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Abstract. Knowledge Graphs (KGs) are abstractions used to represent
knowledge in which real-world entities are organized using a type system
where types are organized using a sub-type relation: the ontology. A
key factor in many applications is to evaluate the similarity between
the types of the ontology. Classical measures to evaluate the semantic
similarity between types are often based on the structured organization
of the sub-type system. In this work, we show that it is possible to use
methods coming from Natural Language Processing to embed types in
a vector space starting from textual documents. We show that in this
representation some of the properties of the hierarchy are still present
and that the similarity in this space captures also characteristics that
are close to human behavior.

1 Introduction

Knowledge Graphs (KGs) provide abstractions to represent and share knowledge
in a structured way that has become popular both in the research community
and in the industry. Examples of openly accessible KGs are DBpedia (from which
most of following examples are taken) and YAGO, while examples of corporate
KGs are the ones developed and used by Google and SpazioDati'. Several open
models, languages, and technologies have been defined in the context of the se-
mantic Web, like RDF to model data, RDFS and OWL to represent the schema,
or, the ontology, of the KG. However, some organizations implement the KG
abstraction by using other technologies such as, for example, graph databases.
We found that three main features are common to different approaches to rep-
resent KGs [1]. First, real-world entities, e.g., dbr:Rome, are made first class
citizens and explicitly represented. Second, relations between these entities, as
well as other features of the entities, are represented using several properties,
e.g., dbr:Rome is located in dbr:Italy and has a density of about 2232 per
square meter. Third, entities are organized using a rich type system where types
are organized using a sub-type relation, e.g., dbr:Rome is of type dbo:City and
dbo:City is a sub-type of dbo:Place. KGs are often used as a backbone to

! https://www.spaziodati.eu



support interoperability between various services and information sources. For
example, entity linking algorithms find mentions of real-world entities in text,
thus supporting different kinds of semantic text analytics that are even marketed
by companies (e.g., Dandelion? by SpazioDati).

In addition, ontology concepts are organized into sub-type graphs by means
of the rdfs:subClass0f property. Abstracting away from the specific language
used to define the ontology?, the sub-type graph is a partially ordered set of
types®, which constitutes the backbone of the ontology structure and can be
also referred to as topology.

The evaluation of semantic similarity between ontology types is an important
activity for several tasks like, for example, information retrieval [2].

We can distinguish two types of similarity relationship: semantic similarity
and semantic relatedness. Semantic similarity captures the resemblance of en-
tities respect to a more general conceptual term. Instead, semantic relatedness
express the existence of a connection between entities independently in which
measure they are similar (e.g., gasoline and cars are more related than a car
and a bicycle, but these two elements are more similar than the former ones) [3].
Often, semantic similarity is considered as a special case of semantic relatedness.
The most popular measures to evaluate the semantic similarity between ontology
types are based on the sub-type graph [3,4].

On the one hand, type similarity measures proposed in the literature tend
to consider semantic similarity based on the topology of the type ontology [4].
On the other hand, recent measures of similarity between entities use vector
representation of entities derived from the textual corpus [5, 6].

Semantic similarity metrics represent the commonality of two concepts re-
lying on their hierarchical relations [4]. Most of the metrics proposed in the
literature are path-based and measure the similarity between two concepts by
computing the length of the path between the concepts in the type sub-graph
and by considering their hierarchical depth. For example, dbo:SoccerPlayer
and dbo:BasketballPlayer are similar in DBpedia since they share the same
parent dbo:Athlete in the hierarchy. Known drawbacks of these approaches are
that the semantic similarity of any two concepts with the same path length is the
same (equal path problem), and also many concepts that share the same depth
(hierarchical level) resulting in same similarity (depth problem). The oblivi-
ousness of path-based similarities of knowledge coming from concept relations
in textual data leads to inconsistencies on the similarity measure. For exam-
ple, distant nodes in the ontology hierarchy are not necessarily unrelated (e.g.,
dbo:SoccerPlayer and dbo:SoccerClub) while siblings types in the ontology

2 http://dandelion.eu/

3 In most of this paper we will not adhere to OWL terminology, preferring the terms
“types” and “sub-type” to the terms “concept” and “subclass”, since the first ones
stress the use of concepts that are defined as types of some entities in a KG; however,
occasionally, we will use the term “concepts” as equivalent of “types”, in particular
when referring to related work

4 The notion of partially ordered set is preferred to the one of taxonomy because more
general: many ontologies do not have a tree-shape like taxonomies



might not be equally related (e.g., the similarity between sports vary across the
type of sport).

Recent relatedness measures come from Natural Language Processing (NLP)
and some of them are based on word embedding techniques. Word embeddings
are defined under the distributional hypothesis, which states that words that
appear in similar context have similar meaning [7]. Based on this premise word
embeddings map words/entities into a small dimension vector space where simi-
larity is based on the co-occurrence of words in a window across the text. Vector
assignment attempts to place words that appear in similar contexts closer to
each other. Word embeddings also capture intrinsic characteristics of the text
like stereotypes [8], thus they are able to extract information about social aspects
of the world.

Despite the advantageous features, word embeddings encompass a funda-
mental drawback: embeddings neglect the type ontological structure and (ap-
parently) fail in representing type hierarchy.

Starting from a recent work [9], in this paper we study a model called Type to
Vector for measuring the (contextual) similarity between concepts. The model
considers text from a set of corpora which are disambiguated into entities and
then mapped to (minimal) types. An embedding algorithm is then applied to
this type-corpus and similarity between types is defined as the proximity of
their vector representation. We show that our method, even without relying
on the structure of the ontology, is able to meet some criteria desired by the
path-based methods, such that the hierarchical depth assumption (the upper-
level concepts in the taxonomy are supposed to be more general and then have
a smaller similarity), thus capturing topological properties from the concept
ontology.

The paper is organized as follows: Section 2 describes some related works.
Section 3 presents the Type to Vector model and Section 4 contains some exper-
imental evidence of the properties of the model. The paper ends outlining some
conclusions and future work directions in Section 5.

2 Related Work

In the last few year studies on ontology representations have been conducted. In
the case of vector representation, different approaches investigated the usage of
embeddings to represent ontologies.

In a recent work [10], a novel instance-based approach is presented. The
authors created an ontology in the legal domain and trained a word2vec [11]
model with a large corpus of legal documents. The trained model was then used
to build the word embedding vectors of the instances and the class labels in the
created ontology. Thus, in order to predict the best representative vector for
each ontology class, a small number of candidate vectors were calculated using
the word embeddings of the instances. The selected candidates are then used to
train a machine learning model that predicts the best representative vector for
each ontology class. Similarly, another approach [12] makes use of stacked auto-



encoder, to learn the vector representation of each entity from its description
bag of words.

A recent approach [13] uses distributional hypothesis based embeddings for
ontological representation in which a textual document is generated by consid-
ering axioms in an ontology as sentences of a text over which standard method
like word2vec can be applied.

Differently from other approaches, here we study a different source of infor-
mation (i.e., text corpora) that can add details to the representation, but we
focus on texts that contain only disambiguated entities in order to train our
word2vec model by looking at the concept co-occurrence, without taking into
consideration the structure of the ontology, neither its information content (e.g.,
labels, descriptions, axioms). Approaches to embed entities in the vector space
exists [6, 14, 15], but we do not focus on them because they do not directly take
care of ontological concepts.

In literature, many path-based metrics for measuring the similarity between
concepts are provided. These metrics rely on the ontological topology and con-
sider the length of the path between the concepts and/or their hierarchical depth.
One of the first path-based measure (path) is based on the shortest path length
between concepts [16]. However, relying on the path distance between concepts
leads to the equal path problem: two concepts with the same path length share
the same semantic similarity. Because of this issue, other measures of similarity
consider also the depth of concept in the ontology. For example, the wup mea-
sure computes the concept depth based on the Least Common Subsumer (LCS),
which is the first common ancestor of the target concepts [17]. Even if this
measure outperforms the previous one, relying on the concept depth has a draw-
back: concepts at the same hierarchical level share the same similarity (equal
depth problem). In this scenario, some other path-based approaches start to use
external evidence obtained from text in order to overcome both drawbacks.

A recent work on concept similarity proposed the weighted path length
(wpath) metric to evaluate the similarity between concepts, by exploiting the
statistical Information Content (IC) along with the topology [4]. The IC is com-
puted on text corpora and it is used to assign a higher level to more specific
entities. Since IC is based on the concept occurrences in text, each occurrence
of a more specific concept implies the occurrence of its ancestor concepts. The
objective of this method is to take advantage of structure-based methods for
representing the distance between concepts in a taxonomy and to overcome the
equal path and depth problems by using the IC between concepts to weight their
path length.

3 Type to Vector

In a recent work [9] we have proposed a model to represent both entities and
types in the vector space (Typed Entity Embeddings) starting from text. In this
work, we want to analyze the properties of the type representation: the Type
to Vector model (T2V). Starting from a textual corpus we can use Natural



Language Linking techniques to find entities inside text. We can thus create a
document that contains only the entities that have been found in text. After
this step, we can replace each entity with its own minimal type. Entities can
have more than one minimal type: in the current version of the model, we select
the first provided by dedicated resources®. The generated document contains
only types coming from the KG so the last step of the process is to use word
embeddings methods like word2vec to generate the embeddings for the types.
Word2vec takes in input a corpus and has two main parameters: the dimen-
sionality of the desired embedded space and a window size that is used to span
over the text and to define the co-occurrences context for the words (i.e., context
for a word in word2vec is given by the word neighbors based on the window size).
These embeddings capture type-type co-occurrences and thus types that oc-
cur in similar context will be close to each other (e.g., dbo:SoccerPlayer will
appear often near dbo:SoccerClub). With this approach we are not using pos-
sible relations between types, we are considering only the types of the entities.
Figure 1 briefly summarizes the process used to generate the type embeddings.
Once the types are embedded it is easy to evaluate the similarity (that is based
on the distributional hypothesis) by evaluating the cosine similarity between the
vector representations of the types.
Pros and Cons This model provides a fast way to embed an ontology in a
vector space in which the distributional hypothesis holds. In the experiments
section, we will show that this similarity can capture information that is of-
ten not captured by topological measures; this is due to the fact that we are
considering an external source of information (i.e., text). Even by considering
only the minimal type when building the document with types, we are able to
generate vector representation also for types that are not leafs in the hierarchy.
This happens because there exist entities that have as minimal type a type that
is not a leaf, e.g., dbo:Agent and dbo:0rganization. However, if a type does
not appear in the text it is not represented and this can be a limitation of the
model. Moreover, the approach depends on the quality of the annotation: if the
annotation is wrong the added type will be wrong.

4 Experiments

In this section, we investigate the behavior of our model for representing the
ontology in the vector space using distributional semantics. Objectives of these
experiments are to show that: 1) linguistic regularities, which are present in
classical word embedding models [11], are also present in our model that contains
only types of an ontology; 2) some of the information of the hierarchy is preserved
in the representation (e.g., more specific types are more similar than less specific
types); 3) the similarity measure computed on pairs of types is uncorrelated with
topological measures defined in the state of art; 4) the use of word embeddings
methods allows to capture and introduce social meaning in the vector space

® http://wiki.dbpedia.org/services-resources/documentation /datasets#instancetypes
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Fig. 1. Process to generate T2V considering text from DBpedia’s abstracts

that replicates a human-like behavior in categorization tasks; 5) we can embed
multiple classification systems in the same space and evaluate the similarity
between them. Our experiments are based on the long abstracts contained in
DBpedia 2016-04% and DBpedia Spotlight was used as annotator’. We used
Wikidata 2016-04 dumps® for projecting two different categorization systems.
The source code of our models and the gold standards are openly available
on GitHub?. The word2vec implementation that we considered was the skip-
gram [11].

4.1 Analogical Reasoning with Types

To verify the quality of the alignment of our embedded representation we con-
sider solving analogies in a similar way to what is usually done to evaluate word
embeddings model. Word embeddings are able to represent linguistic regularities
by using vector operations like v(bigger) — v(big) + v(small); operations result
in a point in the space in which the nearest point should be the correct answer
(i.e., v(smaller)). We want to apply the same methodology to evaluate our em-
bedding of types. We tested the skip-gram model with two different sizes (100
and 200) with a window of 5.

Dataset Since our representation contains only types, we had to focus on analo-
gies that are made with types. Since we could not find an analogical reasoning
gold standard that contained types we created a dataset containing type analo-
gies related to the Sports domain that in DBpedia has a good coverage (e.g.,

5 http://wiki.dbpedia.org/dbpedia-version-2016-04

7 http://demo.dbpedia-spotlight.org/

8 https://tools.wmflabs.org/wikidata-exports/rdf/exports/20160425/
9 https://github.com/vinid/type2vec



dbo:SoccerPlayer is to dbo:SoccerLeague as dbo:BasketballPlayer is to
dbo :BasketballLeague). Our dataset contains 868 analogies.

Results Table 1 shows the results obtained by our model on the analogical
task in function of the precision (P) (number of analogies solved by considering
the closest point to the analogical vector operation of the model) and of the
mean relative rank (MRR). Interestingly half of the answers are found in the
first position of the dataset and most of them (98%) are found in the top 5
list. One important aspect is that there is a slight variation in the results when
considering different parameterizations. Given this result, we decided to use the
combination (200, 5) also for the other experimental tasks.

Table 1. Results on the analogical reasoning task

Precision Precision@2 Precision@5 MRR@2 MRR@5

T2V (200, 5) 0.50 0.85 0.98 0.68 0.77
T2V (100, 5) 0.47 0.76 0.93 0.61 0.67

4.2 T2V Similarity with respect to depth and distance

As mentioned before, a desired property of our model is that similarity be-
tween siblings should increase with the depth of the ontology. This property
should holds since the more in-depth we go in an ontology the higher the
number of the characteristics shared between nodes: dbo:SoccerPlayer and
dbo:BasketballPlayer should be more similar than their parent (dbo:Athlete)
and one of the siblings of their parent (e.g., dbo:Politician). To evaluate the
amount of information that siblings represent we compute a value that measures
how much the siblings represent similar things. Given a parent p and the set of
its children C(p), we call Children Information Distribution (CID) the average
similarity of siblings ¢; € C(p). The CID of a parent is thus the average similarity
between all the possible pairs of its children.

CID() 1 if p is a leaf or |C(p)| =1
p) = Wlp)\ D SIM(CL, C2)vey creC(p),c1 s  Otherwise

In Figure 2 we show an actual example of the CID values computed on a
small piece of the DBpedia Ontology: the CID of Agent is lower than the one of
its children.

Depth Since we believe that siblings that are found in a deeper level of the
ontology are more similar to each other we selected all the path from the root
(dbo:Thing) to a leaf and we computed the CID of each node on the path
(without considering leaves, because they have CID = 1 in the formula) obtaining
54 different paths (409 paths were found but we had to remove leafs from those).



We normalized the depth of each path in [0, 1], thus obtaining the relative depth
of each node in the path with its CID. In Figure 3 we plot the relative depth
and the CID, which are binned using a window of 0.2 for the relative depth
and averaging the CIDs in the bin. The plot shows that the CID increases with
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Fig. 2. Nodes that are in deeper sections  Fig.3. As we go deeper in the ontology
of the ontology tend to have have an  the CID becomes higher
higher CID

length. We identify an outlier that is the first bar of the plot: it is higher than the
second one. This is due to the fact that the type dbo:Thing has an higher CID
than one of its children, dbo: Agent, which is present in most of the paths. Some
dbo: Agent children are not present in the adopted text corpus (e.g, dbo:Family)
because they are not used with high frequency. Average CID of the children of
Thing is actually 0.36, higher than the CID of Thing itself, 0.18. Interestingly,
while topological similarity measures try to force this property [4], in our case
this property is intrinsically inherit by the model construction.

Distance We also wanted to compare if in our model there was a relation
between path distance and vector similarity of two types. Usually, the semantic
similarity should decrease with the increase of the distance. We thus randomly
selected pairs of nodes in our representation and computed their distance and
their vector similarity. Eventually, we computed the Pearson correlation between
these two variables. We found out that there seems to be no relation between
topological distance between two nodes and their similarity: correlation is equal
to -0.2. This is a result of the closeness of types that are used often together in
text (e.g., dbo:SoccerPlayer and dbo:SoccerClub) but that are far inside the
ontology.

4.3 Comparison with Topological Measures

In this section we want to compare the similarity computed by T2V with the
similarities computed by state-of-the-art measures. To test the information cap-
tured by our measure with respect to the others, we collect all the pairs of
types and compute the vector similarity between those pairs using T2V, among
with different similarity measures defined in the state of the art. We consider



wpath, wup and path. Finally, we evaluate the Pearson correlation between these
measures.

Results Table 2 shows the results. As we expected, since our measure uses
information that is not accessible to topological ones, the correlation is low.
Vice versa, our measures can not directly access to the structure of the ontology
and thus those measures are more correlated one with each other. Our model
tends to give higher similarity scores to those types that are used in the same
context (i.e., dbo:Vein and dbo:Artery).

Table 2. Correlation comparison between T2V and topological measures

path wup wpath T2V

path 1.00 0.87 0.94 0.30
wup 0.87 1.00 0.93 0.33
wpath 0.94 093 1.00 0.36
T2V  0.30 0.33 0.36 1.00

4.4 User Study on Type Similarity

We studied the effect of the similarity between types by considering a simple cat-
egorization task in which we involved 5 users that had already some experience
with the semantic web.

Methodology We selected 31 nodes from the DBpedia Ontology and for each
one we retrieved its most similar sibling and its least similar sibling (which cor-
respond, respectively, to the nearest and to the farthest siblings in the space).
As instance, the most similar sibling of dbo:President is dbo:PrimeMinister,
while the least similar is dbo : Mayor. Users were given the first node (dbo:President)
and were asked to decide which of the two siblings they considered more similar.
Users were forced to give an answer even in contexts in which it was not imme-
diately clear which element was the most similar (e.g., is dbo: Skyscraper more
similar to dbo:Hospital or dbo:Museum?). A strong bias in this experiment is
that the two available options were chosen by considering their position in the
vector space.

Results Resulting categorizations provided by user were quite similar, the 5
users agreed on many questions. Since the agreement between the user was
high we used Gwet AC1 [18] to compute the level of agreement between users,
obtaining a level of agreement equal to 0.9, not distant from 1 (that represents
unanimity). If we consider the majority vote on the collected answers, we see that
the answer is always the most similar sibling. This is an interesting result because
it shows that this corpus-based similarity on concepts can capture human-like
behavior.



4.5 Projecting Different Classification Systems in the Same Space

In the following, we show that is possible to generalize our model to represent
different ontologies in the same vector space. As a result of this representation,
we are able to detect similar types of different ontologies in the space. Moreover,
if the similarity between two types is high it means that the two are used in the
same contexts, and thus they might be representing the same type. This might
be useful in the context of equivalent class relations in KG, that allow linking
equivalent types of different ontologies.

Methodology We generate a mixed embedding that contains types represented
both in DBpedia and Wikidata ontologies by considering DBpedia Ontology
and the instance of hierarchy provided by Wikidata. The generation of the
document is akin to the one presented in Figure 2 with one difference: during
the type replacement phase, for each entity we select with probability 0.5 the type
coming from the respective Wikidata entity (by first mapping DBpedia’s URI
to Wikipedia’s one, and then to Wikidata’s one) or the type of the entity itself
in DBpedia. With this approach, we build a mixed corpus that contains types
of the two different knowledge bases. Skip-gram is then applied to the corpus
to generate embeddings. Differently, from before, the combined representation is
embedded in 100-dimensional vector space in which we would like to see similar
types from the two different ontology to be close to each other. Our intuition
suggests that since we are replacing different types of the same entities, our
embedded representation should show equivalent types near to each other (i.e.,
those types that are used in the same contexts).

Results In Table 3 we show an example of the most similar types. Non-marked
pairs are those for which already exists an equivalent class relation in DBpedia.
One important aspect of our similarity is that it does not consider syntactic or
topological information to find the mappings.

Table 3. Top similar Wikidata entity and DBpedia class pairs

Wikidata (label) DBpedia Sim
Q4498974 (ice hokey team) HockeyTeam 0.99
Q5107 (continent) Continent 0.99
Q17374546* (Australian rules football club) AustralianFootballTeam 0.99
Q3001412* (horse race) HorseRace 0.98
Q4022 (river) River 0.98
Q46970 (airline) Airline 0.98
Q18127 (record label) RecordLabel 0.98
Q13027888* (baseball team) Baseball Team 0.98
Q11424 (film) Film 0.98
Q1075* (color) Colour 0.98

Equivalent classes not defined in the KG are also found in the model. Some
examples of these types are reported in Table 4.



Table 4. Examples of similar types that have not an equivalent class relation

Nearest Point Label Sim
dbo: AmericanFootballTeam Q17156793 American football team 0.95
dbo:Earthquake Q7944 earthquake 0.91
dbo:Diocese Q3146899 diocese of the Catholic Church 0.93

We also computed the number of correct equivalent classes (by considering
DBpedia mappings as a gold standard) we find as top-similar pairs of wikidata
and DBpedia types in our representation. Table 5 shows the result of this anal-
ysis. It is evident that the number of matched elements decreases as we get far
away from the pairs that have the highest similarity. There are some errors that
might be considered for a more detailed analysis: dbo:Aircraft has Q11436
(aircraft) as equivalent class, while our model suggested Q15056993 (aircraft
family). This depends on the fact that aircrafts in Wikidata are usually instance
of aircraft family and subclass of a descendant of aircraft. We did not consider
the subclass of relation in our embedding and that might be the cause of the
error.

Table 5. Percentage of matched equivalent classes for the top similar pairs in the
representation

Top-5 Top-10 Top-15 Top-50 Top-100
Matched% 1.00 0.90 0.80 0.62 0.51

5 Conclusion and Future Work

In this work we have proposed a simple model to represent types of entities in
the vector space. We also studied some of the properties of this model and we
realized that some of the properties that we had in the ontology (e.g., deeper
siblings are more similar to each others than ancestors) are also present in our
representation. We also showed with a simple user study that this representation
computes similarity in a way that is similar to what human do. Finally we have
shown that we can project multiple classification systems in the same vector
space with the possibility of having similar types in different ontologies close to
each other.

While these results are promising we intend to extend this approach in dif-
ferent way: we would like to combine our findings with topological similarity
measures. Also, since we can project multiple representation in the same vector
space, we believe that our approach can be used for ontology matching tasks.
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