. Statistics on the number of edges for the biological relations in the considered
knowledge graph [9]

Our goal is to train fast neural embeddings of the nodes of this knowledge
graph, such that we could use these embeddings to perform link prediction.
That is, we try to estimate the probability that an edge with label l (e.g., l =
has-function) exists between the nodes v1, v2 (e.g., v1 = TRIM28 gene and v2 =
negative regulation of transcription by RNA polymerase II) given their vector
representations γ(v1), γ(v2). As in [9] we build separate binary prediction models
for each relation in the knowledge graph. Note that, in this work we only focus
on the link prediction problem where the embeddings are trained on the knowl-
edge graph, in which we remove the 20% of the edges for a given relation (this
corresponds to the first link prediction problem reported in [9]). We then use
these embeddings to train classifiers (logistic regression and multi-layer percep-
tron (MLP)) on 80% of the positive true edges (i.e., relation instances) and on
the same amount of generated negative edges. These classifiers are then tested



on the remaining 20% positive and generated negative edges (which have not
been used in the embeddings generation). For a fair comparison with the state-
of-the-art results, we use the same methodology for negative sample generation,
and we use 5-fold cross validation for the training of embeddings and subsequent
link prediction classifiers, precisely the same way as in [9]. For all of our experi-
ments we do not use any deductive inference, and compare our obtained results
with the results obtained without inference in [9].

2.2 Assumptions on the structure of the Knowledge Graph

Our methodology exploits the fact that the full biomedical knowledge graph
KG we are using only contains relations that can be inferred from the types
of the entities that are object and subject of the relation. This means that arc
labels can be safely dropped without the loss of semantics and without the in-
troduction of ambiguous duplicated pairs of nodes (6 ∃rj .(u, rj , v) ∈ KG, rj 6=
ri and (u, ri, v) ∈ KG). Therefore, we can flatten our graph without the risk of
having more than one relation connecting the same source and target nodes, i.e.,
we can simply consider our knowledge graph as a set of pairs of nodes (u, v).
As opposed to DeepWalk employed by [9], our methodology does not rely on
random walks on knowledge graphs [5]; instead of producing sequences of labeled
entities (nodes and arc labels mixed together), we directly consider pairs of con-
nected nodes. Furthermore, we simplify the structure of the knowledge graph by
removing anonymous instances that were introduced by the creator of the knowl-
edge graph to assert relation instances in the ABox, i.e., we directly connect
OWL classes to de-clutter the graph used to train embeddings. In the original
knowledge graph, Alshahrani et al. [9] commit to strict OWL semantics when
modeling biological relations by asserting anonymous instances, for example a
relation instance of has-function (domain: Gene/Protein, range: Function)
would be encoded as in Listing 1.1, where we present a specific instance of a re-
lation that asserts that the TRIM28 gene has the function of negative regulation
of transcription by RNA polymerase II.

gene: <http ://www.ncbi.nlm.nih.gov/gene/>
obo: <http :// purl.obolibrary.org/obo/>
go: <http ://aber -owl.net/go/>
rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>

gene :10155 obo:RO_0000085 go:instance_106358 > .
aber -owl:go/instance_106358 rdf:type obo:GO_0000122 .

Listing 1.1. Biological knowledge representation with OWL semantics commitment

We simplify the knowledge graph by removing all anonymous instances of type
<http://aber-owl.net/go/instance 106358> and connecting entities directly through ob-
ject relations, i.e., we rewrite all triples of the form presented above (Listing 1.1)
to the form that only contains object property assertions as demonstrated below
(Listing 1.2).

gene: <http ://www.ncbi.nlm.nih.gov/gene/>
obo: <http :// purl.obolibrary.org/obo/>



gene :10155 obo:RO_0000085 obo:GO_0000122 .

Listing 1.2. Relaxed biological knowledge representation without OWL semantics
commitment

We admit such a relaxation in the OWL semantics commitment of the knowl-
edge graph, because we do not leverage any OWL reasoning for our tasks. This
relaxation does not change the statistics of the number of biological relation
instances present in the knowledge graph (Table 1).

2.3 Training fast log-linear embeddings with StarSpace

As opposed to the approach taken by Alshahrani et al [9] we employ another
neural embedding method which requires fewer parameters and is much faster
to train. Specifically, we exploit the fact that the biological relations have well
defined non-overlapping domain and ranges, and therefore the whole knowledge
graph can be treated as an untyped directed graph, where there is no ambiguity
in the semantics of any relation. To this end, we employ the neural embedding
model from the StarSpace toolkit [11], which aims at learning entities, each of
which is described by a set of discrete features (bag-of-features) coming from
a fixed-length dictionary. The model is trained by assigning a d-dimensional
vector to each of the discrete features in the set that we want to embed directly.
Ultimately, the look-up matrix (the matrix of embeddings - latent vectors) is
learned by minimizing the following loss function∑

(a,b)∈E+,b−∈E−

Lbatch(sim(a, b), sim(a, b−1 ), . . . , sim(a, b−k )).

In this loss function, we need to indicate the generator of positive entry pairs
(a, b) ∈ E+ – in our setting those are entities (u, v) connected via a relation
r – and the generator of negative entities b−i ∈ E−, similar to the k-negative
sampling strategy proposed by Mikolov et al. [10]. In our setting, the negative
pairs (u, v−) are the so-called negative examples, i.e., pairs of entities (u, v−)
that do not appear in the knowledge graph. The similarity function sim is task-
dependent and should operate on d-dimensional vector representations of the
entities, in our case we use the standard Euclidean dot product. Please note
that the aforementioned embedding scheme is different from a multi-relational
knowledge graph embedding task. The main difference is that we do not require
the embeddings for the relations.

Based on the embeddings of the nodes of the graph, we can come up with
different ways of representing a link between a node u and v, as a binary oper-
ation defined on the nodes of the graph (see [6] for more detail). In particular,
we employ the so-called concatenation of the embeddings u, v to represent each
relation instance as a concatenated vector [u v]T (Figure 1).

3 Results

In Table 2 we report the state-of-the-art evaluation scores as provided in Al-
shahrani et al [9]. Throughout the rest of this manuscript we refer to these



Retained graph StarSpace Classifier 

Fig. 1. Each relation instance (u, v) ∈ r is represented as a concatenated [u v]T vector
that preserves directionality of the relation r, i.e., (u, v) ∈ r 6= (v, u) ∈ r, [u v]T ∈ r 6=
[v u]T ∈ r.

results as SOTA results for convenience. We further use these state-of-the-art
results to contrast our classification results in Tables 3 and 4. To simplify the in-
terpretation of our results, both Tables 3, 4 report only differences in F-measure
and ROC AUC scores for our approach wrt. the SOTA results. Classification
results are divided into two parts, differentiated by the classifier used: i) (Ta-
ble 3) logistic regression (as in [9]), and ii) (Table 4)) MLP. The two classifiers
are trained on concatenated embeddings of entities (nodes), which are obtained
from the flattened graphs for each biomedical relations via StarSpace [11], as
described in Section 2. All classification results presented here are averaged over
5 folds to be directly and fairly compared with the results in [9].

relation F-measure ROC AUC

has-disease-annotation 0.89 0.95
has-disease-phenotype 0.72 0.78
has-function 0.85 0.95
has-gene-phenotype 0.84 0.91
has-indication 0.72 0.79
has-interaction 0.82 0.88
has-side-effect 0.86 0.93
has-target 0.94 0.97

Table 2. State of the art F-measure and ROC AUC evaluation metrics [9]. Rows in
dark gray emphasize the worst performing link prediction tasks.

3.1 Biomedical link prediction with logistic regression

Overall, we are able to outperform SOTA results on all relations except for
has-target (Table 3). It is important to notice that we improve significantly on
has-indication and has-disease-phenotype - the two worst performing re-
lations in Alshahrani et al [9]. We specifically consider the embeddings of rather
small sizes ([5, 10, 20, 50]) to emphasize the rapidity and scalability of training
embeddings using log-linear neural embedding approaches [11]. For all embed-
ding dimensions we train our embeddings for at most 10 epochs, which keeps



overall training time of embeddings for one specific biomedical relation under
1 minute on a Core i7 desktop with 32GB of RAM. It is also important to
notice that the SOTA results were obtained via the extended DeepWalk algo-
rithm [9] with 512 dimensions for the embeddings, which takes several hours to
train on our machine. Moreover, our learned embeddings are more consistent, as
they have a 0.92-0.99 F-measure and ROC AUC range for all relations, whereas
SOTA embeddings range from 0.72 to 0.94.

F-measure ROC AUC

5 10 20 50 5 10 20 50

has-disease-annotation -0.027 +0.013 +0.033 +0.071 -0.088 -0.047 -0.028 +0.012
has-disease-phenotype +0.239 +0.260 +0.274 +0.279 +0.180 +0.200 +0.214 +0.219
has-function +0.013 +0.028 +0.067 +0.117 -0.077 -0.066 -0.030 +0.017
has-gene-phenotype +0.148 +0.156 +0.159 +0.159 +0.078 +0.086 +0.089 +0.089
has-indication +0.186 +0.262 +0.270 +0.275 +0.112 +0.192 +0.200 +0.205
has-interaction +0.010 +0.147 +0.179 +0.180 -0.034 +0.088 +0.119 +0.120
has-side-effect +0.091 +0.105 +0.128 +0.137 +0.021 +0.036 +0.059 +0.067
has-target -0.107 -0.077 -0.047 -0.018 -0.109 -0.083 -0.057 -0.034

Table 3. Differences in F-measure and ROC AUC scores for our classification results
for logistic regression models trained on our neural embeddings wrt. the SOTA results.
In light gray are the minimal embedding dimension with the better scores than the
state of the art (excluding has-target relation). Rows colored with dark gray represent
the worst performing SOTA relations, which we outperform significantly.

3.2 MLP and biomedical link prediction

We hypothesize that our approach of augmented embedding dimension via con-
catenation of entity embeddings is more suited for neural network architectures.
Indeed, we are able to obtain very good biological link prediction classifiers by
using concatenated embeddings and multi-layer perceptrons. We experimeted
with different shallow and deep architectures (hidden layer sizes ([200], [20, 20,
20], [200, 200, 200]), which yielded almost similar performances. The results of
a shallow neural networks with one hidden layer consisting of 200 neurons are
summarized in Table 4, that empirically show that the concatenation of the
neural embeddings to represent a link between the two entities fully exploits the
non-linearity patterns, which can be uncovered by the neural network classifiers.
As a result, we are able to improve the SOTA results for all the biological link
prediction tasks.

4 Discussion and conclusion

Recent trends of neuro-symbolic embeddings continue the long-sought quest of
the artificial intelligence community to unify the two disparate worlds, where



F-measure ROC AUC

5 10 20 50 5 10 20 50

has-disease-annotation +0.095 +0.109 +0.110 +0.110 +0.035 +0.049 +0.050 +0.050
has-disease-phenotype +0.272 +0.279 +0.280 +0.280 +0.212 +0.219 +0.220 +0.220
has-function +0.148 +0.150 +0.149 +0.150 +0.048 +0.050 +0.049 +0.050
has-gene-phenotype +0.160 +0.160 +0.160 +0.160 +0.089 +0.090 +0.090 +0.090
has-indication +0.276 +0.278 +0.279 +0.279 +0.206 +0.208 +0.209 +0.209
has-interaction +0.180 +0.180 +0.180 +0.180 +0.120 +0.120 +0.120 +0.120
has-side-effect +0.128 +0.137 +0.139 +0.139 +0.058 +0.067 +0.069 +0.069
has-target -0.024 +0.006 +0.023 +0.033 -0.040 -0.016 -0.003 +0.006

Table 4. Differences in F-measure and ROC AUC scores for our classification results
with MLP models with one hidden layer consisting of 200 hidden units, trained on our
neural embeddings wrt. the SOTA results. In light gray are the minimal embedding
dimension with the better scores for all relations than the state of the art. Rows colored
with dark gray represent relations where the previous SOTA approach performs worst
and where our approach outperforms significantly.

the reasoning is performed either in a discrete symbolic space or in a continu-
ous vector space. As a community, we are still somewhere along this road, and
up to date there has still been no evidence of a clear way of combining the
two approaches. The neuro-symbolic representations based on random walks on
RDF data for the general biological knowledge as introduced by [9] are an im-
portant first development. The methodology allows for leveraging the existing
curated and structured biological knowledge (Linked Data), incorporating OWL
reasoning, and enabling the inference of hidden links that are implicitly encoded
in the biological knowledge graphs. However, as our results demonstrate, it is
possible to obtain improved classification results for link prediction if we relax
the constraints of multi-relational biological knowledge structure, and consider
all arcs as part of one semantic relation. Such a relaxation gives rise to faster
and more economical generation of neural embeddings, which can be further
used in scalable downstream machine learning tasks. While our results demon-
strate excellent prediction performance (all F-measure and ROC AUC scores
range in 0.92-0.99), they outline that having very well-structured input data is
a core ingredient. Indeed, the biological knowledge graph curated by Alshahrani
et al. [9] implicitly encodes significant biological knowledge available to the com-
munity, and simple log-linear embeddings coupled with shallow neural networks
are enough to obtain very good prediction results for the transductive link pre-
diction problems. Unfortunately, the quest of merging symbolic and continuous
representations cannot be fulfilled to its advertised limits, as was already men-
tioned in [9], symbolic inference (OWL-EL reasoning) do not yield significant
improvements on link prediction tasks. Indeed, we managed to get very good
scores without any deductive completion of the Abox of the knowledge graph.
Another important aspect which we implicitly emphasized in our work is the
evaluation strategy of the neural embeddings. When dealing with big and rich



knowledge graphs one has to meticulously generate train and test splits, which
avoid potential leakage of information between the two sets. Failing to do so
might lead to the models which overfit and are unable to truly perform link
predictions. As part of our future work we would like to focus on the creation
of different evaluation strategies that test the quality of the neural embeddings,
their explainability, and we would like to consider not only transductive link
prediction problems, but also focus on the more challenging inductive cases.
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